
C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

CONTENTS

PREFACE...7
1 INTRODUCTION ...1

1.1 Using Computers To Predict Flows1
1.2 Situations Where Fluids Flow......................................2
1.3 Why Read This Book ?..5
1.4 The Objectives Of The Study6
1.5 Using The Book ..7

2 FLUIDS IN MOTION.. 10
2.1 Some Common Flow Features................................... 10

2.1.1 Fluids All Around Us.. 11
2.1.2 The Ways Fluids Flow.. 15
2.1.3 Some Properties of Fluids 16

2.2 Equations Describing Fluids in Motion...................... 18
2.2.1 Developing the Governing Equations.................. 19
2.2.2 Concepts of Turbulence 25
2.2.3 Modelling Turbulence... 26

2.3 Obtaining Greater Understanding of Fluid Flow 30
3 NUMERICAL SOLUTIONS TO PARTIAL
DIFFERENTIAL EQUATIONS ... 33

3.1 Techniques of Numerical Discretisation 34
3.1.1 The Finite Difference Method............................. 34
3.1.2 The Finite Element Method 38
3.1.3 The Finite Volume Method................................. 44

3.2 Numerical Discretisation of a Simple Equation.......... 44
3.2.1 Using Finite Differences 45
3.2.2 Using Finite Elements... 52
3.2.3 Using Finite Volumes ... 57

3.3 Comparison of the Discretisation Techniques 59
3.4 Producing A Solution From The Discrete Equations..62

3.4.1 Convergence and Stability 63
3.4.2 Solving The Simultaneous Equations.................. 64

3.5 Solving The Coupled Set of Fluid Flow Equations..... 70

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

3.5.1 Non-Linearity and Time Dependence70
3.5.2 Obtaining the Pressure Solution 74
3.5.3 The Convection Operator.................................... 78
3.5.4 Boundary Conditions For Fluid Flow Problems ..80

4 COMPUTER-BASED ANALYSIS PROCEDURES AND
TOOLS... 85

4.1 The Analysis Process... 86
4.2 Computer Hardware For CFD.................................... 90

4.2.1 Computers .. 90
4.2.2 Peripherals.. 93

4.3 Using the Hardware... 94
4.4 Commercial Software Packages Used For CFD......... 96

4.4.1 Pre-Processing Programs 96
4.4.2 Solving The Equations.. 97
4.4.3 Post-Processing Programs................................... 98
4.4.4 Utilities... 98

5 DESCRIBING FLOW PROBLEMS IN ENGINEERING
... 100

5.1 Producing a Specification .. 101
5.1.1 Knowing What Is Required of the Analysis 101
5.1.2 Specifying the Geometry of the Problem........... 103
5.1.3 Defining the Flow... 104

5.2 An Example of a Flow Specification 106
6 BUILDING A MESH... 112

6.1 The Need For A Mesh ... 112
6.2 Creating A Mesh For A Given Flow 113
6.3 Mesh Structures... 115

6.3.1 The Basic Parts of a Mesh................................. 115
6.3.2 Types of Structure .. 117

6.4 Building Meshes.. 121
6.4.1 Defining the Geometry 121
6.4.2 Determining The Mesh Structure125
6.4.3 Building a Simple Mesh With a Regular Structure
.. 126

6.4.4 Using Commercial Mesh Generation Software.. 129
6.4.5 Some Automatic Mesh Generation Algorithms . 132

6.5 Modifying An Existing Mesh To Give A Better
Solution... 137

7 SETTING THE FLUID FLOW PARAMETERS............ 140
7.1 Specifying Fluid Properties 141
7.2 Determining the Variables That Need To Be Calculated
.. 143
7.3 Finding the Boundaries.. 145

7.3.1 Boundaries for Meshes With A Regular Structure
.. 145
7.3.2 Boundaries for Meshes With An Irregular Structure
.. 147
7.3.3 Grouping Faces Together.................................. 151

7.4 Defining the Boundary Conditions 152
7.5 Defining the Initial Conditions 154
7.6 Using User-Generated Subroutines To Influence The
Simulation... 155

8 OBTAINING A SOLUTION ... 157
8.1 Final Data Preparation... 157

8.1.1 A Note On Iterative Processes 157
8.1.2 Controlling The Iterative Processes................... 160
8.1.3 Other Solution Control Information 163

8.2 Running the Solver and Troubleshooting 165
9 ANALYSING THE RESULTS...................................... 170

9.1 The Results Obtained From The Solver 170
9.2 Using Computer Graphics For CFD......................... 173

9.2.1 Using Graphics Hardware................................. 173
9.2.2 Using Graphics Software 174
9.2.3 Plotting the Geometry....................................... 175
9.2.4 Obtaining the Required View............................ 177
9.2.5 Displaying the Results 181
9.2.6 Special Displays ... 184

9.3 Checking A Solution ... 185

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

9.4 Refining A Computer Model 186
10 SOME CASE STUDIES .. 188

10.1 The Examples.. 188
10.2 The Software Packages.. 189
10.3 Laminar Flow Between Parallel Plates................... 191

10.3.1 Producing The Flow Specification 191
10.3.2 Some Analysis .. 193
10.3.3 Building a Mesh ... 196
10.3.4 Setting the Fluid Flow Parameters................... 200
10.3.5 Running The Solution..................................... 203
10.3.6 Analysing the Results 205

10.4 Turbulent Flow Over a Car 210
10.4.1 Producing A Flow Specification210
10.4.2 Creating A Mesh... 211
10.4.3 Preparing the Data Before Solution................. 215
10.4.4 Running the Solver and Analysing the Results 226
10.4.5 A Note On Three-Dimensional Calculations ... 233

10.5 Water Flow Around A Combustion Chamber 235
10.5.1 Producing A Specification 235
10.5.2 Producing A Mesh .. 237
10.5.3 Other Pre-Processing Tasks 240
10.5.4 Running The Solution..................................... 244

10.6 A Review Of The Usefulness Of CFD 248
11 MODELLING FLOWS WITH ADDITIONAL
COMPLEXITY... 250

11.1 Modelling Flows With Heat Transfer..................... 251
11.1.1 The Effects of Heat Transfer on a Flow........... 251
11.1.2 The Energy Equation For Heat Transfer.......... 252
11.1.3 The Effects of Turbulence on Heat Transfer.... 255
11.1.4 Buoyancy Effects.. 255
11.1.5 Conjugate Heat Transfer Problems..................257
11.1.6 Some Non-Dimensional Groups...................... 259

11.2 Modelling Flows That Are Compressible............... 260
11.2.1 Some Features Found In Compressible Flows. 260

11.2.2 Equations For Compressible Flow 261
11.2.3 Some Practical Problems With Compressible
Flows .. 263

11.3 Multiple-Phase Flows .. 264
11.4 Modelling the Effects of Combustion 265

12 ACQUIRING CFD TECHNOLOGY 266
12.1 Preliminaries ... 266
12.2 Assessing the Need.. 266
12.3 Producing A Specification For A CFD Program 267
12.4 Deciding on the Necessary Software...................... 272
12.5 Deciding on the Necessary Hardware 273
12.6 Finding People To Run CFD Simulations 276
12.7 Integrating CFD Within The Design Process 278

APPENDIX A. PHOENICS RESULTS FOR A SIMPLE
LAMINAR FLOW.. 280
REFERENCES .. 312

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

PREFACE

Computational Fluid Dynamics (CFD) can be described as the use
of computers to produce information about the ways in which fluids
flow in given situations. CFD embraces a variety of technologies
including mathematics, computer science, engineering and physics,
and these disciplines have to be brought together to provide the
means of modelling fluid flows. Such modelling is used in many
fields of science and engineering but, if it is to be useful, the results
that it yields must be a realistic simulation of a fluid in motion. At
present this depends on the problem being simulated, the software
being used and the skill of the user.

Until recently the user of CFD has been a specialist, probably
trained to doctoral level, working in a research and development
department. Now, however, the technology is more widely
available both in industry and academia and so it is being used to
provide insights into many aspects of fluid motion. This increasing
use has come about as there are now numerous commercial CFD
software packages on the market and so it is not necessary for users
to have to write their own programs in order to obtain flow results.
Whilst the software is widely available, the means of learning about
CFD and how to produce simulations with it tends to be restricted
to post-experience courses in universities and polytechnics, where
the level of assumed knowledge can be too great, or to courses run
by software suppliers where users are shown how to run a particular
software product. Also, there are several technical texts that
describe the detailed mathematics of the modelling process, but
these are often far too technical for the user of the software.
Consequently, as the variety of users increases there is a need for a
general text that is an introductory guide to the analysis of flow
problems using CFD and describes the various stages of an analysis
that must be undertaken if the user is to obtain sensible results.

This book addresses the needs of new users of CFD programs.
After the introduction there is a description of some aspects of fluid
flow, written specifically for the non-specialist, together with a look

at some of the equations that need to be modelled. The discussion
concentrates on flows which are viscous and incompressible, as
most of the CFD packages solve this type of flow. The ways in
which the governing equations are translated into a form suitable
for solution by computer is then described. Having looked at this
the CFD analysis process can be determined together with some
information about the software and hardware that will be required.
Then each stage of the analysis process is discussed in turn,
followed by a chapter where three examples of the analysis process
are given. These are realistic problems which have been solved
using two commercially available CFD software packages. This
completes the core of the material, but as other flow types are met
in practice some extensions to the basic analysis process are
discussed that enable these flow types to be modelled. Then, finally,
there is a review of how the necessary hardware and software can
be specified. This looks at the features that might be considered
together with a discusion of how the whole process can be used to
influence engineering design.

The book assumes only a minimal knowledge of fluid mechanics
and mathematics, and so it is hoped that it will be a useful guide to
the CFD modelling process, being read by new users of CFD
software, by those interested in what CFD could do for them and
even by their managers. Hopefully, the book will act both as a
learning aid and as a reference. Ideally, if readers wish to perform
simulations then this book should be read in conjunction with the
documentation of the appropriate software. Also, it is not intended
that the book will replace the support services of the software
suppliers.

For those who wish to study further some hints on how to do this
are given together with a list of key references.

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

1

1 INTRODUCTION

1.1 Using Computers To Predict Flows

Towards the end of 1987, two disasters occurred in Britain. In
October, a severe storm swept over the South East of the country
causing considerable damage and loss of life, and then, in
November, there was a fire at King's Cross Underground Station in
which thirty-one people died. In the investigations that followed
both of these events, the use of computers to predict how fluids
flow was discussed at great length.

Many people will remember that there was considerable debate as
to why it was that the storm was not predicted by British weather
forecasters, when forecasters in other countries did predict the
storm. Forecasters use computers to predict the flow of the air in the
Earth's atmosphere, finding things such as wind speed and
direction, atmospheric pressure and air temperature. From this data
they can predict what the weather will be several hours or days
ahead. One feature of the debate was a comparison of the
calculation speed and data storage capacity of the computers
available to the forecasters in Britain and those more powerful
machines available elsewhere. As a result of this debate, a more
powerful computer has been installed in Britain for weather
forecasting [1]. The forecasters make considerable use of the
techniques known as Computational Fluid Dynamics (CFD) to
produce their weather forecasts and, as we shall see later in this
book, the storage capacity of the computer can effect the accuracy
of the prediction, as can the speed of the machine. The results of the
CFD calculations can be seen every day as part of the weather
forecasts on television.

