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Abstract. Yu’s property A is a non-equivariant analogue of amenability,

which is defined for metric spaces. A tree is a typical example of space with
property A. In this paper we show that finite dimensional CAT (0) cube com-
plexes, higher dimensional analogues of trees, also have property A.

Introduction

This paper is devoted to the study of property A for finite dimensional CAT (0)
cube complexes. These spaces, which are generalizations of trees, appear naturally
in many problems in geometric group theory. We prove that finite dimensional
CAT (0) cube complexes satisfy Yu’s property A. For a cube complex X, we will do
this by explicitly constructing a sequence fN,Xn,x of families of weighting functions,
which are `1-functions on the set of vertices of X.

The weighting functions we construct satisfy the following remarkable property
(Theorem 3.8).

Theorem. Let X be a CAT (0) cube complex of dimension at most d, and take
N ≥ d − 1. For x a vertex of X, the `1-norm of the function fN,Xn,x is

(
n+N
N

)
. In

particular it depends only on n and N , and not on the vertex x or the complex X.

From this we deduce our main result (Theorem 3.10).

Theorem. Let X be a finite dimensional CAT (0) cube complex. Then X has
property A.

1. Preliminaries

1.1. Property A. We begin by recalling the definition of amenability for a discrete
group.

Definition 1.1. A countable discrete group G is amenable if there exists a sequence
of finite subsets An of G such that for each g in G the sequence

|An∆gAn|
|An|

tends to zero as n tends to infinity.

Such a sequence is called a Følner sequence.
Amenability can equivalently be described in terms of the characteristic func-

tions of the sets An. A discrete group G is amenable if there exists a sequence of
finitely supported {0, 1}-valued functions fn on G such that for each g in G we have
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‖fn−g·fn‖1
‖fn‖1

→ 0, where ‖f‖1 denotes the `1-norm on the space of finitely supported
functions f : G→ {0, 1}, i.e. ‖f‖1 =

∑
h∈G |f(h)|.

We note that if G is equipped with a proper left-invariant metric, then fn is
supported in some ball about the identity BSn(e). Hence each function g · fn is
supported in the ball BSn(g).

We will now define property A. The following definitions are due to Yu, [5].

Definition 1.2. A discrete metric space X has property A if for all R, ε > 0 there
exists S > 0 and a family of finite non-empty subsets Ax of X × N, indexed by x
in X, such that

• for all x, x′ with d(x, x′) < R we have |Ax∆Ax′ |
|Ax| < ε;

• for all (x′, n) in Ax we have d(x, x′) ≤ S.

Definition 1.3. An arbitrary metric spaceX has propertyA if it contains a discrete
coarsely dense subset with property A.

Implicit in the definition in the general case are the following facts. Firstly,
every metric space X contains some discrete coarsely dense subspace: this is a
straightforward Zorn’s lemma argument. Secondly, if any one coarsely discrete
subset has property A then they all do. These subsets are coarsely equivalent to
the space X and hence to each other, therefore this second requirement amounts
to the fact that property A is preserved by coarse equivalence. The argument is
short, and for the sake of completeness we give it here. Suppose X1 and X2 are
discrete spaces with φ : X1 → X2 and ψ : X2 → X1 defining a coarse equivalence,
and that X1 has property A. Given R, ε > 0 there exists R1 such that if y, y′ ∈ X2

with d(y, y′) < R then d(ψ(y), ψ(y′)) < R1. Given a family Ax, x ∈ X1 satisfying
the conditions of 1.2 for R1, ε one defines By for y ∈ X2 by

By =
{
(y′, n) ∈ X2 × N : n ≤ |{(x′,m) ∈ Aψ(y) : φ(x′) = y′}|

}
.

As d(x′, ψ(y)) is bounded for (x′,m) ∈ Aψ(y), so also is d(y′, y) for (y′, n) in By,
since y′ = φ(x′) for some x′. Moreover if d(y, y′) ≤ R then d(ψ(y), ψ(y′)) ≤ R1 and
hence |By∆By′ |

|By| ≤ |Aψ(y)∆Aψ(y′)|
|Aψ(y)|

< ε. One thus deduces that X2 also has property
A.

Note that this argument does not require the spaces to be discrete. Hence one
could equivalently define property A for arbitrary metric spaces by the existence of
families Ax as in Definition 1.2.

Proposition 1.4. For an arbitrary metric space X, the following are equivalent.
(1) X has property A.
(2) For all R, ε > 0 there exists S > 0 and a family of finitely supported func-

tions fx : X → N ∪ {0}, indexed by x in X, such that fx is supported in
BS(x), and if d(x, x′) ≤ R then

‖fx − fx′‖1
‖fx‖1

< ε,

where ‖·‖1 denotes the `1-norm on the space of finitely supported functions
on X.

(3) There exists a sequence of families fn,x, indexed by x in X, of finitely
supported functions from X to N ∪ {0}, and a sequence Sn > 0, such that
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for each n, x the function fn,x is supported in BSn(x), and for any R > 0

‖fn,x − fn,x′‖1
‖fn,x‖1

→ 0

uniformly on the set {(x, x′) : d(x, x′) ≤ R} as n→∞.

We will make use of condition 3, and will explicitly define functions fn,x on
CAT (0) cube complexes, satisfying the above conditions. We will refer to the
functions fn,x as weighting functions.

