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Property A

Definition: (Yu). A metric space X has property A if for all

R, ε > 0 there is a family Ax, x ∈ X of finite subsets of X ×N
such that

(i) there exists S such that Ax ⊆ BS(x)× N for all x,

(ii) |Ax∆Ay|/|Ax| < ε for d(x, y) ≤ R.

Theorem: (Yu). If X has property A then the coarse

Baum-Connes conjecture holds for X. If G is a group

with property A then the Novikov conjecture holds for G.

Block-Weinberger gave a homological characterisation of

amenability.

Question: Is there a homological characterisation of prop-

erty A?



Exactness

A C∗-algebra B is exact if for every exact sequence

0 → J → A → A/J → 0

of C∗-algebras, the spatial tensor product with B preserves

exactness.

A C∗-algebra B is nuclear if its tensor products are unique.

A group G is exact if for every exact sequence

0 → J → A → A/J → 0

of G-C∗-algebras, the reduced crossed product with G pre-

serves exactness.

Equivalently C∗
r(G) is exact, where C∗

r(G) is the completion

of C[G] acting on `2(G) (on the right).



Ozawa Kernels

Theorem: (Higson, Roe, Ozawa, Tu). X has property A iff
for all R, ε > 0 there exists a positive kernel k(x, y) such that

(i) if d(x, y) ≤ R then |k(x, y)− 1| < ε,

(ii) there exists S such that if d(x, y) ≥ S then k(x, y) = 0.

These are called Ozawa kernels.

Let C∗
u(G) be the completion of the algebra of finite propa-

gation operators on `2(G).

Theorem: (Ozawa). The following are equivalent for a
group G

(i) C∗
u(G) is nuclear,

(ii) C∗
r(G) is exact,

(iii) G admits Ozawa kernels.



Proof: (ii) ⇒ (iii)

Exactness of C∗
r(G) is equivalent to nuclearity of the inclu-

sion C∗
r(G) ↪→ B(`2(G)).

That is for ε > 0 and E ⊂ C∗
r(G) finite, there exists θ :

C∗
r(G) → B(`2(G)), finite rank and completely positive, such

that ‖θ(T )− T‖ < ε for T in E.

The map θ can be chosen to depend only on finitely many

matrix entries < viT, vj > of T .

Now define k(x, y) = 〈δx, θ([y−1x])δy〉. This has the desired

properties.

Key point: the matrix y−1x is positive.



Partial translations

A partial bijection of X is a triple (U, V, t) where U, V are

subsets of X and t : U → V is a bijection.

Equivalently, a partial bijection is given by a partial isometry

of `2(X), t : δx 7→ δt(x) for x ∈ U , t : δx 7→ 0 for x /∈ U .

A partial translation of X is a partial bijection such that for

some R we have d(t(x), x) ≤ R for all x ∈ U .

Equivalently a partial translation is given by a partial isom-

etry in C∗
u(X).

A partial translation structure T on X is a collection of

partial translations satisfying certain axioms.

Define C∗(X, T ) to be the subalgebra of C∗
u(X) generated

by t ∈ T .



Idea: A space with a partial translation structure is a gener-

alisation of a group, or a space with a group action.

Theorem: (Brodzki, Niblo, W). Let T be a free partial trans-

lation structure on X. Then the following are equivalent:

(i) C∗
u(X) is nuclear,

(ii) C∗(X, T ) is exact,

(iii) X admits Ozawa kernels.

Theorem: (B,N,W). If X admits a uniform embedding into

a group G, then the translation structure on G pulls back to

a free partial translation structure on X.

In particular, any subset of a group is naturally equipped

with a free partial translation structure.



The Toeplitz extension

The space L2(S1) is span{e2πinx : n ∈ Z}, and the Hardy

space is

H2 = span{e2πinx : n = 0,1,2, . . . }.

For f in C(S1), let Tf = PH2
MfPH2

.

The Toeplitz algebra T is the algebra generated by Tf . This

fits into an extension

0 → K → T → C(S1) → 0.

Let G = Z, let X = {0,1,2, . . . } and let TX denote the partial

translation structure on X inherited from Z.

Then X ↪→ Z induces a map C∗(X, TX) → C∗
r(Z).

C∗(X, TX) ∼= T , C∗
r(Z) ∼= C(S1) and the map between these

gives the Toeplitz extension.



Translations on the primes

The twin primes conjecture asserts that there are infinitely

many pairs p, q of primes such that q − p = 2.

De Polignac’s conjecture asserts that for any even number

2k, there are infinitely many pairs p, q of primes such that

q − p = 2k.

Let P ⊂ Z denote the set of primes, and TP the partial

translation structure inherited from Z. The algebra C∗(P, TP )

contains K̃ .

Theorem: (B,N,W). C∗(P, TP ) 6∼= K̃ if and only if de Polignac’s

conjecture holds for some k.



The Cuntz algebra

Theorem: (Cuntz). There is a unique algebra O2 generated

by two isometries V1, V2 such that V1V ∗
1 + V2V ∗

2 = 1.

Let G = F2 =<a, b>. Let X ∈ G be the set of non-negative

words (i.e. words in a, b), and TX the inherited partial trans-

lation structure.

Theorem: (B,N,W). C∗(X, TX) is the universal algebra on

two isometries with orthogonal range.

Let Y be the set of words of the form a−nx for some x in

X, and TY the inherited partial translation structure.

Theorem: (B,N,W). C∗(Y, TY ) ∼= O2 and the extension

0 → K → C∗(X, TX) → C∗(Y, TY ) → 0.

induced by X ↪→ Y is the Cuntz extension.



Embedding C∗
r(F2) in O2

Choi showed indirectly that C∗
r(F2) can be embedded as a

subalgebra of O2.

Theorem: (B,N,W). For Y as above there is a quasi-isometry

φ : F2 → Y such that the image of C∗
r(F2) under φ∗ lies in

C∗(Y, TY ) ∼= O2.

Outline:

A word in F2 =< a, b > which does not begin with a−1 can

be described geometrically by a sequence of moves

L = turn left, then move forward one step

R = turn right, then move forward one step

F = move forward one step

where initially we face East (the a direction).

Allowing initial backwards moves B we obtain arbitrary ele-

ments of F2.



Encode L, R, F, B by uL = b2, uR = ab, uF = a, uB = a−1.

Encode the directions N, E, S, W as vN = b2, vE = a2, vS =

ba, vW = ab.

For an element g ∈ F2 described by Bn w(L, R, F ) with a

heading h ∈ {N, E, S, W}, we define

φ(g) = un
B w(uL, uR, uF ) vh.

This embeds F2 into the 3-regular tree Y .

Key point: the partial nature of partial translations allows

them to act conditionally.

For example a3(a∗)2 can be interpreted as the instruction:

if a word ends with a2 then replace it with a3

(heading=E) 7→ (move=F , heading=E).

Thus the action of F2 on Y can be encoded by partial trans-

lations. The image of C∗
r(F2) therefore lies in the partial

translations.


