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Gaussian Curvature

For motivation we will begin by considering
curvature in 2-d.

For a 2-d surface in 3-d space, the Gaussian
curvature K is defined by

∂un× ∂vn = K∂up× ∂vp

for p(u, v) a parametrization of the surface and
n(u, v) the normal vector.
Theorem (Gauss-Bonnet). For a closed Rie-
mannian 2-manifold M with Gauss curvature
K ∫

M
KdA = 2πχ(M)

where χ(M) is the Euler characteristic.

Notes:
– Curvature is quite rigid in 2-d.
– There is a maximum ‘curvature content’ for
surfaces of a given size (area). In particular
there always exist points where K ≤ 4π

Area M .



Curvature in dimension n ≥ 3

In dimension n ≥ 3 there are several types of

curvature on a Riemannian manifold.

Scalar curvature κ: total curvature over all di-

rections, this is the weakest form of curvature

Ricci curvature

Sectional curvature: this is the strongest form

of curvature

Note: In dimension 2, K = κ/2.

The curvatures are defined in terms of deriva-

tives of the Riemannian metric g. Therefore

two metric tensors which are uniformly close

may nonetheless have very different curvatures.



Negative curvature

There are no (large scale) obstructions to neg-
ative curvature.
Theorem (Lohkamp).Given a Riemannian man-
ifold (Mn, g), (n ≥ 3), a smooth function f on
M with f < κg and ε > 0, there exists a metric
gε on M such that f−ε ≤ κgε ≤ f and |g−gε| < ε

on the unit tangent bundle (for g). Moreover
this can be done locally.

There is a similar result for the Ricci curvature.
Theorem (Lohkamp). There is a local and
functorial process for reducing the sectional
curvature of a space (at the cost of changing
the local topology).

For example in dimension 2 we can add nega-
tively curved handles locally.

However there are obstructions to positive cur-
vature, even to the weakest form – positive
scalar curvature.



The Dirac operator

We will use index theory to study obstructions

to positive scalar curvature. For suitable man-

ifolds (orientable, spin) there is a differential

operator D called the Dirac operator on sec-

tions of a bundle S over M , which encapsulates

information about the geometry of the mani-

fold.

Weitzenbock formula

If D is the Dirac operator for a spin manifold

M , ∇ is the connection on the spin bundle S,

and κ is the scalar curvature then

D2 = ∇∗∇+
1

4
κ

where κ acts on the sections of S by pointwise

multiplication.



Index theory

Definition.An operator D is Fredholm if it has

finite dimensional kernel and cokernel.

The index of a Fredholm operator D is

index(D) = dimkerD − dimkerD∗

If M is a closed manifold then the Dirac oper-

ator on M is Fredholm.

We will also be interested in open manifolds.

The idea is to define a higher index which re-

duces to the Fredholm index in the case of a

closed manifold. This higher index will belong

to a K-theory group, and we may think of it

as a formal difference

[kerD]− [kerD∗].



Coarse geometry

A map φ between two metric spaces is coarse

if

• φ−1(bounded set) is bounded, and

• for all R > 0 there exists S > 0 such that if

d(x, y) ≤ R then d(φ(x), φ(y)) ≤ S.

Two maps φ, ψ are close if there exists S > 0

such that d(φ(x), ψ(x)) ≤ S for all x.

This gives rise to a notion of coarse equiva-

lence of spaces, defined by a pair of coarse

maps which are inverse to one another up to

closeness.



The Roe algebra

We will study coarse geometry by means of

operator algebras. Let X be an open mani-

fold and S a bundle over X. We will consider

operators on L2(X,S) of the form

ξ(·) 7→
∫
X
k(·, x)ξ(x)dx

where the kernel k takes values k(y, x) ∈ End(S).

Such an operator has finite propagation if there

exists R such that k(y, x) = 0 when d(x, y) > R.

sup{d(x, y) : k(y, x) 6= 0} is called the propaga-

tion of the operator.

Definition (Roe). C∗(X) is the completion of

the algebra of finite propagation bounded op-

erators arising from kernels in this way.



The coarse higher index

Let D be a Dirac-type operator and consider
the wave equation dξ

dt = iDξ. This has solution
operator eitD.
Lemma. The waves travel with speed at most
1. The wave solution operator eitD has propa-
gation at most |t|.

By Fourier theory we can therefore construct
finite propagation operators out of D. This
gives rise to the coarse higher index

index(D) ∈ K∗(C∗X).

Theorem (Roe). If D is invertible then index(D)
vanishes.