The proof of the proposition is straightforward. The equivalence of 1 and 2 is
given by mapping Ax to fx(y) = |Ax ∩ {y} × N|, and conversely by mapping fx to
Ax = {(y, n) : n ≤ fx(y)}. The equivalence of 2 and 3 is elementary.

Note that in passing from groups to metric spaces we replace the equivariant
family of functions g · fn with a family of functions fn,x each of which is merely
required to be supported in the ball BSn(x) for some Sn. We also allow the functions
to take any non-negative integer value.

The extra flexibility of allowing weights which are greater than 1 is not re-
quired in the case of amenability: if there exists a sequence fn : G→ N ∪ {0} with
‖fn−g·fn‖1

‖fn‖1
→ 0 for each g, then in fact there is also a sequence of {0, 1}-valued

functions with the same property. Indeed if one writes each function fn as a sum∑
i f

i
n where each f in is {0, 1}-valued and f1

n ≥ f2
n ≥ . . . then one has

‖fn − g · fn‖1
‖fn‖1

=

∥∥f1
n − g · f1

n

∥∥
1

+
∥∥f2
n − g · f2

n

∥∥
1

+ . . .

‖f1
n‖1 + ‖f2

n‖1 + . . .
.

If this is at most ε then for some i one must have
‖fin−g·fin‖1

‖fin‖1
< ε. In general for any

collection g1, . . . , gk, if ‖fn−gj ·fn‖1
‖fn‖1

< ε
k+1 for each j then there is some i such that

‖fin−gj ·fin‖1
‖fin‖1

< ε for all j, and hence one can extract a subsequence of {0, 1}-valued

functions such that ‖fn−g·fn‖1
‖fn‖1

→ 0 for all g.
For property A however it would be too restrictive to insist that all weights are

either 0 or 1. The problem is that one would need to find a single value i such

that
‖fin,x−fin,x′‖1

‖fin,x‖1

< ε for all x, x′ in the set {(x, x′) : d(x, x′) ≤ R}; this could be

achieved for any finite set of pairs, but without the equivariance of the family it
would not in general be possible to achieve it over this infinite set.

1.2. CAT (0) cube complexes. A CAT (0) cube complex is a higher dimensional
analogue of a tree. It is a cell complex built out of Euclidean cubes of side-length 1,
satisfying the CAT(0) condition. Equipped with the Euclidean path-length metric
d2.

Definition 1.5. A geodesic metric space (X, d) is CAT (0) if for every three points
x, y, z ∈ X and for every triangle T in X having these points as vertices, the
map from a Euclidean triangle with edge-lengths d(x, y), d(y, z), d(z, x) to T is
contractive.

For more details on the foundations of CAT (0) cube complexes see [1].
The edge-path metric (or `1-metric) on the set of vertices of X is the met-

ric d1(x, y) defined to be the minimum number of edges on a path from x to
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y. This metric extends to the whole space X: for two points x, y in the same
cube, having coordinates (x1, . . . , xd), (y1, . . . , yd), the distance is defined to be
d1(x, y) =

∑d
i=1 |xi − yi|. This extends to a path-metric on X.

Proposition 1.6. For any CAT (0) cube complex X the restrictions of d1 and d2

to the vertex set are coarsely equivalent. If moreover the cube complex is finite
dimensional then the vertex set with either of these metrics is coarsely equivalent
to X with either metric.

Proof. Given any two vertices x, y one has d1(x, y) =
∑l
i=1 d1(xi−1, xi) where x0 =

x, xl = y and xi−1, xi are adjacent for all i. Now d2(x, y) ≤
∑l
i=1 d2(xi−1, xi) by the

triangle inequality. Since xi−1, xi are adjacent we have d1(xi−1, xi) = d2(xi−1, xi) =
1, hence d2(x, y) ≤ d1(x, y).

On the other hand if d1(x, y) = l then the Euclidean geodesic from x to y lies
in a subcomplex of dimension at most l, and hence d1(x, y) ≤

√
ld2(x, y). Hence

d2(x, y) ≥
√
l =

√
d1(x, y). This proves that the metrics are coarsely equivalent.

If the cube complex is finite dimensional with dimension d, then the vertex set
is d/2-dense in the metric d1, and is

√
d/2-dense in the metric d2. This proves that

the vertex set is coarsely equivalent to X for each metric. �

We will prove that the vertex set of a CAT (0) cube complex has property A,
and hence making use of the proposition, we will deduce that the complex X itself
has property A. As we will only make use of the metric d1 we shall henceforth drop
the subscript and denote this by d.

For x and y vertices of X, the convex hull of x and y i.e. the set of points lying
on geodesics from x to y is called the interval from x to y, and is denoted [x, y].
Note that intervals in X naturally carry the structure of a subcomplex of X.

For example if Rd is viewed as a CAT (0) cube complex in the obvious way, that
is we view the integer lattice Zd as a set of vertices, then the interval is a cuboid.
More precisely it is a subcomplex of Rd having vertex set

{a1, a1 + 1, a1 + 2, . . . , b1} × {a2, a2 + 1, . . . , b2} × · · · × {ad, ad + 1, . . . , bd}
for some ai, bi, with cubes of the form {x1, x1 + 1} × . . . {xd, xd + 1} (and all faces
of this) for each x1, . . . , xd with ai ≤ xi < bi.

