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Gaussian Curvature

For motivation we will begin by considering
curvature in 2-d.

For a 2-d surface in 3-d space, the Gaussian
curvature K is defined by

8u'n/ X 81)77/ — Kaup X 8fup

for p(u,v) a parametrization of the surface and
n(u,v) the normal vector.

Theorem (Gauss-Bonnet). For a closed Rie-
mannian 2-manifold M with Gauss curvature
K

/M KdA = 2mx (M)

where x(M) is the Euler characteristic.

Notes:

— Curvature is quite rigid in 2-d.

— There is a maximum ‘curvature content’ for
surfaces of a given size (area). In particular

: : 4r
there always exist points where K < -7



Curvature in dimension n > 3

In dimension n > 3 there are several types of
curvature on a Riemannian manifold.

Scalar curvature k: total curvature over all di-
rections, this is the weakest form of curvature

Ricci curvature

Sectional curvature: this is the strongest form
of curvature

Note: In dimension 2, K = /2.

The curvatures are defined in terms of deriva-
tives of the Riemannian metric g. Therefore
two metric tensors which are uniformly close
may nonetheless have very different curvatures.



Negative curvature

There are no (large scale) obstructions to neg-
ative curvature.

Theorem (Lohkamp). Given a Riemannian man-
ifold (M"™,qg), (n>3), a smooth function f on
M with f < kg and € > 0, there exists a metric

ge on M such that f—e < kg. < f and |g—ge| < €
on the unit tangent bundle (for g). Moreover
this can be done locally.

There is a similar result for the Ricci curvature.
Theorem (Lohkamp). There is a local and
functorial process for reducing the sectional
curvature of a space (at the cost of changing
the local topology).

For example in dimension 2 we can add nega-
tively curved handles locally.

However there are obstructions to positive cur-
vature, even to the weakest form — positive
scalar curvature.



The Dirac operator

We will use index theory to study obstructions
to positive scalar curvature. For suitable man-
ifolds (orientable, spin) there is a differential
operator D called the Dirac operator on sec-
tions of a bundle S over M, which encapsulates
information about the geometry of the mani-
fold.

Weitzenbock formula

If D is the Dirac operator for a spin manifold
M, V is the connection on the spin bundle S,
and k is the scalar curvature then

1
D? = v*v+zm

where k acts on the sections of S by pointwise
multiplication.



Index theory

Definition. An operator D is Fredholm if it has
finite dimensional kernel and cokernel.

The index of a Fredholm operator D is

index(D) = dim ker D — dim ker D*

If M is a closed manifold then the Dirac oper-
ator on M is Fredholm.

We will also be interested in open manifolds.
The idea is to define a higher index which re-
duces to the Fredholm index in the case of a
closed manifold. This higher index will belong
to a K-theory group, and we may think of it
as a formal difference

[ker D] — [ker D*].



Coarse geometry

A map ¢ between two metric spaces is coarse
if

e ¢~ 1(bounded set) is bounded, and

e for all R > 0 there exists S > 0 such that if
d(z,y) < R then d(¢(zx),¢(y)) < S.

Two maps ¢,v are close if there exists S > 0
such that d(¢(x),y(x)) < S for all x.

This gives rise to a notion of coarse equiva-
lence of spaces, defined by a pair of coarse
maps which are inverse to one another up to
closeness.



The Roe algebra

We will study coarse geometry by means of
operator algebras. Let X be an open mani-
fold and S a bundle over X. We will consider
operators on L2(X,S) of the form

£C) = [ k(2)E(@)da
where the kernel k takes values k(y,z) € End(S).

Such an operator has finite propagation if there
exists R such that k(y,z) = 0 when d(z,y) > R.

sup{d(z,y) : k(y,x) 7% 0} is called the propaga-
tion of the operator.

Definition (Roe). C*(X) is the completion of
the algebra of finite propagation bounded op-
erators arising from kernels in this way.



T he coarse higher index

Let D be a Dirac-type operator and consider
the wave equation fg = D¢&. This has solution
operator e,

Lemma. T he waves travel with speed at most
1. The wave solution operator etD has propa-
gation at most |t|.