During the King's Cross fire, fireman reported that within the space
of only two minutes the fire changed from being a small blaze
within the escalator tunnel to a serious conflagration that engulfed
the booking hall at the end of the tunnel. At the inquiry that
followed this disaster the results of computer predictions of the

Chapter 1. Introduction

2

flow of air in the escalator tunnel and the booking hall were used to
explain this flashover and to discount several of the theories that
were put forward, such as the burning of the new paint on the
ceiling of the tunnel [2]. These results showed a physical
mechanism for the flashover, but they were so unexpected that
experiments were carried out to see if such a mechanism occurred
in practice. In scale models of the escalator tunnel the mechanism
was found to occur, although the actual values of the flow velocity
predicted by the computer were not accurate. This means that the
computer predictions were correct in a qualitative sense, if not in a
quantitative sense.

The timing of the two disasters and the debate about the use of
computers that followed are significant. They show that from
around the mid-1980's computer predictions of fluid flow have been
used routinely in both science and engineering to produce useful
results. The predictions have to be derived from a technology that
combines advances made in several technical areas such as
computer science, mathematics and engineering. These advances
have contributed to the increasing use of CFD that has taken place
since the above date, and it is hoped that the links between them
will be seen throughout this book.

1.2 Situations Where Fluids Flow

In many branches of engineering, there has to be an understanding
of the motion of fluids. One classic example of this is in the aircraft
industry, where the aerodynamics of an aircraft must be
determined; i.e. the lift, drag and sideforces of a design must be
estimated before a prototype flies. This ensures that the lift
available will be sufficient to carry the weight of the loaded aircraft,
that the required power of the engines can be determined together
with the aircraft's fuel economy and that the motion of the aircraft
can be predicted. To obtain this aerodynamic data many models of
the design could be built and tested in a wind tunnel, with the
model positioned in many orientations to the flow. Such tests might

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

3

consume many hours of wind tunnel time and cost many thousands
or millions of pounds.

As the equations that govern fluid motion are known, numerical
approximations can be made to these equations, and, with the
arrival of powerful computer hardware and software, some of the
aerodynamics estimation can be made using these computer tools.
This does not mean that wind tunnels are redundant. In reality,
when computers and experiments are both used to produce
predictions, engineers often choose to reduce the amount of wind
tunnel time. Sometimes, however, the wind tunnels are used just as
much as they would have been if they had been used alone. In both
of these cases, wind tunnels can be used to investigate the problems
that are too difficult to solve with the computational techniques and
there are many such problems. Effectively, the use of computers
releases wind tunnel time and this can be used to investigate the
really difficult aerodynamics problems that could not be tackled
before.

Whilst this combination of experimental and computational
investigations has been used to determine an aircraft's
aerodynamics for some time, the use of computers for fluid flow
prediction in other industrial areas is less advanced. Recently,
however, other industries have been making the transition from
purely experimental investigations to a mix of experimental and
computational investigations. If we look at a variety of industrial
sectors, such as aerospace, defence, power, process, automotive,
electrical and civil engineering, there are many examples of areas
where CFD is now used. For example, predictions can be made of
the:

• lift and drag of aircraft. Here, as we have said, engineers
need the data for performance prediction. CFD is used in
conjunction with wind tunnel tests to determine the
performance of various configurations.

• flows over missiles. This, again, is an area where there is a
need for lift, drag and sideforce data, so that simulations of

Chapter 1. Introduction

4

performance can be made. As with aircraft, CFD and wind
tunnel tests are used, but because of the wide range of flows
that have to be simulated for a given configuration, use is
also made of semi-empirical methods which are derived
from large amounts of experimental data.

• jet flows inside nuclear reactor halls. Such problems
involve the simulation of fault conditions, and so engineers
have great difficulty in performing actual experiments, for
safety reasons. Hence, computation is the only way of
trying to understand such flows.

• flames in burners. There is a need to understand the
complex interactions between fluid flow and chemical
reaction in flames. This can assist in the production of more
efficient designs for burners in boilers, furnaces and other
heating devices.

• air flow inside internal combustion engines. When air is
used to burn fuel inside an internal combustion engine, be it
a gas turbine engine, a petrol engine or a diesel engine, the
air must be drawn into the chamber with the minimum
amount of effort and the flow of the air once it is in the
chamber must be able to promote good burning. Hence,
engineers need to know the pressure drop through a system
and the velocity distribution in the combustion chamber.

• flow of cooling air inside electrical equipment. In this
problem, electrical devices, such as integrated circuits,
produce heat. This heat must be dissipated if the equipment
is not to become too hot. For example, the hot devices heat
the air that surrounds them and this hot air rises, creating air
currents that move the heat away from the sources of heat.
If insufficient heat is moved away then it may be necessary
to add fans that will force air over the hot devices.

• dispersion of pollutants into rivers and oceans. Various
pollutants are discharged into rivers and oceans, and
computer programs can be used to predict where pollutants
will travel in these naturally occurring flows and what the
pollutant concentration will be at given positions in the
river or sea.

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

5

From this list, it is clear that the applications can be extremely
varied in nature. Despite this, the computer predictions of the
different problems can be made with computer software and
hardware that is not specific to a given problem. Now that these
computer tools are widely available, CFD has been brought out of
the research laboratory and is used by many more people. It can
even be used in the engineering design process.

It is intended that this book should assist scientists and engineers in
understanding how software tools can be used to predict the motion
of fluids in a wide variety of situations. The emphasis is, however,
on engineering examples where the speed of the flow is low and the
fluid is viscous but where the flow does not include any heat
transfer. This type of flow is very common throughout industry and
it can be used as the basic model upon which can be built a number
of modifications that account for other types of flows. For example,
the flow speed might be such that the density of the fluid will
change, or heat transfer or combustion might occur.

1.3 Why Read This Book ?

Over the last few years, many commercial CFD packages have
become available. The emergence of these packages has meant that
CFD is no longer practised solely in a research environment by
highly-trained specialists, but it is also being used in many
industrial organisations as a design tool. Consequently, engineers
who are not specialists in the CFD field are having to come to terms
with this technology, if only in an attempt to understand what the
benefits of using the technology are, and also to understand what
the drawbacks are.

As a subject, CFD can appear to be far removed from the
experience of those who are not specialists in the field. The
situation is not helped by the numerous books on the market that
address the subject of CFD, which are mainly written for the
theoretical engineer or applied mathematician who is interested in
the details of how the equations that govern fluid flow are solved.

Chapter 1. Introduction

6

No general text is available for the less-specialised user of CFD
techniques or even for their managers.

There is a wide variety of people that have a need to be able to
understand something about CFD techniques, be they
computational analysts using CFD for the first time, design
engineers interested in obtaining information about fluid motion,
and even engineering managers or computer managers who provide
the computational resources for CFD. Such people are invariably
graduates, often with no formal background in CFD, or even in
basic fluid mechanics. If these people are offered some sympathetic
help and guidance, then they can understand the basics of CFD. It is
the author's experience that undergraduate engineering students can
successfully model fluid flow situations, if they are given
appropriate background information as to what the CFD solution
process is and how it is used to obtain predictions of the behaviour
of fluids.

This book is an attempt to put the necessary information into a
simple and concise format, so that it can be used by students or
practising engineers to assist in their understanding of the
technology of CFD, regardless of the particular software package
they might be using. In fact, the book should act as a primer for
someone about to explore the documentation of any CFD package.
Once someone is familiar with the material contained here, they
should be able to produce simulations of fluid flow situations using
a suitable CFD package or be able to talk confidently with those
who produce such simulations.

1.4 The Objectives Of The Study

As we have seen, CFD can be used to produce predictions for a
wide variety of flows. So that the basics of the subject can be
clearly understood, particularly by those outside the aircraft
industry, the content of this book has in the main been restricted to
the class of problems that can be described as being viscous,
incompressible flows. These flows are slow speed flows where the

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

7

fluid is not compressed and features such as shock waves do not
occur. Many industrial flow problems are of this type, and so most
of the available CFD packages can simulate these flows. There is a
separate chapter that describes how to model variations from this
basic type of flow.

After reading this book, it is hoped that you will be able to:

• understand something of how incompressible, viscous
flows behave

• understand the numerical techniques that are used to solve
the governing equations of fluid flow

• follow the stages undertaken during a CFD analysis
• recognise the need for a mesh of points to be specified

within the fluid volume
• specify a flow, in terms of the relevant boundary and initial

conditions
• understand the documentation for commercial CFD

software packages
• be aware of the limitations of the CFD process.

Once the reader has this information, it should not be difficult to
run some simple examples and hence gain experience in using
commercial CFD packages. Having done this, the prediction of
more involved fluid flow situations, where such things as heat flow,
combustion and compressibility occur, should be relatively
straightforward.

1.5 Using The Book

The book is intended to be an introductory guide to CFD, as well as
a working reference for analysts and their managers. Consequently,
as readers will probably come from a variety of technical
backgrounds, very little background knowledge is assumed and the
book has been structured so that its chapters can be read in
isolation.

Chapter 1. Introduction

8

Chapter Two describes the properties of fluids that are considered
important when fluids flow and describes some of the flow features
that usually occur. It also provides a review of the equations that
govern fluid flow and the factors that determine the flow types.
This chapter is intended to be read by those with little or no formal
training in fluid dynamics, and so can be skipped by other readers.

As the equations describing the flow of a fluid are partial
differential equations, Chapter Three looks at the standard ways of
solving these equations using numerical approximations. Three
different techniques for transforming partial differential equations
into a numerical form are explained and the features common to
them are emphasised. Solving the fluid flow equations leads to
some special problems, regardless of the numerical technique, and
so these problems and the ways of overcoming them are also
explained. By using one of these techniques of approximating
partial differential equations, equations can be derived which can
then be programmed into a CFD software package. There is a set of
operations that needs to be carried out to use such a package in a
way that will produce sensible simulations of fluid flow problems,
and so Chapter Four outlines this CFD analysis process and looks at
the hardware and software that is available to assist in this process.

In both Chapters Three and Four, emphasis is given to the fact that
the basic features of the software and hardware tools are common to
all the packages. These chapters should be read by those who are
unfamiliar with the numerical solution of partial differential
equations and the software and hardware associated with such
solutions.

Whilst the first four chapters cover some background material, the
subsequent chapters, Five to Nine, concentrate on the CFD analysis
process itself. These chapters describe in detail each of the
processes that must be undertaken in order that the simulation of a
fluid flow problem is successful. These processes include the
formulation of the fluid flow problem, producing a flow
specification that is easily translated into terms understood by the

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

9

software packages, the production of a computer model, the running
of the numerical solution so that reasonable results are obtained and
the analysis of the results. Whilst any individual chapter forms a
stand-alone module describing one particular phase in the overall
process, the five chapters taken as a whole detail the analysis
process from start to finish.

Having explained the analysis process in Chapters Five to Nine,
Chapter Ten attempts to bring the process to life by applying the
techniques described to a series of representative flow examples. It
is in this chapter that we show how the techniques are actually used
in practice, as the simulation process used to model these examples
is described in full based on the use of commercial CFD software.
From these examples the areas where CFD can be useful and the
areas where it is of little use can be seen.

Finally, the last two chapters round off our study by taking a brief
look, in Chapter Eleven, at how some of the more complex flow
features such as compressibility and heat transfer are accounted for
in a simulation, and then by considering, in Chapter Twelve, the
problem of how to acquire CFD software and hardware in industry
and how to implement the technology within the design process.