We will make use of the following useful result.

Theorem 1.7. Every interval in a CAT(0) cube complex of dimension d embeds
into an interval in Rd.

Proof. We fix a base point x0 and let x be an arbitrary vertex in V . Let Hx denote
the set of hyperplanes in X that separate x0 from x. Let us choose a cube C of the
largest dimension which is contained in the interval [x0, x]; let us assume that the
dimension of this cube is k, 0 ≤ k ≤ n = dimX. Let VC be the set of vertices of X
contained in C and let HC ⊂ Hx be the set of hyperplanes which separate at least
two vertices in VC ; these are the hyperplanes that intersect the cube C. The set HC

has k elements which we label t1, . . . , tk. (We could choose a geodesic from x0 to x
which intersects each of the hyperplanes in HC and then number those hyperplanes
according to the order in which they are intersected by the chosen geodesic.)

Recall that each hyperplane h of X corresponds to a pair of half spaces h± and
the set of all half spaces is partially ordered set under inclusion. We say that a
family of hyperplanes {hi} forms a chain if they are disjoint and for each disjoint
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triple hi, hj , hk in the family one of the hyperplanes separates the other 2. This is
equivalent to the statement that we may choose one half space h+

i corresponding to
each hyperplane so that these half spaces form a chain under inclusion. If a disjoint
family of hyperplanes all cross a given interval [x0, x] in the cube complex then the
CAT(0) geodesic from x0 to x imposes a linear order on the hyperplanes (the order
in which it crosses them) exhibiting the fact that they form a chain.

Let s1 be a maximal chain of hyperplanes on Hx which contains the hyperplane
t1. Let then s2 be a maximal chain of hyperplanes in Hx \ s1 which contains the
hyperplane s2. By construction, s2 is disjoint from s1. Continuing in this way, we
obtain pairwise disjoint chains s1, . . . , sk, where sk is the maximal chain taken in
Hx in the complement of s1 ∪ · · · ∪ sk−1 containing tk.

The following result is due to Chatterji and Ruane [2].

Proposition 1.8. The subsets s1, . . . , sk form a partition of the set Hx:

Hx = s1 t s2 · · · t sk
We now use this partition to construct an embedding

j : [x0, x] → Rk

of the interval [x0, x] in Rk as follows.
Let y ∈ [x0, x] be a vertex. Let j(y)m, 1 ≤ m ≤ k denote the m-th coordinate

of j(y). We put j(y)m = l, 0 ≤ l ≤ |Hx|, if the first l hyperplanes in the chain sm
do not separate y from x0, while the m+ 1-st hyperplane does separate y from x0.
Repeating this process for all values of m defines a unique image j(y) ∈ Rk of the
vertex y.

It is clear that distinct points must have different images in Rk. Indeed, if two
points x, y are different then there exists a hyperplane h that separates them, which
has to belong to one of the components, say sm, of the partition of Hx. But then
h separates either x or y from x0 and so the m-th coordinates of j(x) and j(y) will
be different.

Assume now that h is the only hyperplane separating the two points x and y,
and that h ∈ sm. Assume also that h separates x, but not y, from x0. If j(x)m = l
then clearly j(y)m = l + 1. Given that h is the only hyperplane separating the
two points, if h′ is any other hyperplane in Hx then x and y have to belong to the
same half-space determined by h′. Thus all coordinates of j(x) and j(y) are equal,
except for the m-th coordinates, which differ by 1.

These two properties imply that the embedding j maps cubes in [x0, x] to cubes
in Rk. It will map vertices of the interval [x0, x] to vertices of the integer lattice in
Rk. The map j preserves the partial ordering of hyperplanes in H[x,y]. Hyperplanes
that belong to the component s1 in the partition will be mapped to coordinate
hyperplanes orthogonal to the first coordinate axis in Rk, and so on.

The injective map j induces an isometric embedding

i : `2[x0, x] → `2(Rk)
such that for every y ∈ [x0, x]

i : δy 7→ δj(y).

�

There is one further important construction we will require, the notion of the
median of three vertices of a CAT(0) cube complex. Given any three vertices x, y, z
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there is a unique vertex m referred to as the median of x, y, z characterised by the
property that it lies on all three intervals [x, y], [y, z], [z, x]. The fact that m exists
and that it is unique is a classical fact and may be found in [4].

Finally we require the definition of a normal cube path. A normal cube path from
a vertex x to a vertex y distance d apart is a sequence of cubes C0, C1, . . . , Ci≤d−1

obtained such that each hyperplane separating x and y is crossed once, with the
maximum number of hyperplanes being crossed at each stage. Any normal cube
path is unique but not necessarily reversible [3].

1.3. Combinations. The weights that we give to vertices in a CAT (0) cube com-
plex will be defined in terms of the function

(
n
r

)
. A priori this function is defined on

pairs (n, r) with 0 ≤ r ≤ n. It is uniquely determined by the following properties.

•
(
n

0

)
=

(
n

n

)
= 1 for n ≥ 0.

•
(
n

r

)
=

(
n− 1
r − 1

)
+

(
n− 1
r

)
for 1 ≤ r ≤ n.

In fact the function
(
n
r

)
can be defined for all n, r ∈ Z: it is the unique function

on Z× Z with the following properties.