By Fourier theory we can therefore construct
finite propagation operators out of D. This
gives rise to the coarse higher index

index(D) € K.(C*X).

Theorem (Roe). If D is invertible then index(D)
vanishes.

The argument involves an exact sequence

*+1(D*X) — Ky 1(D*X/C*X) — K«(C*X)
? > [D] — index(D)

If D is invertible then [D] can be lifted to
K,11(D*X).



Obstruction to positive curvature

Theorem (Roe). Let X = M the universal
cover of a closed spin manifold M (with metric
pulled back from M ), and let D be the Dirac
operator for X. Ifindex(D) #= 0 then M admits
no metric of positive scalar curvature.

Proof. As M is compact, any two metric on M
vield coarsely equivalent metrics on X. Hence
the (non-)vanishing of index(D) is independent
of the choice of metric on M. But by the
Weitzenbock formula D? = V*V + %m SO

1
(DE,DE) = (V'Y + ;1.
1
with € > 0 so D is invertible. [ ]

Example. For X = R", M = T", index(D) #*
0O so T" admits no metric of positive scalar
curvature.



Properly positive scalar curvature

Question. Suppose M admits a positive scalar
curvature metric. Can the curvature of M be
increased arbitrarily for small changes of the
metric?

Let X = MUMUMLU... where each copy
of M is equipped with the given metric. The
question amounts to the following:

Is there a ‘small’ distortion of the metric on X
for which k is properly positive (i.e. k — 4c0)7?

To make this second formulation precise we
refine our notion of coarse geometry.

If g1,9>,... are metrics on M converging in-
tegrally to ¢, then (X,gU gl ...) is coarsely
equivalent to (X,g1 U go U...) in the sense of
Co coarse geometry.



Cy coarse geometry

A map ¢: X — Y between two metric spaces
is Cq coarse if

e ¢ 1(bounded set) is bounded, and

o for all r € CE)"(X x X) there is an s ¢
C’(_)I_(Y x Y) such that if d(z,2') < r(z,z/)
then d(¢(x), ¢(2')) < s(é(x), #(z')).

Two maps ¢,y are Cp-close if there is an s €

Ca (Y xY) such that d(¢(z), ¢ (z)) < s(¢(x),(x))
for all z.

T his gives rise to a notion of Cy coarse equiva-
lence of spaces, defined by a pair of Cy coarse

maps which are inverse to one another up to
Co closeness.



Cyo coarse geometry

This is coarse geometry not with bounded er-
rors, but with errors tending to zero at infinity.

An operator on L2(X,S) given by

£0) — [ k(. 2)E(@)de

is Cp controlled if sup{d(x,y) : ¢ € X, k(y,x) #
0} — 0 as y — oo, and likewise for z,y inter-
changed.

Definition. C3(X) is the completion of the al-
gebra of bounded operators given by Cy con-
trolled kernels k.

Note that C§(X) is a subalgebra of C*(X).

There is a Cp-coarse higher index, indexg(D) €
K«(C3(X)). This maps to the coarse higher
index index(D) under the inclusion C§(X) —
C*(X).



Fredholm operators and the Cy higher
index

Theorem. If X has properly positive scalar cur-
vature (k — +o0) then the Dirac operator for
X Is Fredholm, indeed it has discrete spectrum.

Physical interpretation: If the potential well of
Kk IS infinitely deep, then all energy eigenstates
of the wave equation are bound states.

Theorem. If D is invertible and has discrete
spectrum then indexg(D) = 0.

K.1(D§(X)/ %) — K (X)

J |

K,4+1(Dp(X)/C(X)) — Ki(Cp(X))

[D] — indexg(D)

If D has discrete spectrum then [D] lifts to
K,4+1(D§X/22") and its image in K.«(2") is the
Fredholm index. But if D is invertible then the
Fredholm index vanishes.



Maximum curvature content

Theorem. For any closed Riemannian spin man-
ifold (M, g) there is a bound R and ¢ > 0 such
that every metric e-close to g (as a length met-
ric) has points with kK < R.

Proof. For such a manifold M, X = MUMLUI...
and D the Dirac operator for X, the Cp higher
index of D is non-zero. Hence no metric on X,
Co-equivalent to gligll... has properly positive
scalar curvature. L]