Chapter 2. Fluids in Motion

10

2 FLUIDS IN MOTION

2.1 Some Common Flow Features

When people use computers they can become so engrossed in the
computational aspects of their work that everything else is
excluded. For people who use CFD in an industrial environment
this can be a disastrous mistake, as the computer hardware and
software are merely tools to assist our understanding of the ways in
which fluids flow and of the interaction between this and some
object that is being or has been designed. Consequently, it is very
important that everyone concerned with CFD has some
understanding of the physical phenomena that occur when fluids
flow, as it is these phenomena that CFD must analyse or predict. As
this is a book that has been designed to help explain some of the
mysteries of how we can predict the motion of fluids using
computer-based tools, we must start by looking at the basic
processes of fluid flow. These can be extremely complex and the
computer simulation has to be capable of reproducing this
complexity. If analysts are aware of these physical realities, they
can modify their modelling technique to ensure that the best
possible results for a given situation can be produced.

Whilst many engineers will have studied fluid mechanics as part of
their formal education, some readers may not have made such a
study, and so this chapter attempts to provide some information for
those who have no formal background in the subject and for those
who may wish simply to be reminded. The presentation of the
material is based initially around the features that occur when fluids
are flowing, that is, it considers what happens to a fluid in motion,
and thereby develops an intuitive feeling for the subject. Then some
of the mathematical aspects of the analysis of fluids in motion are
discussed. This is not intended to be a comprehensive review, but it
should highlight some of the more important features, giving a base
for further study.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

11

2.1.1 Fluids All Around Us

When starting to think about the way fluids flow, many people are
put off by the complexity of the subject. Even the titles of the
categories by which flows are classified require some knowledge of
fluid flow if they are to be understood. If you look at some of the
many textbooks concerned with fluid mechanics it is clear that there
are many such categories and these include:

• viscous or inviscid flows
• incompressible or compressible flows
• flows in pipes or open channels
• flows in pumps and turbines
• water waves.

The relevance of some of these classifications will become clearer
as we progress, but it is sufficient to note here that these do serve a
useful purpose in identifying the types of flow that can be found. It
is, however, just as important for someone involved with CFD to
recognise the phenomena that occur for each flow type, as well as
the classifications themselves.

We are going to be concerned predominantly with the use of
computers to simulate flows that are found in industrial situations,
outside the main stream of aeronautical applications. In many of
these industrial flows the fluid moves at a low speed and so the
stickyness, or viscosity, of the fluid produces forces which
dominate the flow. This is especially true when the flow takes place
within fixed solid boundaries. In an attempt to give a good intuitive
feel for this class of flows let us consider some of the common flow
features of low speed, viscous flows.

Everyone has seen many examples of the flow features that exist in
industrial fluid dynamics problems. We see water coming out of a
tap, litter or leaves being blown about by the wind and water
flowing in rivers. By making a careful study of such things it is
possible to understand a great deal about the ways in which fluids

Chapter 2. Fluids in Motion

12

behave when they are flowing without reading a single fluid
mechanics text book. In fact, some of the classical experiments of
fluid dynamics can be recreated in the home or even experienced
during a short walk.

Take, for example, the common tap by a domestic sink. Slowly turn
the tap on and see that water drips out of the tap. Open the tap
further to increase the flow rate until a steady column of water
comes out of the tap. Notice how smooth the water column is,
appearing crystal clear like glass. Increase the flow rate further and
the water column surface begins to move slowly before the whole
column becomes opaque. At this final stage the water flows in a
direction which is generally downwards, but if we look at one point
in space in the water column the fluid seems to move in a random
fashion, a so-called turbulent motion, which is superimposed on the
general flow. This simple experiment with the flow out of a tap
demonstrates that two main types of flow can be seen with viscous
fluids; first a smooth laminar flow, for example where the water
moves layer over layer giving a clear column of liquid, and a
randomly fluctuating turbulent flow.

A second set of flow examples can be created with a bath of water.
Run several inches of water into a bath and let the natural motion of
the water decay away. Then make sure that the surface of the water
is illuminated, as, when the water is in motion, shadows will be cast

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

13

onto the base of the bath and these will give us some clues as to the
motion of the water and so help our understanding of the flow.
Now, drag various objects through the water and watch what
happens. For example, put a circular cylinder such as an aerosol can
into the water with its longitudinal axis in the vertical position and
then move the cylinder along. Notice that the water moves so as to
flow smoothly around the front of the cylinder, but that it does not
move in a similar way at the back of the cylinder. There, the water
forms into tight swirls of fluid as shown in Fig. 2.1. Repeat the
same experiment with a hand. First of all straighten your fingers
and place them vertically in the water with the fingers arranged
from left to right. Now move your hand to the left and see what
happens. Things are much the same as for the cylinder and are
shown in Fig. 2.2a. Now place your hand at a slight angle to its
previous position and then move it slowly to the left. Notice the
new flow pattern as shown in Figure 2.2b. First, the water seems to
approach your hand from below before splitting into two streams,
one of which moves along the lower side of the hand and the other
moves around the forward edge and then down the upper side of
your hand. A swirl of fluid is left behind at the original position of
the right hand end of the your hand. Stop moving your hand and
watch a swirl of water form which rotates in the opposite direction
to the first swirl. If you perform a quick start-stop action, Fig. 2.2c,
the two swirling areas of fluid move down together, as each moves
under the influence of the other.

Chapter 2. Fluids in Motion

14

As a final experiment with the bath of water sprinkle some powder
such as talc on to the water surface, and then place a sheet of card
or paper in the water and drag it along so that the disturbance is a
minimum. Note that the fluid nearest the card moves along with the
card and appears to leave the rest of the fluid behind.

A common place where fluids flow is a river or stream, and
particularly interesting effects can be seen at the point where the
water flows under a bridge or around a bend. This flow will serve
as our final demonstration. For example, stand on a bridge and look

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

15

down into the flow. Figure 2.3 shows some of the features that can
be seen. Observe that, near the bank of the river, any objects such
as small insects or leaves move much more slowly in the flow than
do those in the centre of the river. Looking at the figure, near the
centre of the flow an object might move from position A to position
B in a given time, but near the bank an object will only move from
position C to position D in the same time. Also note that near the
bank objects tend to spin around, in a clockwise direction in the
case shown in Fig. 2.3, but that they do not spin if they are near the
centre of the flow. Where there is a pillar in the water, say
supporting the bridge, look at the swirling areas of fluid
downstream of the pillar.

2.1.2 The Ways Fluids Flow

These simple demonstrations, described above, show some of the
major features that are found to occur when fluids flow at slow
speeds. In particular it is important to recognise that:

Chapter 2. Fluids in Motion

16

• viscous flows can be laminar where the fluid is ordered and
flows as if it was a series of sheets moving over each other.

• viscous flows can be turbulent where the flow at one point
is generally in one direction but that this mean flow has a
seemingly random, fluctuating component superimposed on
it.

• normally a fluid flows cleanly around the front of an object
but, around the back of an object, the direction of motion of
the fluid does not stay parallel to the surface and the fluid
swirls around. The fluid is said to separate from the surface
and the swirls are called vortices.

• when a fluid flows over a solid surface, it is slowed down
by the solid surface. This is due to fluids being sticky or
viscous. The area of fluid near the surface that is slowed
down is called a boundary layer. Inside a boundary layer
the flow velocity changes with distance away from the solid
surface and so the fluid motion causes objects to rotate.
Outside the boundary layer this does not happen. Once the
fluid has moved past a solid surface the effects of the
surface can still be seen and this region is known as a wake.

All these features can be found in industrial flow problems and our
modelling techniques must be capable of reproducing them if they
exist physically. As a computer can only perform numerical
operations, it is necessary to describe the motion of a fluid in
mathematical terms. Then numerical solutions to the mathematical
problem can be found and so a prediction of the physical flow
problem can be determined. To help with this mathematical
formulation, various properties of the fluid must be defined and the
equations governing their variation in both time and space
developed.

2.1.3 Some Properties of Fluids

Fluids in motion can be described in many ways, but we need to
find some way of completely describing the state of a fluid. One
obvious way is to have a description of the velocity of the fluid at

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

17

all points in space and time. Note that velocity is a vector quantity
and so it describes both a size and a direction. One way of
specifying a velocity vector is to give the components of the vector
in the three Cartesian coordinate directions. This description of the
velocity field does not, however, contain enough information to
define the state of the fluid in full, as other properties of the fluid
must be known together with the velocity. The question is now:
"Which properties do we need to describe ?"

It is common knowledge that fluids can exert forces on objects. For
example, in a strong wind, people and trees are blown over and
slates are removed from roofs; and so the air must exert some sort
of force on these objects. Forces applied by fluids are also used by a
variety of means of transportation. Ships float on water as the water
provides a lifting force and aircraft fly quite successfully as the air
moving over the wings also provides a lifting force. The mechanism
that creates these forces is that a fluid exerts a pressure on the
surface of an object, and this pressure acts in such a way that when
the sum of the pressure on each small section of the surface of the
object is calculated a net force exists. Pressure is the force per unit
area (or stress) normal to a surface and can occur if a fluid is
stationary or moving. For example, a ship floats regardless of its
speed through the water, but a conventional aircraft must be moving
for there to be a lifting force on its wings.

As well as this normal stress, or pressure, there is a stress derived
from the action of a fluid that can act tangential to a solid surface.
This stress is caused by the fact that the bulk of the fluid and the
object are moving relative to each other and so the fluid is sheared.
Fluids resist this shearing, such that a tangential stress acts in a
direction parallel to the direction of motion of the fluid taken
relative to the object. This provides a source of drag on a surface
which is proportional to the viscosity, or stickiness, of the fluid. If
the viscosity of the fluid is so small that it can be ignored then the
flow is said to be inviscid. This never happens in practice, but it can
be a useful approximation to make when performing calculations.

Chapter 2. Fluids in Motion

18

For the majority of the flows considered here the flow will be taken
to be viscous.

The other major property of a fluid is its density, which is the mass
of a unit volume of fluid. When we pump up a tyre the air in the
tyre is compressed. This is because we force air to occupy a volume
which is effectively constant and already contains some air. As
there is now more mass in the same volume, the density of the air
increases. For most of the situations that we will be considering we
will assume that the density of the fluid does not change, which is
true for low speed flows where there are no heating effects. When
the density remains constant, the flow is said to be incompressible,
but if the flow speed is increased to a value near that of the speed of
sound in the fluid, compressibility effects become apparent. This
will be dealt with in Chapter Eleven as it is an additional feature
that can be modelled if we make some modifications to the basic
procedure that we will develop.

We have now reviewed the important properties that can be used,
together with the fluid velocity, to describe the fluid flow situations
that we want to model. These properties are:

• normal shear stress or pressure
• viscosity, which enables us to find the tangential shear

stress (the viscous shear stress)
• density.

If we are to calculate these properties, we must determine the
mathematical relationships that govern the interaction between
them. This can be done by considering some basic mechanics as we
shall now see.