•
(
n

0

)
for n ≥ 0, and

(
n

n

)
= 1 for all n ∈ Z.

•
(
n

r

)
=

(
n− 1
r − 1

)
+

(
n− 1
r

)
for all n, r ∈ Z.

It follows that
(
n
r

)
vanishes when r > n or r < 0 ≤ n. Moreover it satisfies the

identity
(
n
r

)
= (−1)n+r

(−1−r
−1−n

)
, which allows one to compute

(
n
r

)
for r < 0.

We will make use of
(
n
r

)
for r ≥ −1 and n ∈ Z, where the function only takes non-

negative values, thus ensuring that we only get non-negative weights. In particular
note that

(
n
−1

)
= (−1)n−1

(
0

−1−n
)

which is 1 if n = −1 and otherwise vanishes.

2. The Euclidean case

In this section we will view Rd as a CAT (0) cube complex with vertex set Zd.
We will give a proof of the well known result that Zd has property A, and hence by
coarse invariance of property A, so also does Rd. However we will do this in a way
that generalises to the vertex set of an arbitrary finite dimensional CAT (0) cube
complex.

We view Rd as a CAT (0) cube complex in the obvious way, that is we view the
integer lattice Zd as a set of vertices, and tile Rd with d-dimensional unit cubes.

Let us begin by briefly recalling the standard proof that Zd has property A. One
takes a Følner sequence An = Bn(O), where Bn denotes the ball of radius n in the
`1-metric. Equivalently, one takes the sequence of functions fn(y) defined to be 1
if d(O, y) ≤ n and zero otherwise. For fixed dimension d, the `1-norm of fn, or
equivalently the cardinality of the ball, is a polynomial p(n) of degree d. In fact,
one has p(n) = 1 + 2d

(
n+d−1

d

)
.

Now for any x in Zd, let fn,x denote the translate of fn by x. Fix R ∈ N. For
x, x′ in Zd with d(x, x′) ≤ R we have ‖fn,x − fn,x′‖1 = ‖fn − fn,x′−x‖1, and this is
bounded above by 2 ‖fn+R − fn‖1. Since ‖fn‖1 is a polynomial of degree d in n,
and

‖fn+R − fn‖1 = ‖fn+R‖1 − ‖fn‖1 = p(n+R)− p(n),
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we deduce that ‖fn,x − fn,x′‖1 is bounded above by a polynomial of degree d − 1
in n. Now dividing by p(n) we find that the limit as n→∞ is 0.

Our proof will differ from this in the several ways. Our weighting functions will
be supported on a certain subset of the n-ball about a point x, rather than the
whole ball. We will also have more variation in the weights themselves, rather than
just taking values 0 and 1. Finally each function fn,x will be defined separately,
rather than being translates of a single sequence of functions fn. This last point is
crucial for generalising the argument to arbitrary CAT(0) cube complexes, which
do not admit an action by an amenable group.

Throughout the section we will fix the dimension d and a number N with N ≥
d − 1. We view N as the ‘ambient dimension,’ that is, we imagine that Rd lies
inside a space of dimension N . When we prove that Rd has property A we will take
N ≥ d; it will nonetheless be useful to note that the definitions and results also
work when the ‘codimension’ is −1, i.e. N = d− 1.

2.1. Construction of fn,x. The proof that a tree has property A runs as follows.
Fix a basepoint O, and for each vertex x in the tree place weights on the intersection
of the interval [O, x] with the ball of radius n about x. For y a vertex in [O, x] the
weight is defined to be

fn,x(y) =


1 if y 6= O and d(x, y) ≤ n

n− d(x, y) + 1 if y = O and d(x, y) ≤ n

0 if d(x, y) > n.

It is interesting to note that the weight fn,x(y) can be defined more succinctly
as

(
n−d(x,y)

0

)
for y 6= O, and

(
n−d(x,y)+1

1

)
for the origin. The origin is special in

that having reached the origin, the dimension of the interval drops from 1 to 0, and
hence the weights must ‘pile up’ at the origin. Our definition of weighting functions
for CAT(0) cube complexes will generalise what happens for a tree. Motivated by
these ideas we make the following definitions.

Fix a basepoint O = (0, 0, . . . , 0) of Rd. Again we will place weights on the
intersection of the interval [O, x] with the ball of radius n.

Definition 2.1. For y a vertex of Rd, define the deficiency, δ(y), of y to be N
minus the dimension of the first cube on the normal cube path from O to y.

Note that interval [O, y] has the same dimension as the first cube on the normal
cube path from O to y. Thus we could equivalently define δ(y) to be N minus the
dimension of [O, y], i.e.

δ(y) = N − dim([O, y]).

This however is special to the case of Rd; for a general CAT (0) cube complex it is
the local dimension, i.e. the dimension of the first cube on the normal cube path,
rather than the global dimension of the interval that will be important.

Definition 2.2. For x a vertex of Rd, we define a function fn,x = fN,R
d

n,x from the
vertices of Rd to N ∪ {0} by

fn,x(y) =
(
n− d(x, y) + δ(y)

δ(y)

)
for y ∈ [O, x] and fn,x(y) = 0 otherwise.
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Note that as N ≥ d − 1, we have δ(y) ≥ −1 for all y, and hence fn,x is non-
negative integer valued. Moreover fn,x(y) vanishes at all but finitely many vertices
y, hence fn,x lies in the space of finitely supported functions on the vertex set.