The argument involves an exact sequence

K∗+1(D
∗X) → K∗+1(D

∗X/C∗X) → K∗(C∗X)
? 7→ [D] 7→ index(D)

If D is invertible then [D] can be lifted to
K∗+1(D

∗X).



Obstruction to positive curvature

Theorem (Roe). Let X = M̃ the universal

cover of a closed spin manifold M (with metric

pulled back from M), and let D be the Dirac

operator for X. If index(D) 6= 0 then M admits

no metric of positive scalar curvature.

Proof. As M is compact, any two metric on M

yield coarsely equivalent metrics on X. Hence

the (non-)vanishing of index(D) is independent

of the choice of metric on M . But by the

Weitzenbock formula D2 = ∇∗∇+ 1
4κ so

〈Dξ,Dξ〉 = 〈(∇∗∇+
1

4
κ)ξ, ξ〉

= 〈∇ξ,∇ξ〉+
1

4
〈κξ, ξ〉 ≥ ε〈ξ, ξ〉

with ε > 0 so D is invertible.

Example. For X = Rn, M = Tn, index(D) 6=
0 so Tn admits no metric of positive scalar

curvature.



Properly positive scalar curvature

Question. Suppose M admits a positive scalar

curvature metric. Can the curvature of M be

increased arbitrarily for small changes of the

metric?

Let X = M t M t M t . . . where each copy

of M is equipped with the given metric. The

question amounts to the following:

Is there a ‘small’ distortion of the metric on X

for which κ is properly positive (i.e. κ→ +∞)?

To make this second formulation precise we

refine our notion of coarse geometry.

If g1, g2, . . . are metrics on M converging in-

tegrally to g, then (X, g t g t . . . ) is coarsely

equivalent to (X, g1 t g2 t . . . ) in the sense of

C0 coarse geometry.



C0 coarse geometry

A map φ : X → Y between two metric spaces

is C0 coarse if

• φ−1(bounded set) is bounded, and

• for all r ∈ C+
0 (X × X) there is an s ∈

C+
0 (Y × Y ) such that if d(x, x′) ≤ r(x, x′)

then d(φ(x), φ(x′)) ≤ s(φ(x), φ(x′)).

Two maps φ, ψ are C0-close if there is an s ∈
C+

0 (Y×Y ) such that d(φ(x), ψ(x)) ≤ s(φ(x), ψ(x))

for all x.

This gives rise to a notion of C0 coarse equiva-

lence of spaces, defined by a pair of C0 coarse

maps which are inverse to one another up to

C0 closeness.



C0 coarse geometry

This is coarse geometry not with bounded er-

rors, but with errors tending to zero at infinity.

An operator on L2(X,S) given by

ξ(·) 7→
∫
X
k(·, x)ξ(x)dx

is C0 controlled if sup{d(x, y) : x ∈ X, k(y, x) 6=
0} → 0 as y → ∞, and likewise for x, y inter-

changed.

Definition. C∗0(X) is the completion of the al-

gebra of bounded operators given by C0 con-

trolled kernels k.

Note that C∗0(X) is a subalgebra of C∗(X).

There is a C0-coarse higher index, index0(D) ∈
K∗(C∗0(X)). This maps to the coarse higher

index index(D) under the inclusion C∗0(X) ↪→
C∗(X).



Fredholm operators and the C0 higher
index

Theorem. If X has properly positive scalar cur-
vature (κ → +∞) then the Dirac operator for
X is Fredholm, indeed it has discrete spectrum.

Physical interpretation: If the potential well of
κ is infinitely deep, then all energy eigenstates
of the wave equation are bound states.

Theorem. If D is invertible and has discrete
spectrum then index0(D) = 0.

K∗+1(D
∗
0(X)/K ) −→ K∗(K )y y

K∗+1(D
∗
0(X)/C∗0(X)) −→ K∗(C∗0(X))

[D] −→ index0(D)

If D has discrete spectrum then [D] lifts to
K∗+1(D

∗
0X/K ) and its image in K∗(K ) is the

Fredholm index. But if D is invertible then the
Fredholm index vanishes.



Maximum curvature content

Theorem.For any closed Riemannian spin man-

ifold (M, g) there is a bound R and ε > 0 such

that every metric ε-close to g (as a length met-

ric) has points with κ ≤ R.

Proof. For such a manifold M , X = MtMt. . .
and D the Dirac operator for X, the C0 higher

index of D is non-zero. Hence no metric on X,

C0-equivalent to gtgt . . . has properly positive

scalar curvature.