2.2 Equations Describing Fluids in Motion

Each CFD software package has to produce a prediction of the way
in which a fluid will flow for a given situation. To do this the
package must calculate numerical solutions to the equations that

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

19

govern the flow of fluids. For the CFD analyst, therefore, it is
important to have an understanding of both the basic flow features
that can occur, and so must be modelled, and the equations that
govern fluid flow. These equations can be found from the
knowledge that the mass of fluid must be conserved, as must the
momentum of the fluid. Whilst the equations will not be formally
derived the underlying philosophy behind their derivation will be
explained. Once these equations are known it should be a
straightforward process to produce numerical predictions of all
flows. This is not the case, however, as various problems arise in
translating the mathematics into a numerical solution. One problem
concerns the physics of the flow and how to model turbulence, as
this complicates matters by having a seemingly random effect at
each point in a flow. An attempt will therefore be made in this
section to explain to the ways in which turbulence affects a flow
and how this turbulence can be modelled. Chapter Three will look
at some of the other problems concerned with the translation
process.

2.2.1 Developing the Governing Equations

Whenever fluids flow the motion occurs in all three spatial
dimensions, but, in an attempt to reduce the complexity of the
problem, we often assume that a flow is two-dimensional. This
assumption is useful as it reduces the number of variables that need
to be considered, and so in this section we will also consider only
two-dimensional problems. Such flows contain all the features that
are necessary to show the processes used to carry out the derivation
of the mathematical equations, and the switch to the three-
dimensional form of the equations is a straightforward extension of
the processes described here.

To develop the governing equations of a flow, we consider a small
part of the fluid as shown in Fig. 2.4a. Here, a rectangular, two-
dimensional patch of fluid ABCD is shown together with an
assumed velocity distribution in terms of the velocity components u
and v in the x - and y -directions respectively. Then, in Fig. 2.4b,

Chapter 2. Fluids in Motion

20

we can see the forces acting in the horizontal direction on the patch
of fluid caused by a normal stress sigma and a shear stress tau .
Note it can be assumed that the velocity, normal stress and shear
stress vary linearly across the patch of fluid, and that their values
are assumed to be constant over a given edge, or face, of the patch.

First of all, for an incompressible flow, fluid cannot accumulate in
the patch. This is because the fluid can not be compressed as its
density is assumed to be a constant. As a result of this
incompressibility of the fluid, the total mass of fluid flowing into
the patch must be zero. Across each face the mass of fluid flowing
into the patch is the product of the fluid density, the area of the face
and the fluid velocity normal to the face. As the density is a
constant it is the same for all faces and so can be left out of the
relationships for mass flow. The net mass flow is given by the sum
of the masses flowing across each face AB, BC, CD and DA and

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

21

this is made equal to zero. Considering a positive mass flow to
occur when the flow is out of the patch, this gives

which can be rearranged to give

or just

This is known as the continuity of mass equation, or simply the
continuity equation and can be seen to be a function of the velocity
components alone for an incompressible flow. If the flow is
compressible the density can change and this has to be accounted
for by a small modification, as we shall see in Chapter Eleven.

A second set of equations can be derived by applying Newton's
Second Law of Motion to find the relationship between the forces
on the patch of fluid and the acceleration of the fluid. First of all, it
is necessary to determine an expression for the acceleration of the
fluid that takes account of the fact that the velocity components
vary in both time and space. To do this we must consider what the
total change of the velocity components u or v will be due to the
changes of u or v with each of the spatial directions x and y , and
the time t .

Chapter 2. Fluids in Motion

22

Let us consider changes of the component u alone, which can be
found by applying the chain rule for partial derivatives. This gives

which becomes, on dividing by delta t

Now, {delta x} over {delta t} is the velocity component u itself, and
similarly, {delta y} over {delta t} is the component v , and so the
relationship becomes

The expression shown in equation 2.4 is the total acceleration of the
fluid in the x -direction and is known as the substantive derivative
of the velocity component u . It is made up of two parts, the first
part consists of two terms which describe the change of the velocity
component u due to the fluid being being carried along, or
convected, with the flow and the second part, the third term,
describes the temporal change of the velocity component. When
this total acceleration is multiplied by the mass of the fluid in the
patch, it can be set equal to the total force in the x -direction acting
on the patch of fluid. This is Newton's Second Law.

The force on the patch of fluid in the x -direction is a combination
of the forces due to the normal stresses and the tangential shear
stresses acting on each of the four faces of the patch. These
combine to give

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

23

Relations relating the normal stress sigma to the pressure and
velocity gradients and the shear stress tau to the viscosity and
velocity gradients can be derived [3] to give

and

and when these are combined with equation 2.5 the equation that is
produced in the x -direction is

and in the y -direction is

where mu is the viscosity of the fluid and rho is its density. Note
that the effects of external forces such as gravity have been ignored
here, but that they can be included as an additional force term in
equations 2.5, 2.8 or 2.9 as appropriate. We will do this in Chapter
Eleven when we look at the effect of buoyancy on hot fluids. Also

Chapter 2. Fluids in Motion

24

note that the viscosity mu given above is known as the dynamic
viscosity, and that there is a another common form of the viscosity,
the kinematic viscosity nu , which is the dynamic viscosity mu
divided by the density rho .

These two equations 2.8 and 2.9, derived from Newton's Second
Law, describe the conservation of momentum in the flow and are
often known as the momentum equations or the Navier-Stokes
equations. They can be seen to be very similar to each other. The
terms on the left hand side of each of these equations come from the
acceleration term like that in equation 2.4, the second and third
terms being the convection terms; whereas the right hand side terms
come from the pressure gradient in the flow and the effects of
viscosity.

An equation similar to the momentum equations can be derived to
describe the conservation of energy within the patch, and it is this
equation that is used to account for the flow of heat through a fluid,
as will be described in Chapter Eleven.

For low speed flows without heat transfer, the equations governing
the conservation of mass and momentum can be used to describe
the flow exactly. That is, it should be possible to describe all
incompressible flows using these equations. Turbulence, however,
can make this a difficult task as, when a flow is turbulent, the
velocity components vary very rapidly in both space and time.
Consequently, the above equations are used for laminar flows but
can be used, at present, only for turbulent flows in very simple
geometries such a rectangular channels. In the latter case, the
amount of calculation effort required to capture both the temporal
and spatial variation of the variables is extremely large, as is the
amount of computer storage required to store all the necessary data
for the calculation. The reasons for this will become more obvious
when we look at the numerical solution of these equations in the
next chapter. Most flows of interest to engineers occur in
geometries which are far from simple and so, to reduce the amount

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

25

of calculation effort, the turbulence has to be modelled in some
simple way.

2.2.2 Concepts of Turbulence

For those of you who carried out the experiment with the water tap
that was discussed at the beginning of this chapter, we noticed that
at one point in space, within the turbulent jet of water, the general
fluid motion was in one direction, but that at any one point in time
the flow direction was a random variation of this. Effectively, we
saw a mean flow with some randomness superimposed upon it. This
splitting of a flow into a mean flow and some random fluctuation
gives us a guide as to how to we can model a turbulent flow. Most
engineering models of turbulent flow assume that the velocity at a
given point in space and a given time can be made up of the
superposition of some mean velocity, which may vary slowly with
time, and a random component which varies rapidly.
Mathematically, the instantaneous velocity component u can be
described as

where U bar is the mean velocity and u prime is the random
fluctuating component. Substituting this, and the equivalent
expression for the second velocity component v , into the continuity
equation 2.2, and then integrating with time gives

which is a time-averaged form of the continuity equation 2.2.

This simplification arises because the fluctuating components are
random and so do not show any preferential direction, hence the
integrals of these fluctuating components over time must be zero.

Chapter 2. Fluids in Motion

26

Making a similar substitution into the momentum equations 2.8 and
2.9 does not produce such a convenient result. The convection
terms are non-linear terms, that is they are the product of velocity
components and the derivatives of velocity components. When we
substitute expressions like the one given in equation 2.10 into the
momentum equations, the convection terms generate terms for
some of the the products of the fluctuating components and the
integral over time of these products is not zero. For example the
momentum equation in the x -direction, equation 2.8, becomes

(2.12)

where the additional terms can be seen. These additional terms,
which are the last two terms on the right hand side of equation 2.12
and the corresponding terms derived from substitutions into the
other momentum equations, are known as Reynolds stresses. If we
ignore these Reynolds stress terms, the time-averaged momentum
equations such as equation 2.12 are the same as the original
momentum equations (2.8 and 2.9) with the mean flow quantities
now being substituted for the instantaneous quantities in the
original equations. It is these additional terms that are modelled to
account for the effects of turbulence.

2.2.3 Modelling Turbulence

From our observations of turbulent flows it is clear that these flows
are extremely complex. This is reflected in the increased
complexity of the turbulent flow equations such as equation 2.12
where the additional terms, the Reynolds stresses, appear. When
modelling these terms we try to produce simple relationships such
that the final form of the equations that we solve using numerical
methods is a simplification of the full equations. This means that
the simplifications that are made can be so large that we reduce the
accuracy of the mathematical models which provide a description
of the flow. Several books describe the ways that these

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

27

approximations can be made when solving engineering flow
problems [4,5], and Abbott and Basco [11] give a comprehensive
review of turbulence modeling and CFD. As a starting point these
books are excellent texts.

One way of simplifying the equations is to treat the additional terms
as additional viscous stresses produced by the turbulence in the
flow. To do this, the Reynolds stresses are assumed to have a form
similar to the viscous stresses in the momentum equations, hence
the name Reynolds stress. If we consider equation 2.12, the
Reynolds stress terms can be described as

where mu sub T is an additional viscosity due to turbulence. By
substituting this expression into equation 2.12 the momentum
equation becomes

This equation is effectively identical to the original momentum
equation 2.8, except that the mean velocity components replace the
instantaneous components and the viscosity is now enhanced by an
additional viscosity mu sub T due to the turbulence of the flow. If
this approach is followed, we can complete the modelling process if
the turbulent viscosity mu sub T can be found from the other flow
variables. There are various ways of doing this and these include:

• mixing length arguments. An analysis of the dimensions of
the variables shows that the effective turbulent viscosity mu
sub T divided by the density rho has the same dimensions
as a length multiplied by a velocity. Hence momentum

Chapter 2. Fluids in Motion

28

arguments can be used to show that mu sub T is a function
of the flow density, a length scale in the flow and the local
mean flow velocity. Looking at equation 2.7, we see an
expression for the shear stress tau which can be used to
obtain the form of an expression for the turbulent viscosity.
Typically this relationship is given as

where {c sub {mu}} is some constant that needs to be
determined together with the length scale l . A numerical
value for {c sub {mu}} and the variation of the length scale
l can be found be carrying out experiments for various
simple turbulent flows such as the flow between parallel
plates and the flow in pipes. These experiments involve
measuring the velocity components, pressure, laminar
viscosity and density throughout the flow and then using
the momentum equations such as equation 2.14 to find the
effective turbulent viscosity as a function of position. Then
equation 2.15 can be used to produce values of {c sub
{mu}} and l by considering numerous positions in the flow.

• simple partial differential equation models. Equations
similar to the momentum equations can be derived that
describe the distribution of the turbulent kinetic energy k
which is defined for two-dimensional flows as

and of the dissipation rate of k , k dot , denoted commonly
by epsilon . As these equations describe how the variables
vary throughout the field due to diffusion and convection
they are known as transport equations. These equations are

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

29

complex partial differential equations, but some of the
terms in the equations are often replaced by constants
which have to be found from experiments. By doing this
the equations can be simplified considerably. If the
turbulent kinetic energy k is found by solving the simplified
transport equation, the additional turbulent viscosity can be
found from [11]

which assumes that the mixing length l is known. The value
of l might be known from experiments and, if it is known,
then only the equation for k needs to be solved. This
method is, therefore, known as a one-equation turbulence
model. If a value for l is not known for the flow being
considered then the approximate equation for the
dissipation rate epsilon can be solved and the additional
turbulent viscosity found from [11]

If both partial differential equations for the turbulence parameters k
and epsilon are solved then we have used what is known as a two-
equation turbulence model. It is the so-called k-epsilon model that
is commonly used for most CFD calculations even though it is
known to be deficient for some flow types. Some five empirically
derived constants are used with this model.