The definitions are motivated by the following geometric intuition. Imagine a
vertex x in the ambient RN , all of whose coordinates exceed n. In this case the
intersection of the interval from x to the origin with the ball of radius n will be an
N -dimensional tetrahedron, and the number of points of ZN contained in this is
counted by

(
n+N
N

)
. If one projects RN onto a subspace Rd (supposing d ≤ N) then

the image will be a d-dimensional tetrahedron, and the fibre over a vertex y will
be an N − d-dimensional tetrahedron, the sides of which have length n − d(x, y).
Hence each fibre will contain

(
n−d(x,y)+N−d

N−d
)

points of ZN . We will thus take a
weighting of

(
n−d(x,y)+N−d

N−d
)

on each point of the image tetrahedron in Zd.
Now suppose that the coordinates of x do not all exceed n. Then the tetrahedron

will cross outside the interval from x to the origin, and hence we must further project
points of the tetrahedron onto the faces of the interval. It is this that results in
higher deficiencies than the standard N − d.

We will show that the norm of fn,x depends only on n and N , in particular it
does not depend on x or d. Indeed the norm is exactly the number of points of ZN
contained in a tetrahedron whose sides have length n.

Lemma 2.3. For N ≥ d− 1 and x ∈ Zd, the `1-norm of fn,x is
(
n+N
N

)
.

Proof. Since the entries of fn,x are all positive, ‖fn,x‖1 is the sum of the entries of
fn,x. It is at this point that we make use of the fact that N ≥ d− 1. We will show
that this sum is

(
n+N
N

)
. We will prove this by induction on d. If d = 0 then x = O

and fn,x has only one entry, taking the value
(
n+N
N

)
, since the deficiency is N . Now

for d > 0, suppose x has coordinates (x1, . . . , xd). If x1 vanishes then [O, x] can
be identified with the interval from (x2, . . . , xd) to the origin in Rd−1. Hence by
induction the result holds. We will therefore assume that x1 6= 0.

For x1 > 0, fix some vertex y = (x1, y2, y3, . . . , yd) in the interval [O, x], and
define yi = (i, y2, y3, . . . , yd) for i ≤ x1. We claim that

i∑
j=0

fn,x(yj) =
(
n− d(x, yi) + δ(y) + 1

δ(y) + 1

)
.

We will prove this by a further induction on i.
Note that the interval [O, yi] has the same dimension as [O, y] for all i > 0 and

has dimension 1 lower if i = 0. Hence δ(yi) = δ(y) if i > 0 while δ(y0) = δ(y) + 1.
The latter formula proves the claim when i = 0. We now proceed by induction.
Note that yi+1 lies on a geodesic between x and yi, hence d(x, yi) = d(x, yi+1) +
d(yi+1, yi) = d(x, yi+1) + 1. We deduce that(

n− d(x, yi+1) + δ(y) + 1
δ(y) + 1

)
=

(
n− (d(x, yi)− 1) + δ(y) + 1

δ(y) + 1

)
=

(
n− d(x, yi) + δ(y) + 1

δ(y) + 1

)
+

(
n− (d(x, yi)− 1) + δ(y)

δ(y)

)
.

The last term is fn,x(yi+1), hence if
∑i
j=0 fn,x(y

j) =
(
n−d(x,yi)+δ(y)+1

δ(y)+1

)
then∑i+1

j=0 fn,x(y
j) =

(
n−d(x,yi+1)+δ(y)+1

δ(y)+1

)
. By induction we establish the claim for all i.
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In particular we deduce that
∑x1
j=0 fn,x(y

j) =
(
n−d(x,y)+δ(y)+1

δ(y)+1

)
. Similarly if x1 < 0

we get that
∑0
j=x1

fn,x(yj) =
(
n−d(x,y)+δ(y)+1

δ(y)+1

)
.

Now let x′ = (x2, . . . , xd), y′ = (y2, . . . , yd). The point y′ lies in the interval from
x′ to the origin in Rd−1, and taking the same ambient dimension N , y′ has a defi-
ciency of δ(y) + 1. Since d(x′, y′) = d(x, y) we get fN,R

d−1

n,x′ (y′) =
(
n−d(x,y)+δ(y)+1

δ(y)+1

)
.

We thus deduce that the sum of the entries of fn,x over [O, x] is the same as the
sum of the entries of fN,R

d−1

n,x′ . By induction on d this is
(
n+N
N

)
which completes the

proof. �

2.2. Almost invariance for Rd. We will now show that fn,x is ‘almost invariant’
in x, in the sense that for any R > 0 the sequence

‖fn,x − fn,x′‖1
‖fn,x‖1

→ 0

uniformly on the set {(x, x′) : d(x, x′) ≤ R} as n→∞.
We begin with the following result.

Proposition 2.4. Suppose N ≥ d. If x and x′ are adjacent vertices, i.e. x, x′ ∈ Zd
with d(x, x′) = 1, then ‖fn,x − fn,x′‖1 = 2

(
n+N−1
N−1

)
.

Proof. Without loss of generality suppose that x′ is closer to the origin than x.
Then x′ lies on a geodesic from x to O, and the interval [O, x′] is contained in
[O, x]. Moreover for any y ∈ [O, x′], the point x′ lies on a geodesic from x to y, so
d(x, y) = d(x′, y) + 1.