Another modelling approach is to try and find values for the
Reynolds stresses themselves. Again, complex transport equations
for these stresses have to be derived and solved. The advantage of
doing this over the methods mentioned previously is that those
methods give a single additional viscosity, whereas the direct

Chapter 2. Fluids in Motion

30

modelling of the stress terms allows the effects of turbulence to
vary in the three coordinate directions. It is this three-dimensional
variation that is found when the stresses are measured
experimentally. One- and two-equation turbulence models are said
to give isotropic turbulence, which is turbulence which is constant
in all directions, whereas in the real situation the turbulence is said
to be anisotropic.

The two commonest ways of modelling the stresses directly are:

• algebraic stress models. These use a much simplified,
algebraic form of the transport equations to describe the
Reynolds stresses.

• Reynolds stress models. These use the complete form of the
transport equations for the Reynolds stresses.

For the sake of completeness, we mention here the other modelling
techniques that are used to model turbulent flow. These are at
present only used for flows in simple geometries, and the
techniques include:

• direct simulation. This involves the solution of the
continuity equation and the momentum equations in their
simplest form, that is equations 2.2, 2.8 and 2.9. When this
is done such that the rapid variation in the variables can be
determined then there is no need for a turbulence model.

• large eddy simulation. This is very similar to direct
simulation, but a simple turbulence model is used to
account for the very small vortices and eddies that cannot
be modelled due to a lack of spatial resolution in the
numerical model.

2.3 Obtaining Greater Understanding of Fluid Flow

This chapter has provided some background to the motion of fluids
and the ways in which the motion can be described mathematically.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

31

For some readers the description here will be sufficient, but others
will, hopefully, want to continue their study.

One of the best ways of increasing your insight into the motion of
fluids is to watch fluids in motion and to observe what actually
happens when fluids flow. We have seen some examples of this
already and there are many more examples easily to hand. A large
collection of photographs of fluids in motion has been collected and
produced in one volume [6]. This is an excellent source of
information as many flow features can be seen clearly. After
reading this chapter browsing through the photographs in the album
should reinforce the discussion of flow phenomena that we have
already made. The photographs are also very enlightening and
aesthetically pleasing in their own right.

Another way of gathering information is to explore some of the
many textbooks that cover the subject area of fluid mechanics.
These tend to be academic texts and they lead the reader through
the mathematics that describe the flow of fluids by splitting the
subject into application areas. When reading the simpler material,
the concepts behind fluid motion and the phenomena that occur
should, by now, be more digestible. Amongst the more readable
texts are those by Duncan, Thom and Young [7], Goldstein [8] and
Douglas, Gasiorek and Swaffield [9], but excellent texts of a more
detailed nature are those by:

• Schlichting [3], which deals with boundary layers and
viscous flows in general

• Bradshaw [10], which gives a good introduction to the
physics of turbulence

• Abbott and Basco [11], which gives a good survey of
turbulence modelling

• Hinze [12], which gives a detailed account of the
mathematics of turbulence.

For those who prefer to participate whilst learning, many short
courses of instruction in fluid dynamics, aerodynamics and even

Chapter 2. Fluids in Motion

32

computational fluid dynamics are given by higher education
establishments. Many of these courses are designed specifically for
people in industry and should include not only lectures but also
practical sessions, where the motion of fluids can be investigated,
either computationally or experimentally. Your local university or
polytechnic should know the location of the centres of expertise
that are close to you. Whatever you decide to do, keep your eyes
and minds open, as you never know what there is of interest just
around the corner.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

33

3 NUMERICAL SOLUTIONS TO PARTIAL
DIFFERENTIAL EQUATIONS

We have seen in Chapter Two that the equations governing the
motion of fluids are partial differential equations. These equations
are made up of combinations of the flow variables, such as the
velocity components and the fluid pressure, and the derivatives of
these variables. Digital computers cannot be used directly to
produce a solution to these partial differential equations. This is due
to the fact that computers can only recognise and manipulate data in
the form of zeros and ones, i.e. binary data. They can, however, be
programmed to store numbers, to perform simple arithmetical
operations, such as adding, subtracting, dividing and multiplying,
and to repeat whole sequences of these operations on the stored
numbers. Consequently, the partial differential equations have to be
transformed into equations that contain only numbers, the
combination of these numbers being described by the simple
operations.

Producing the transformation of a partial differential equation to
what is known as a numerical analogue of the equation is called
numerical discretisation. In this discretisation process each term
within a partial differential equation must be translated into a
numerical analogue that the computer can be programmed to
calculate. A variety of techniques can be used to perform this
numerical discretisation and, whilst each technique is based on a
different set of principles, there are many common features in the
methods that are used.

In this chapter we will discuss the background to three of the major
numerical discretisation techniques; the finite difference method,
the finite element method and the finite volume method. Each of
these methods will then be used to transform a simple partial
differential equation into its numerical analogue. From this simple
example some of the common features of the three methods and the
differences between the methods can be illustrated.

Chapter 3. Numerical solutions to partial differential equations

34

Having produced a numerical analogue of a partial differential
equation, the numerical equations must be processed by the
computer to give a solution. This solution is a description of the
magnitude of the flow variables throughout the flow field. The
means of obtaining a solution to a general numerical analogue will
therefore be discussed, followed by a look at the special problems
that occur when we solve the numerical equations derived from the
partial differential equations that govern fluid flow. It is these
problems that have prevented CFD techniques from being adopted
as widely as the computational techniques used to calculate the
stresses and strains within structures.

As complete textbooks have been written about numerical
discretisation techniques and the solution of the numerical
equations, it is impossible to cover all the subtle points in one
chapter. This chapter should, therefore, be used as a summary of the
main ideas that are used in numerical discretisation, bearing in mind
that the aim of this chapter is to impart some understanding of the
techniques that are used to enable a computer to produce a
prediction of the behaviour of a fluid. There are many sources that
can be consulted if you want to study any particular aspect of this
subject in more depth and several of these are cited in the text.

3.1 Techniques of Numerical Discretisation

3.1.1 The Finite Difference Method

The first technique that we will study is known as the finite
difference method. This method is based upon the use of so-called
Taylor series to build a library or toolkit of equations that describe
the derivatives of a variable as the differences between values of the
variable at various points in space or time. A comprehensive
reference to the finite difference method is Smith [13].

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

35

When dealing with flow problems the partial differential equations
discussed in Chapter Two show us that the dependent variables are
variables such as the velocity components or the fluid pressure, and
that the independent variables are the spatial coordinates and time.
Imagine that we know the value of some dependent variable, and all
of its derivatives with respect to one independent variable, at some
given value of this independent variable, a reference value. Taylor
series expansions can then be used to determine the value of the
dependent variable at a value of the independent variable a small
distance from the reference value. For example, looking at Fig. 3.1,
the dependent variable U varies with the independent variable, the
distance x. We can now consider the two points a small distance h
away from the central point. These points are situated at (x + h)
and (x - h) along the x-axis and the Taylor series expansions for
the variable U at the two points are

(3.1)

and

Chapter 3. Numerical solutions to partial differential equations

36

(3.2)

where h is the small displacement in the x-direction, and the
derivatives of U are taken at the point x.

By adding or subtracting these two equations, new equations can be
found for the first and second derivatives respectively at the central
position x. These derivatives are

(3.3)

and

(3.4)
EQ (3.4)

where O({h sup n}) denotes that terms of order n or higher-order
terms exist. In practice, as the distance h should be small, these
terms should be very small and so they will be ignored. Note that
ignoring these terms leads to a source of error in the numerical
calculations as the equation for the derivatives is truncated.

Further derivatives can also be formed by considering equations 3.1
and 3.2 in isolation. Looking at equation 3.1, the first-order
derivative can be formed as

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

37

(3.5)

and similarly, from equation 3.2 another first-order derivative can
be formed, i.e.

(3.6)

These four expressions describe some of the derivatives of the
variable U at some point x by the values of the variable at the point
itself, a point just behind it and a point just ahead of it, as shown in
Fig. 3.1. These expressions are known as difference formulae, as
they involve calculating derivatives using the simple differences
between the values of the variable taken at various points.
Difference formulae are classified in two ways. First, by the
geometrical relationship of the points and, second, by the accuracy
of the expressions. Using these classifications equations 3.3 and 3.4
are central difference formulae and are second-order accurate (i.e.
the neglected terms are of order h sup 2 or higher). Equally,
equation 3.5 is a forward difference formula and equation 3.6 is a
backward difference formula. Both of these two equations are first-
order accurate as the neglected terms are of order h or higher.

Taken together, these difference formulae form a toolkit for the
numerical analyst and, with this toolkit, it is possible to produce a
numerical analogue of each of the terms in a partial differential
equation. This is done by placing points within the domain under
consideration. At each of these points, the derivatives can be
replaced by the appropriate difference formula, giving an equation
that consists solely of the values of variables at the given point and
its neighbours. If this process is repeated at all the points, a set of

Chapter 3. Numerical solutions to partial differential equations

38

equations for the variables at all the points is formed and these are
solved to give the numerical solution.

It is useful to note two things. First, that the domain may include a
time direction as well as the spatial directions and, second, that a
partial differential equation that was valid for the whole of the
domain, i.e. at an infinite number of points, can be translated into a
finite number of equations that give the relationships between the
variables at a finite set of points in the domain.

3.1.2 The Finite Element Method

The second technique to be discussed is the finite element method.
In this method the domain over which the partial differential
equation applies is split into a finite number of sub-domains known
as elements. Over each element a simple variation of the dependent
variables is assumed and this piecewise description is used to build
up a picture of how the variables vary over the whole domain.
Intuitively the discretisation process is more complicated than that
of the finite difference method, but simple examples can be used to
point out the main features of the process. A good introductory text
to the finite element method is Reddy [14], but the standard
reference used by finite element practitioners is Zienkiewicz and
Taylor [15].

As a historical note, the reader should be aware that the general
finite element method that we will discuss emerged from
computational techniques used to predict the stress and strain in
solid structures. In this area of structural engineering the finite
element method is now the standard computational technique used
by nearly all the commercial software packages, and so many
people assume that the method is only used for the solution of such
problems. Now that the method has been developed into a more
general computational technique, it can be used to solve a wide
variety of partial differential equations and so it is suitable for the
solution of many other physical problems. This confusion has led to
many books being written which have the words Finite Element

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

39

Method in their title but which deal solely with structural problems,
and so these books may have little relevance to the solution of more
general problems such as those derived from the equations
governing fluid flow.

Let us now consider how the finite element method is used to
transform a partial differential equation into its numerical analogue.
First of all let us consider the element shown in Fig. 3.2. On this
element the variable U is assumed to vary in a simple fashion over
the length of the element. In the figure the variation is linear, but it
could equally be a quadratic or cubic variation or a variation of
even higher order. If the variation is linear we can describe the
value of U at any point along the element as a function of the length
along the element x and the values of U that are known at the end-
points of the element. These positions, which are used as reference
positions on the element, are known as the nodes of the element. If
the variation of the variable was assumed to be quadratic then we
would need to know the value of U at three nodes placed at, for
example, the end-points of the element and the middle of the
element.