We will prove that the sum of fn,x′ − fn,x over [O, x′] is
(
n+N−1
N−1

)
. Note that

fn,x′(y)− fn,x(y) =
(
n− d(x′, y) + δ(y)

δ(y)

)
−

(
n− (d(x′, y) + 1) + δ(y)

δ(y)

)
=

(
n− d(x′, y) + δ(y)− 1

δ(y)− 1

)
.

Replacing N by N − 1 has the effect of reducing all deficiencies by 1, hence we
deduce that

(
n−d(x′,y)+δ(y)−1

δ(y)−1

)
= fN−1,Rd

n,x′ (y). Note that N − 1 ≥ d− 1 as required,

hence fN−1,Rd
n,x′ is non-negative, and so the `1-norm of fn,x′−fn,x restricted to [O, x′]

is
∥∥∥fN−1,Rd
n,x′

∥∥∥
1

which is
(
n+N−1
N−1

)
by Lemma 2.3.

We note that fn,x′ − fn,x is supported in [O, x] (since [O, x′] ⊂ [O, x]). We have
seen that it takes non-negative values on [O, x′], with sum

(
n+N−1
N−1

)
, and it clearly

takes non-positive values −fn,x(y) for y in [O, x] \ [O, x′]. Since
∑
y fn,x′(y) =∑

y fn,x(y) (by Lemma 2.3), the sum of fn,x′(y)− fn,x(y) vanishes. It thus follows
that the sum of the non-positive values is∑

y∈[O,x]\[O,x′]

−fn,x(y) = −
(
n+N − 1
N − 1

)
.

Hence we deduce that fn,x′ − fn,x has norm 2
(
n+N−1
N−1

)
. �

We conclude this section by deducing the following result.

Theorem 2.5. The Euclidean space Rd has property A for all d.
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Proof. We prove that the vertex set Zd has property A, and hence Rd has property
A as it is coarsely equivalent to this. We take the sequence of families fn,x as above
for x in the vertex set. Since

(
n−d(x,y)+δ(y)

δ(y)

)
vanishes if n− d(x, y) + δ(y) < δ(y) it

follows that fn,x is supported in Bn(x).
We have noted that if d(x, x′) ≤ 1 then ‖fn,x − fn,x′‖1 = 2

(
n+N−1
N−1

)
. Since for

any two vertices x, x′ we can take a sequence of adjacent vertices going from x to
x′ we deduce that in general ‖fn,x − fn,x′‖1 ≤ 2d(x, x′)

(
n+N−1
N−1

)
by the triangle

inequality. Hence as ‖fn,x‖1 =
(
n+N
N

)
we have

‖fn,x − fn,x′‖1
‖fn,x‖1

≤ 2d(x, x′)

(
n+N−1
N−1

)(
n+N
N

) =
2d(x, x′)N
n+N

.

This tends to zero uniformly on {(x, x′) : d(x, x′) ≤ R} as n→∞, which completes
the proof. �

3. Property A for CAT (0) cube complexes

In this section we will generalise the techniques of the previous section to prove
that if X is any finite dimensional CAT (0) cube complex then X has property
A. It is relatively straightforward to generalise the definition of the functions fn,x.
The main technical step of the proof is to achieve a computation of the norm as in
Lemma 2.3. To do so we will make use of a notion of fibring.

3.1. Construction of fn,x. LetX be a CAT (0) cube complex of dimension d <∞.
We fix a basepoint O in X and an ambient dimension N ≥ d−1 and define functions
fn,x = fN,Xn,x on the vertices of the interval [O, x] for x a vertex of X. For y a vertex
of X let NX(y) denote the first cube in the normal cube path from y to O.

Definition 3.1. For y a vertex of X, define the deficiency, δ(y), of y to be the
difference between the ambient dimension N and the dimension of NX(y), i.e.

δ(y) = N − dim(NX(y)).

Equivalently this is N minus the number of vertices in [O, y] which are adjacent to
y

Definition 3.2. For x a vertex of X, we define a function fn,x = fN,Xn,x from the
vertices of X to N ∪ {0} by

fn,x(y) =
(
n− d(x, y) + δ(y)

δ(y)

)
for y ∈ [O, x] and fn,x(y) = 0 otherwise.

As in the case of Rd, we have δ(y) ≥ −1 for all y, as N ≥ d− 1. Hence fn,x is a
non-negative function.

3.2. Fibres. Given a vertex x in X, consider the interval [O, x]. By Theorem 1.7
we can embed this as a subset J of an interval I in Rd. We can arrange that O maps
to the origin of Rd. The embedding provides an identification of hyperplanes and
half-spaces in [O, x] with hyperplanes and half-spaces in I. This identification has
the property that the image in I of a half-space in [O, x] is precisely the intersection
of J with the corresponding half-space in I. For a vertex z in I we denote by [O, z]I
the subinterval of I from O to z. We view [O, x] as being identified with its image
J in I, and we will define a retraction of I onto J , or equivalently onto [O, x].
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Definition 3.3. A hyperplane h in J is adjacent to a point y ∈ J if y lies in an
edge which crosses h.