Chapter 3. Numerical solutions to partial differential equations

40

With the linear variation shown, the first derivative of U with
respect to x is simply a constant and the second derivative cannot
be defined. This can be a problem as many partial differential
equations have terms which include second derivatives. To
overcome such problems high-order derivatives can be transformed
into lower-order derivatives using the following technique. First,
the partial differential equation is multiplied by an unknown
function, then the whole equation can be integrated over the domain
in which it applies. Finally the terms that need to have the order of
their derivatives reduced are integrated by parts. This is known as
producing a variational formulation.

As an example, let us consider Laplace's Equation in two
dimensions, where some variable PHI is described as a function of
the spatial coordinates x and y. This equation is written as

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

41

(3.7)

To start the production of a variational formulation we multiply this
by some function v and integrate it over the domain of interest
denoted by OMEGA to give

(3.8)

Looking at equation 3.8, each term can be seen to include second
derivatives of the variable PHI and so both terms must be integrated
by parts to give

(3.9)

where GAMMA denotes the boundary of the domain OMEGA and
n sub x and n sub y are the components of the unit outward normal
vector to the boundary GAMMA. Note that the terms which contain
the second-order derivatives in PHI have now been transformed
into terms which are the products of first-order derivatives in both
PHI and v. This reduction in the order of the derivatives is what we
want to achieve so that a lower-order variation of the variables can
be used on a element, but we can see that there is a penalty in doing
this as terms on the boundary on the domain have appeared in
equation 3.9, and so these must also be accounted for.

Chapter 3. Numerical solutions to partial differential equations

42

Equation 3.9 is known as the variational form of the partial
differential equation 3.7 and it is this that is used to produce a
discrete form of the partial differential equation for each element of
the domain. The discrete form is produced by considering the
variation of the variable over the element which, as we have seen, is
a function of position within the element and the nodal values. We
assume that the variation can be written as

(3.10)

where nn is the number of nodes on the element. The N sub i terms
are known as the shape functions and are a function of the position
within the element, and the phi sub i terms are the nodal values of
PHI. For example, for the two-noded linear element shown in Fig
3.2, the shape functions can be found from the form of U which is

(3.11)

This can be rewritten in the form of equation 3.10 to give

(3.12)

Hence, by comparing equation 3.12 to equation 3.10, the shape
functions can be seen to be

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

43

(3.13)
and

(3.14)

Looking at these two expressions we can see that if the value of x is
set to be x sub 1 then N sub 1 is unity and N sub 2 is zero.
Similarly, if the value of x is set to x sub 2 then N sub 1 is zero and
N sub 2 is unity. This property is an obvious consequence of the
form of equation 3.10 and can be used as a check on the algebraic
expressions for a shape function regardless of whether the element
is in one, two or three dimensions.

Now that we know the variation of a variable over an element, the
derivatives of the variable at a point can be found. For example, to
approximate the first derivatives of the variable PHI, equation 3.10
can be differentiated to give

(3.15)

It should be noted here that the phi sub i terms are not differentiated
as they are constants, being the values of PHI at the nodes.

At this stage we need to know how to describe the function v. If
there are two nodes on an element we need to know two functions
for v. This allows us to generate the same number of equations as
there are unknown values on the element. In practice there are many
suitable forms for v and the standard way of specifying v is to let it
be the same functions as the shape functions for each node. If this

Chapter 3. Numerical solutions to partial differential equations

44

definition of v is used the method is known as a Galerkin method,
but other methods of specification for v can also be used.

Finally the discretisation is completed by substituting equation 3.10
for the variables, equations similar to equation 3.15 for the
derivatives and equations similar to equations 3.13 and 3.14 for v
into the variational form and then integrating to give a series of
equations for the values of the variables at the nodes of the element.
For every sub-domain or element in the problem, several equations
will be generated, and these equations can be collected together and
then solved to find a solution.

3.1.3 The Finite Volume Method

The third, and probably the most popular, numerical discretisation
method used in CFD is the finite volume method. This method is
similar in some ways to the finite difference method, but some
implementations of it also draw on features taken from the finite
element method. The finite volume method was developed
specifically to solve the equations of heat transfer and fluid flow
and is described in detail by Patankar [16].

Essentially the governing partial differential equations are
converted into numerical form by a physically-based transformation
of the equations. For example, the momentum equations 2.8 and 2.9
can be considered as a series of fluxes into a volume of fluid
together with a source term which is the pressure gradient. The
most informative way of seeing how the process works is to
consider the transformation of a typical equation and we will do this
in the next section.

3.2 Numerical Discretisation of a Simple Equation

To see how these three discretisation techniques are used, we will
consider the discretisation of the time dependent diffusion equation:

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

45

(3.16)

which consists of a first derivative in the time direction t and a
second derivative in the space direction x. This is a parabolic partial
differential equation that can be used to model the temporal
changes in the diffusion of some quantity through a medium. As an
aside, there are three classifications of partial differential equations
[13]; elliptic, parabolic and hyperbolic. Equations belonging to each
of these classifications behave in different ways both physically and
numerically. In particular, the direction along which any changes
are transmitted is different for the three types. Depending on the
flow, the governing equations of fluid motion can exhibit all three
classifications. For example, the incompressible Navier-Stokes
equations, equations 2.8 and 2.9, are parabolic when time-
dependent as information on changes to the flow is signaled
everywhere in space but only forward in time; they are elliptic
when the flow speed in low and steady as the changes are signaled
everywhere; but the equations become hyperbolic if the flow speed
is above the speed of sound in the fluid and the changes are
signaled along specific directions in space.

Having said this we can see that the equation 3.16 could be
regarded as a model of the momentum equations that govern an
incompressible, viscous flow.

3.2.1 Using Finite Differences

To solve the above equation using finite differences we must first of
all decide what the domain of the problem is. For example, equation
3.16 could be a description of the diffusion of a gas into a semi-
conductor of a given length and this length would then be the extent
of the domain in the x-direction. In the time direction, however, it is
usual to have positive time, that is we start the time at t=0, but the
extent of the domain in the positive time direction is not known as

Chapter 3. Numerical solutions to partial differential equations

46

the calculation could proceed for an infinite period of time. Such a
domain is said to be semi-infinite. Once we know the domain we
can place points within it, and it is at these points that we perform
the discretisation of equation 3.16. The simplest way of placing the
points within the domain is shown in Fig. 3.3, where we can see
part of the grid of points in the x-t plane. Note that there is a
constant spacing delta x or delta t between each of the points in
both the x-direction and in the t-direction. Each of the points is
labelled using an i,j indexing system and this denotes the position
of the points in the x- and t-directions.

Having produced the grid we can now choose the difference
formulae that we wish to use to produce the discrete form of
equation 3.16. There are various combinations of formulae that can
be used for this equation, but the simplest form of the numerical
analogue is generated if we use the forward difference formula
(equation 3.5) for the time derivative that appears on the left hand
side, and the central difference formula (equation 3.3) for the spatial
derivative on the right hand side. Taking the spatial derivative to be
formed at the j'th time level and to be centered on the i'th point in x,
and taking the time derivative to be at the i'th x-position and the j'th
time level looking forward to the j+1'th time level, the discrete
equation can be written

(3.17)

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

47

which can be rearranged to give

(3.18)

This equation may be considered to be a molecule, similar to those
found in chemistry, where the four points are like atoms and are
linked as shown in Fig. 3.4a. It can be clearly seen from this that the
value at position i,j+1 depends only on the three values at the time
level j. Consequently, if we know the values of U at time level j, the
values of U at time level j+1 are easy to calculate. To start the
calculation we must, therefore, know the values of U at all the
positions in x at time t=0. These are known as the initial conditions.

Chapter 3. Numerical solutions to partial differential equations

48

Another formulation for equation 3.16 can be obtained by taking
the same expression for the time derivative together with a
weighted average of the spatial derivatives at the two time levels j
and j+1. This gives

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

49

(3.19)

where theta and (1 - theta) are used to weight the derivatives and
theta must be in the range 0<=theta<=1.0.

Equation 3.19 shows that there is a relationship between the three
values of U at time level j+1 and the three values of U at time level
j and so the computational molecule has changed for this case to
that shown in Fig. 3.4b. Note that when theta is zero equation 3.19
is reduced to equation 3.17. When one unknown value of a variable
can be found directly from known values of the variable, the
computation is known as an explicit scheme (for example, equation
3.18 and Fig. 3.4a). However, if the discretisation produces an
equation where several unknown values are related to several
known values, for example in Fig. 3.4b and equation 3.19 with theta
not zero, then the computation is known as an implicit scheme. To
produce a solution with an explicit scheme each unknown value of
U can be easily calculated, but to produce a solution with an
implicit scheme a set of simultaneous equations must be solved to
find the unknown values of U.

At first sight it appears that the implicit schemes require more
computational effort to produce a solution, and so we might ask
ourselves the question 'Why use an implicit scheme when it
involves more computational effort than an explicit scheme ?'. The
answer to this lies in the difference in the stability of the two
schemes. A stable solution is taken to be, in this case, one which
progresses from time level to time level in a realistic way. An
analysis of the stability [13] shows that for this problem, if equation
3.18 is used as the numerical analogue of the partial differential
equation 3.16, then the value of the parameter delta t / delta x sup 2
must be less than or equal to one half for the computational scheme
to be stable. This means that where the values of delta x are small
the time step delta t must be considerably smaller, and so with an

Chapter 3. Numerical solutions to partial differential equations

50

explicit scheme these is a restriction on the size of the time step.
This can mean that the time step must be very small even if the
changes in the variables from one time level to the next are very
small. Implicit schemes overcome this restriction for some values
of theta, and a commonly used implicit scheme uses a value of theta
equal to one half. This is known as the Crank-Nicholson scheme
and is stable for all sizes of time step. Using such an implicit
scheme allows a larger time step to be used than could be used with
an explicit scheme, and so the computational effort for an implicit
scheme can be less than that for an explicit scheme.

If we now consider the computational molecules and the grid
together, it is possible to see that we still cannot solve the whole
problem as we do not, as yet, have enough information. Looking at
Fig. 3.5 we can see an x-t grid of a domain. There are six points in
the x-direction and two time levels are shown. Now let us assume
that we shall use an explicit formulation, and so from the known
initial conditions we can use our computational molecule to
calculate the values of the variable at some points at the next time
level. Given the way in which information flows from level to level,
the values at the points (2,2) to (5,2) inclusive can be calculated, but
we cannot use the computational molecule to find the values of the
variable at the boundary points (1,2) and (6,2). To find these values
we must have a knowledge of the boundary conditions of the
problem.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

51

For many physical problems, boundary conditions are usually given
in one of two forms:

• Dirichlet Boundary conditions. Here the values of the
variable on the boundary are known constants. This allows
a simple substitution to be made to fix the boundary value.
For example, if U is a measure of gas concentration, we
might want to assume that it is fixed at the left hand end of
the domain shown in Fig. 3.5, and will have a value of 10.0,
say. It is easy to apply this boundary condition as we just
set the value of U at the point (1,2) to 10.0.

• Neumann boundary conditions. Here the derivatives of the
variable on the boundary are known, and this gives an extra
equation which can be used to find the value at the
boundary. For example, we might assume that the
derivative of U is zero at the right hand end. Then if we use
a first order difference for the derivative the value of U at
point (6,2) will equal the value of U at point (5,2) to satisfy
this boundary condition.

Once we know both the initial conditions and the boundary
conditions, we can proceed with the calculation. Using the known
values at the first row of points the values of the variables at the
internal points at the next row are found using an explicit scheme.

Chapter 3. Numerical solutions to partial differential equations

52

Then the boundary conditions are applied to get the values at the
boundary points. This gives us a second complete row of points
where we know all the values of the variable. These can be used as
a new set of initial conditions and so the process can be repeated to
give the next row and so on.

With implicit schemes the handling of both fixed-value boundary
conditions and derivative boundary conditions involves adding the
extra equations to those already generated from the partial
differential equation. With these extra equations the number of
equations should match the number of unknowns and so the full set
of simultaneous equations can be solved.

3.2.2 Using Finite Elements

Finite element methods were originally developed to deal with
steady state problems, but they can also be used to deal with time
dependent problems. We need to do this for the problem under
consideration as equation 3.16 has a term which is a function of
time on the left hand side. This term is dealt with first by using the
forward difference formula, equation 3.5, to produce the following
equation

(3.20)

Here, the superscripts n and n+1 refer to the values of U at the n'th
and n+1'th time level respectively.

Now, a variational form of equation 3.20 can be produced. This is
done as was shown in Section 3.1.2, by multiplying by a function v,
integrating over the domain and then integrating some terms by
parts, where necessary, to remove any second derivatives. This
procedure gives:

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

53

(3.21)

which becomes, on integrating the second derivative on the right
hand side by parts

(3.22)

This is the variational form of the equation and is also known as the
weak form of the equation. In the original equation 3.20 the
variable U had to be capable of being differentiated twice as there is
a second derivative of U in the equation. Now only first derivatives
of U are required, and so we say that the continuity requirement for
U has been reduced from second- to first-order and is therefore
weakened. This variational form must now be transformed into a
numerical analogue, and this is done for a typical element of the
domain. In this case the domain can be taken to be a series of lines
from x=0 to x=L at various time levels. Hence each element is
effectively a one-dimensional line element similar to the one we
looked at in Section 3.1.2.

Now equation 3.22 can be transformed into the numerical form
using the Galerkin approach, where the multiplier v is the set to be
the same as the shape functions of an element. On each element the
variation of U is described by:

(3.23)

Chapter 3. Numerical solutions to partial differential equations

54

where nn is the number of nodes on the element and the N sub i
terms are the shape functions, and so we can substitute for the
multiplier v, for the values of U at the two time levels and for the
spatial derivatives of U at the n'th time level to produce an explicit
form of equation 3.22. This is

(3.24)

Here the i,j suffices refer to the summation in equation 3.23, and
not to some position within a mesh of points as was the case with
the finite difference method example. Note that the boundary term
has not been discretised, as this so-called flux can be taken to be a
known value that needs to be added later. On the faces of most
elements the flux term is ignored, as we assume that the fluxes
cancel out across those faces that are internal to the domain. This is
an equilibrium condition. It is only on the boundaries of the domain
that the flux terms need to be added. If the fluxes are not added,
they will be calculated by the method as being zero, and because of
this they are known as natural boundary conditions. If we specify
the value of U at a boundary then the flux term is not required, just
as with the finite difference method, and this is known as an
essential boundary condition.

For simple elements the shape functions N sub i are simple
functions of the coordinates, say x, and so equation 3.24 can be
integrated exactly over each element, but for more complex
elements this integration has to be performed numerically. If we use
simple one-dimensional elements that have two nodes, as we did in
Section 3.1.2, then the above equation can be integrated to yield
two separate equations for each element in terms of the nodal
values of U at the n+1'th time level, if the values at time level n are
known. This equation can be expressed as a matrix equation as
shown in Fig. 3.6a, where the terms a sub {ij} are functions of

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

55

position derived from the integration of the first term on the left
hand side of equation 3.24, and the terms f sub i come from all the
other terms in equation 3.24. This matrix equation is, in fact, part of
a larger matrix equation for all the unknown values of U. Once all
the equations for each element, the so-called element equations, are
known then the full set of equations for the whole problem has to be
produced. This is shown in Fig. 3.6b where two elements are shown
together with an expanded version of the element equations. These
expanded equations are formed by relating the local node on an
element to its global node number. For example, on element 2 the
local node numbered 1 is global node number 2. Combining the two
expanded equations produces a global matrix equation, and the
process of combination is known as assembling the equations. This
is done by adding all the element equations together as shown. The
structural origins of the finite element method are apparent as the
names of the matrices are taken from those that would be formed if
a force acts on a set of springs. These names are, for the matrix on
the left hand side, the stiffness matrix and, for the matrix on the
right hand side, the load vector.

Chapter 3. Numerical solutions to partial differential equations

56

Once these global matrices have been created, the fixed value
boundary conditions are imposed on the matrices and the equations
can be solved. Again the solution of the original partial differential
equation 3.16 has been reduced to the solution of a set of
simultaneous equations. This may seem strange as the solution
scheme is an explicit one and so should not require such a solution.
For this case the left hand side of the global equations can be

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

57

diagonalised using a technique known as mass lumping [15], and so
the solution can then be found without solving the simultaneous
equations.

3.2.3 Using Finite Volumes

Now that we have looked at the use of both finite differences and
finite elements, we can turn our attention to the finite volume
method. In practice this can be seen as a combination of the two
other methods. As a first step in the transformation process, the
forward difference in time is used to transform the left hand side of
equation 3.16, just as we did with the finite element method. Then
we form a finite volume in the x-direction. For simplicity, we will
only look at the values at the n'th time level. A typical finite
volume, or cell, is shown in Fig. 3.7. In this figure the centroid of
the volume, point P, is the reference point at which we wish to find
a numerical analogue of the partial differential equation.

Directions in the domain about the reference point are denoted by
the points of the compass and so the neighbouring volumes are said
to have their centroids at W and E, i.e. to the West and East of P if
we consider the top of the figure to be North. As the one-
dimensional finite volume is centered on P, it will have one
boundary face placed mid-way between the points W and P at the
points labelled w, and another boundary face between P and E at
the point e.

Chapter 3. Numerical solutions to partial differential equations

58

The spatial derivative is dealt with by noting that the second
derivative of a variable at P can be taken as the difference of the
first derivatives of the variable that are calculated at the volume
faces, which gives

(3.25)

Here, the subscripts refer to the positions at which quantities are
either calculated or known. Similarly, the first derivatives at the
volume faces can be taken to be the differences in the values of the
variable at the neighbouring volume centroids, to give

(3.26)
and

(3.27)

Now that we have these three expressions for the various
derivatives, they can be used to produce the numerical analogue of
equation 3.16 at the point P. This analogue can be formed using any
suitable version of the weighted average technique that we used
with the finite difference transformation, giving either an explicit or
an implicit scheme. Then the same techniques can be used to
proceed once the initial and boundary conditions are known. When
using finite volumes, all that is different is the philosophy behind
the discretisation procedure.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

59

3.3 Comparison of the Discretisation Techniques

From our short study of the application of these three numerical
discretisation methods to a simple partial differential equation, we
can see that there are several common features. These features are
that each method:

• produces equations for the values of the variable at a finite
number of points in the domain under consideration.

• requires that we know at set of initial conditions to start the
calculation for this time dependent problem.

• requires that we know the boundary conditions of the
problem so that we can find the values of the variables at
the boundaries.

• can produce explicit or implicit forms and, if an implicit
form is produced, then a set of simultaneous equations must
be solved.

There are, however, several differences between the three methods
and these include:

• the finite difference method and the finite volume method
both produce the numerical equations at a given point based
on the values at neighbouring points, whereas the finite
element method produces equations for each element
independently of all the other elements. It is only when the
finite element equations are collected together and
assembled into the global matrices that the interaction
between elements is taken into account.

• the finite element method takes care of derivative boundary
conditions when the element equations are formed and then
the fixed values of variables must be applied to the global
matrices. This contrasts with the other two methods which
can easily apply the fixed-value boundary conditions by
inserting the values into the solution, but must modify the
equations to take account of any derivative boundary
conditions.

Chapter 3. Numerical solutions to partial differential equations

60

When looking at the simple example of a time varying problem in
one spatial dimension the domain in space has been extremely
simple. Consequently, one problem that we have not addressed is
how each of these discretisation techniques is used to produce
numerical equations for two- and three-dimensional spatial
domains. Fortunately, our discussion of this simple example can
shed some light on this.

Finite difference methods are based on the substitution of difference
equations for the partial derivatives in partial differential equations.
These difference equations link the values of variables at a set of
points to the derivatives and so a grid of points is used throughout
the spatial domain. In the example we have just discussed the grid
was a line of points evenly spaced throughout the domain at various
time levels. The difference formulae can be easily extended to cater
for a spacing that is not even throughout the domain, and the partial
differential equations can be transformed to cater for other
coordinate systems that are not Cartesian. The finite difference
method requires, however, that the grid of points is topologically
regular. This means that the grid must look cuboid in a topological
sense. This will be explained in greater detail when we discuss
mesh and grid generation in Chapter Six.

If distributions of points with a regular topology are used, then the
calculation procedure carried out by a computer program is likely to
be extremely efficient and hence very fast. This is because the
programmer can take advantage of the fact that the topology of the
grid is always the same. The grid indexing system is extremely
simple, say i,j,k in three dimensions, and is based on a set of local
axes through the grid. Hence, when it is required to produce
equations at some reference point, the program can determine the
location of data at the neighbouring points simply from the
maximum values of i,j,k. For example, if the grid is two-
dimensional and has five points in the x-direction and ten points in
the y-direction it will be as shown in Fig. 3.8. There the grid is
labelled both with the values of the indices i and j and the storage
position of the variables in a one-dimensional array. For example,

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

61

the value of the variable at position i=2 and j=4 will be stored in
array location number 14. This assumes that the computer array
stores points in the vertical direction first. From this it is easy to see
that the neighbouring points to a reference point in the y-direction
will be one array location either forward or back from the reference
position, and in the x-direction they will be ten points forward or
back. An example of this is that from the value stored in array
location 14 the value at the neighbouring point in the positive x-
direction is stored at location 24. From this we see that simple
arithmetic based on the topology of the grid is all that is required to
find the location of the necessary values.

Finite elements, on the other hand, produce the numerical equations
for each element from data at known at points on the element and
nowhere else. Consequently, there is no restriction on how the
elements are connected so long as the faces of neighbouring
elements are aligned correctly. By this we mean that the faces
between elements should have the same nodes for each of the
adjoining elements. This flexibility of element placement allows a
group of elements to model very complex geometry as we shall see
later in Chapter Six.

Algorithms that have been developed using the finite volume
method have tended to use a regular grid to take advantage of the

Chapter 3. Numerical solutions to partial differential equations

62

efficiency of computation, just like the grids used with finite
difference methods. Recently, however, to enable calculations to be
carried out in complex geometries, algorithms have been developed
with the finite volume method that can utilise irregular, finite
element-like meshes. It is the concept of the inter-volume flux
across a face that enables this to be done. Both finite element and
irregular-mesh finite volume programs pay a computational
overhead for this geometrical flexibility, as look-up tables have to
be used to find the geometrical relationships between the elements
or volume faces, and this often involves finding data from the disk
store of the computer. This overhead slows the programs down
considerably.