For y ∈ J , let Hy denote the set of hyperplanes crossing the first cube NJ(y) in
the normal cube path from y to O in J . Working within the interval from y to O
in J , the intersection of all half spaces containing y and bounded by some h in Hy

is {y}.

Definition 3.4. For y ∈ J the fibre of I over y, denoted Iy, is the set of vertices
in [O, y]I lying in the intersection of the half-spaces of I containing y and bounded
by a hyperplane h corresponding to some h in Hy.

Note that if a hyperplane is adjacent to y then either it lies in Hy, or it is one
of the boundary hyperplanes of the interval from O to y. Hence the fibre Iy lies in
the intersection of all half-spaces in I containing y and bounded by a hyperplane
which is adjacent to y in J . Indeed the fibre is exactly the intersection of this with
[O, y]I .

As the terminology suggests we will show that the fibres are disjoint, and indeed
partition I. Since Iy clearly contains y, the map taking each z in I to the unique
y such that z ∈ Iy will then define a retraction of I onto J .

Lemma 3.5. For any y 6= y′ in J the fibres over y, y′ are disjoint.

Proof. Let m be the median of O, y and y′, and note that as O, y, y′ lie in J , it
follows that m also lies in J . Consider the following diagram.

Without loss of generality we may assume that y does not lie on a geodesic
from y′ to O (exchanging the roles of y, y′ if necessary). Hence it follows that y
is not equal to m, and hence the first hyperplane crossed on the path from y to
m separates y from both O and y′. Denote this hyperplane by h and let h be the
corresponding hyperplane in I. Since the hyperplane h is adjacent to y in J it
follows that the fibre over y lies on the same side of h as y. However as h separates
y from both y′ and O, it follows that the interval [O, y′]I is separated from y by
h. Since the fibre over y′ lies in [O, y′]I we conclude that the fibres over y, y′ lie on
different sides of h, and hence are disjoint. �

Lemma 3.6. For any z in I there is a point y in J such that the fibre over y
contains z.

Proof. Let y be a point in the intersection [z, x]I ∩ J minimising the distance from
z. We will show that z lies in Iy; it will then follow from the above lemma that y
must be unique.
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First we note that z lies in [O, y]I . Indeed this is true for any point y in [z, x]I :
the interval [O, y]I is the intersection of all half-spaces in I containing both O and
y, or equivalently those half-spaces containing y but not x. But such half-spaces
must all contain z, since a half-space containing neither z nor x is by definition
disjoint from [z, x]I .

To show that z lies in the fibre over y we must therefore show that no hyperplane
h corresponding to h ∈ Hy separates y from z. Suppose that such an h and h exist.
Since h lies in Hy it follows that h is adjacent to y, so there is an edge yy′ in J which
crosses h, and hence crosses h. Thus y′ and z lie on the same side of h, and as there
are no other hyperplanes separating y from y′ we deduce that d(z, y′) = d(z, y)−1.
Certainly y′ lies in J . We note moreover that y′ lies in the interval [z, x]I . This
follows from the fact that y lies in [z, x]I , and the hyperplane h separates z from x
(since it separates y from O) so it does not bound a half space containing both x
and z.

We have shown that y′ lies in the intersection [z, x]I ∩ J and is closer to z than
y is, hence contradicting minimality of y. This contradiction proves that there is
no hyperplane h corresponding to some h ∈ Hy and separating y from z. Hence z
lies in the fibre over y. �

Fix some y in J and let L be the dimension of NJ(y) or equivalently the cardinal-
ity of Hy. Let F be the fibre over y, and equip this with basepoint OF closest to O
in I. Equivalently OF is defined by the property that for z in F , every hyperplane
in I which meets F and separates z from O also separates z from OF .

Lemma 3.7. For each z in F = Iy, the first cube on the normal cube path from z
to OF has dimension dimNI(z)− |Hy|.

Proof. The dimension of NF (z) is the number of hyperplanes adjacent to z in F
and separating z from OF . Such hyperplanes also separate z from O, and hence we
deduce that dimNI(z) ≥ dimNF (z), and moreover the difference is the number of
hyperplanes adjacent to z which separate z from O but not from OF . We will show
that these are precisely those hyperplanes corresponding to elements of Hy, hence
the difference is the cardinality of Hy.

Firstly suppose that k̄ is a hyperplane in I adjacent to z, which separates z from
O but not from OF . Let z′ be the vertex of I adjacent to z over the hyperplane k̄.
If z′ lies in F then the median of O,OF and z′ lies in F , since F is an interval, but
this contradicts minimality of OF , since the median is closer to the origin than OF ;
indeed it lies on the geodesic from OF to O and is separated from OF by k̄. We
deduce that z′ does not lie in the fibre. Note that as k̄ separates z from O it must
also separate y from O, otherwise z would not lie in [O, y]I . Hence as k̄ crosses
[O, y]I , and z lies in [O, y]I , so does z′. Since z′ does not lie in the fibre F there
must be some h in Hy such that the corresponding hyperplane h separates y and
z′. But h cannot separate y and z, since z lies in the fibre, hence it separates z and
z′. As k̄ is the only such hyperplane, we deduce that h = k̄.

Now conversely take any h in Hy and corresponding hyperplane h. Let h
′
be the

hyperplane parallel to h which is adjacent to y but does not separate it from O.
The fibre lies between these two hyperplanes, and any point sandwiched between
two such hyperplanes is adjacent to both. Hence z is adjacent to h. By definition,
h separates every point of the fibre from O, hence it separates z from O but not
from OF . We conclude that the hyperplanes adjacent to z which separate z from



PROPERTY A AND CAT (0) CUBE COMPLEXES 13

O but not from OF are precisely those which correspond to elements of Hy as
required. �

Note that since the NF (z) will have greatest dimension when z = y it follows
that the dimension of the fibre is dimNI(y) − dimNJ(y), or equivalently it is the
difference between the deficiencies of y viewed as an element of J or I.

The following diagram illustrates this. It represents the fibres of P, P1, P2 and
P3. Note that as an element of J the point P has deficiency 1 while both P1 and
P2 have deficiency 2. However as elements of I, all have deficiency 0. As expected,
the fibre in the case of P has dimension 1 and the others dimension 2.

The point P3 has deficiency 2 in both J and I, so its fibre has dimension 0 and
is P3 itself.

Theorem 3.8. Let X be a CAT (0) cube complex of dimension at most d, and take
N ≥ d− 1. For x a vertex of X, the `1-norm of the function fN,Xn,x defined above is(
n+N
N

)
. In particular it depends only on n and N , and not on the vertex x or the

complex X.

Proof. Fix x and an identification of [O, x] as a subset J of an interval I in Rd. We
begin by proving that for y ∈ [O, x], and F = Iy we have

fN,Xn,x (y) =
∑
z∈F

fN,In,x (z).

Let δN,X(y) denote the deficiency of y as a vertex of X (or equivalently as a
vertex of J), let δN,I(z) denote the deficiency of z as a vertex of I, and let δN,F (z)
denote the deficiency of z viewed as a vertex of F with basepoint OF . Then by
Lemma 3.7 we have

δN,F (z)− δN,I(z) = L = dimNJ(y).

Hence it follows that δN,I(z) = δN−L,F (z) (note that F has dimension at most
d− L so the latter makes sense).

As each z in F lies in the interval from O to y in I, equivalently y lies in the
interval from z to x, and hence y lies on a geodesic from z to x. Thus d(x, z) =
d(x, y) + d(y, z). We conclude that

fN,In,x (z) =
(
n− d(x, z) + δN,I(z)

δN,I(z)

)
=

(
(n− d(x, y))− d(y, z) + δN−L,F (z)

δN−L,F (z)

)
= fN−L,F

n−d(x,y),y(z)
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for z in F . Summing fN,In,x (z) over z in F we thus get∥∥∥fN−L,F
n−d(x,y),y

∥∥∥
1

=
(
n− d(x, y) +N − L

N − L

)
by Lemma 2.3. But by definition N − L = δN,X(y). Hence the sum

∑
z∈F f

N,I
n,x (z)

is fN,Xn,x (y) as claimed.
Since the fibres partition I it now follows that the sum of fN,In,x (z) over all z in

I is the sum of fN,Xn,x (y) over all y in J . Since J is identified with [O, x] this is the
`1-norm of fN,Xn,x . We hence conclude that

∥∥fN,Xn,x

∥∥
1

=
∥∥fN,In,x

∥∥
1
, and this is

(
n+N
N

)
by Lemma 2.3. This completes the proof. �

The above proof demonstrates a remarkable fact. Although the embedding of
an interval of X into a Euclidean interval is not canonical, and although the con-
struction of the fibres relies heavily upon this embedding, the process of summing
the weights over each fibre gives a quantity which is independent of these choices.
Specifically, summing over the fibre one gets the value of fn,x at the point, and this
is defined intrinsically with no reference to an embedding.

3.3. Almost invariance for CAT (0) cube complexes. We will now show that
every finite dimensional CAT (0) cube complex has property A.

Proposition 3.9. Let X be a CAT (0) cube complex of dimension at most d, and
suppose N ≥ d. If x and x′ are adjacent vertices of X then ‖fn,x − fn,x′‖1 =
2
(
n+N−1
N−1

)
.

Theorem 3.10. Let X be a finite dimensional CAT (0) cube complex. Then X has
property A.

The proofs of these two results are now identical to the proofs of 2.4 and 2.5,
except making use of Theorem 3.8 in place of Lemma 2.3.

References

[1] I. Chatterji, G. A. Niblo, From wall spaces to CAT(0) cube complexes. Internat. J. Algebra

Comput. 15 (2005), no. 5-6, 875–885.

[2] I. Chatterji, K. Ruane, Some geometric groups with rapid decay. Geom. Funct. Anal. 15
(2005), no. 2, 311–339.

[3] G.A.Niblo, L.D.Reeves. The geometry of cube complexes and the complexity of their fun-

damental groups, Topology, Vol. 37, No 3, pp 621-633, 1998.
[4] M. A. Roller, Poc Sets, Median Algebras and Group Actions. An ex-

tended study of Dunwoody’s construction and Sageev’s theorem, 1998,

http://www.maths.soton.ac.uk/pure/preprints.phtml.
[5] G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding

into Hilbert space. Invent. Math. 139 (2000), no. 1, 201–240.

School of Mathematics, University of Southampton, Highfield, SO17 1BJ, UK

University of Hawai’i at Manoa, 2565 McCarthy Mall, Honolulu, HI 96822, USA