One final advantage that the finite element method has is that the
programs are written to create matrices for each element, which are
then assembled to form the global equations before the whole
problem is solved. Finite volume and finite difference programs, on
the other hand, are written to combine the setting up of the
equations and their solution. The decoupling of these two phases, in
finite element programs, allows the programmer to keep the
organisation of the program very clear and the addition of new
element types is not a major problem. Adding new cell types to a
finite volume program can, however, be a major task involving a
rewrite of the program and so some finite volume programs can
exhibit problems if they have multiple cell types.

3.4 Producing A Solution From The Discrete Equations

Now that we have seen that discrete numerical equations can be
formed from a partial differential equation using the three
discretisation methods that we have discussed, the next step is to
solve these discrete equations to obtain a set of values for the
variables at points in the domain. The ways that we use to do this
must produce results that are both realistic and accurate. We talk of
the methods converging and being stable. Also, if we use an
implicit scheme, we must be able to solve sets of simultaneous
equations. These subject areas are in the realm of the applied

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

63

mathematician, and the discussion of them can be difficult to
follow. However, the following texts do contain readable accounts
of the techniques that are used, and these are Smith [13],
Zienkiewicz and Taylor [15] and Hirsch [17]. The last of these
three books contains much useful information about numerical
discretisation methods that is relevant to CFD.

When using CFD tools that have been written by someone else, we
must hope that the software has been programmed to have a reliable
means of producing a solution. However, CFD programs are so
general that the user must intervene in the solution process and so
some knowledge of the techniques that are used is necessary. In the
following sections, some of the terminology and the techniques
associated with a solution are discussed.

3.4.1 Convergence and Stability

Convergence and stability are two concepts that are often confused.
In the strict mathematical sense convergence is the ability of a set
of numerical equations to represent the analytical solution to a
problem, if such a solution exists. The equations are said to
converge if the numerical solution tends to the analytical solution as
the grid spacing or element size reduces to zero. Equally, a process
is stable if the equations move towards a converged solution such
that any errors in the discrete solution do not swamp the results by
growing as the numerical process proceeds.

In practice, however, these terms are used in less specific ways. For
example, a numerical process is often said to converge if the values
of the variables at the points in the domain tend to move towards
some fixed value as the solution progresses. This use of the term
convergence arises because in most physical problems that we wish
to solve with CFD there is no analytical solution to compare our
numerical solution with. A process is said to be stable if this
happens in such a way that the intermediate results of the process
are reasonable. As was mentioned when we produced a numerical
analogue of a partial differential equation using finite differences in

Chapter 3. Numerical solutions to partial differential equations

64

Section 3.2.1, the explicit solution scheme is only valid if the time
step is sufficiently small. If the time step is too large, the values of
the variables oscillate violently and become extremely large. This is
an unstable process and it does not converge.

3.4.2 Solving The Simultaneous Equations

In most cases the discrete equations produced from partial
differential equations are given in an implicit form. These implicit
schemes are used because explicit schemes are less stable
numerically, as we have discussed, and explicit schemes can
produce results which diverge from physically realistic values as
the solution progresses.

When implicit schemes are used a set of simultaneous equations is
generated, consisting of many individual equations and these must
be solved in some way. There are many ways of doing this, and
each software package will have its own way of producing a
solution. In terms of computational effort the setting up of the
equations might typically take half of the total computer time and
the solution of the equations might take the other half. As the
solving of the equations consumes a large amount of computational
effort, there are great benefits to be gained from using fast methods
of solving the simultaneous equations.

The solution of any set of simultaneous equations can be seen as the
process of finding a vector x that satisfies the matrix equation

(3.28)

where bold A is an operator on the vector of variables x, and b is a
vector of known values. The solution can be found by finding the
inverse of the matrix bold A and then premultiplying both sides of
equation 3.28 by the inverse. This gives

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

65

(3.29)

If there are only a few equations in the set of simultaneous
equations then the inverse of the matrix bold A can be found easily
and exactly. The methods used to do this are known as direct
methods and, usually, they are versions of a method called bold L
bold U decomposition as described by Zienkiewicz and Taylor [15].
In this method the matrix bold A is described by two other matrices
in the following way

(3.30)

where bold L is a lower triangular matrix and bold U and an upper
triangular matrix. Once the matrix bold A has been decomposed
into bold L and bold U the solution is easy to find. If the matrix is
large these direct methods require a lot of computer effort to
produce a solution. This is the traditional way that finite element
programs have produced their results. One way of reducing the
computational effort is to use iterative methods of solution for large
systems of equations. These take some guess for the values of the
solution vector x and then produce a more accurate guess from the
vector x and the coefficients of the matrix bold A and vector b.

A variety of iterative schemes are commonly used and some of
these are discussed by Smith [13] and Hirsch [17]. It helps when
considering the solution of equation systems to think of a simple
case. For example, if equation 3.28 is a system of three equations it
could be rewritten as:

Chapter 3. Numerical solutions to partial differential equations

66

(3.31)

if the individual equations are listed separately. Using this we can
start to identify some of the common iterative schemes such as:

• Jacobi and Gauss-Seidel methods. In these two methods the
equations are rewritten as

(3.32)

from which we can see that the diagonal terms of matrix bold A, i.e.
the terms a sub {ii} , cannot be zero if these methods are to work.
The Jacobi method takes the right hand side of equation 3.32 to be
the known values at the n'th iteration and the left hand side to be the
new values at the n+1'th iteration, giving

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

67

(3.33)

and the Gauss-Seidel method takes advantage of the fact the once a
new value is known at the n+1'th iteration it can be used on the
right hand side of the equations giving

(3.34)

Both of these methods require that an initial guess to the solution is
made which can then be used during the first iteration.

• point relaxation methods. At any stage in the iteration
procedure there will be a finite error in the solution vector
x. One way of classifying this error is to use equation 3.28
to find what is known as the residual error which is defined
as

(3.35)

Chapter 3. Numerical solutions to partial differential equations

68

This residual should become ever smaller as the iterations proceed
and it can also be used in the iteration procedure. To do this we take
the equations of the Gauss-Seidel method (equation 3.34) and both
add and then subtract the terms {x sub i} sup n to the right hand
side. This gives

(3.36)

In these equations the expressions in square brackets are the terms
of the residual r. As we know that these should tend to zero as the
iteration progresses there is no reason why we should not try and
accelerate the process by multiplying the residual by some factor
omega, which is known as a relaxation factor. This gives

(3.37)

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

69

and for most systems of equations the value of omega can be set to
somewhere between the values of one and two. Hence the method
is known as a successive overrelaxation method. If omega is unity
the method becomes the original Gauss-Seidel method.

• line relaxation methods. The methods above generate a new
estimate for the solution vector x one term at a time, which
is very similar to the explicit methods we have already
discussed. Sometimes it is possible to speed up the process
if a small sub-set of the terms are found simultaneously.
This is an implicit way of proceeding and involves the
direct solution of a smaller set of equations. The
commonest way of doing this is to take the solution at a
whole line of points in a regular grid describing a spatial
domain and solve line by line rather than point by point.
Equally, if a regular three-dimensional grid is used, a
rectangular slab of points could be calculated directly in
one step of the iteration process.

• more advanced methods. As further research into the
iterative solution of simultaneous equations takes place
more methods of solution emerge. This is driven by the
need to reduce the computational effort required to solve
the large systems of equations on supercomputers where the
effort is still excessive for many engineering problems.
These advanced methods include Stone's strongly i1/
mplicit procedure and preconditioning methods which can
be seen as matrix manipulation procedures, and multigrid
methods which calculate the solution on a series of coarse
and fine grids in space, swapping between the grids in such
a way that any errors are smoothed out.

As users of CFD software our concern with the solution of the
simultaneous equations that are generated will usually be restricted
to providing some of the controlling parameters for the solution
methods built-in to the software. It should be noted here that if the
solution method is an iterative one the exact values of the vector x
may never be found, but that after a few iterations the error in x

Chapter 3. Numerical solutions to partial differential equations

70

should be very small. Also, as we shall discuss later, the fluid flow
equations are non-linear and possibly time dependent, and so we
will require the solution procedure to find successive
approximations to the flow variables regardless of whether we solve
the equations themselves in a direct or iterative way. This means
that the solution to the simultaneous equations generated need only
be approximate, giving some improvement in the values of the
variables.

3.5 Solving The Coupled Set of Fluid Flow Equations

In this Chapter we have considered the discretisation of general
partial differential equations and the solution of the numerical
analogue. Now it is time to look at the numerical solution of the
partial differential equations that govern fluid flow. These equations
were presented in Chapter Two and they can be discretised using
any of the three discretisation techniques that we have already
discussed. The numerical analogues of the original partial
differential equations then have to be solved. For reasons that we
will now discuss the equations governing fluid flow are particularly
difficult to discretise and solve using numerical techniques.

3.5.1 Non-Linearity and Time Dependence

For a two-dimensional flow problem we have to solve two
momentum equations and the continuity equation. That is we have
three equations which we can use to find the three flow variables
which are the velocity components u and v of the fluid and the fluid
pressure p. The two momentum equations are time dependent and
they are also non-linear. The non-linearity comes from the
convection terms for the velocity components that are derived from
the acceleration of a patch of fluid. These two factors of time
dependence and non-linearity increase the complexity of the
solution.

Dealing with time dependence is handled in the same way that it
was handled for the simple parabolic partial differential equation

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

71

discussed earlier in Section 3.2. We must know the initial
conditions of the problem to enable our solution to begin, and from
these the solution at the next time level is found. This means that
are solution procedure proceeds via a series of iterations in time.

At each time step the equations are non-linear and so we must
linearise them so that a solution can be found to a set of
simultaneous equations which look like the form we have just
discussed, i.e.

(3.38)

but where the matrix bold A and the vector b are functions of the
flow variables. The linearisation is carried out by discretising the
derivative that appears in the convection terms as normal and taking
the current value of velocity at a point or in a volume or element as
the velocity multiplier. For example

(3.39)

if the central difference equation 3.4 is used for the derivative and u
bar is found from the current solution for U. For example, u bar
would be u sub {i,j} if we were using a finite difference method.
Once this linearisation is carried out the set of simultaneous
equations can be produced and then solved to update the values of
the flow variables. The linearisation and solution procedure is then
repeated until the values of the flow variables have converged, and
only then can the whole solution be progressed to the next time
level.

Chapter 3. Numerical solutions to partial differential equations

72

From this we can see that there are several levels of iterative
process taking place within the solution algorithm. Figure 3.9
shows these levels schematically. There we can see that there is an
outer time iteration loop that moves the solution from one time
level to the next. Then there is an inner loop that resolves the non-
linearity in the equations by repeatedly forming sets of linear
simultaneous equations. This loop might itself contain a further
loop where iterative methods are used to solve the simultaneous
equations that are generated.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

73

When running steady state fluid flow examples the time iteration
loop can be left out of the process. However, the absence of the
time terms in the momentum equations can cause numerical
problems as the fluid acceleration is not modelled in the same way
as it would occur for a physical flow. This can lead to a common
problem where the numerical solution will not be stable and so it
will diverge from reality. As the non-linearity of the problem forces

Chapter 3. Numerical solutions to partial differential equations

74

us to use an iterative solution scheme, there is no real advantage to
be gained by leaving the time terms out. Consequently, many CFD
programs use a time-dependent algorithm even for steady-state
cases and this enhances the stability of the method.

3.5.2 Obtaining the Pressure Solution

Having looked at the overall solution process that must take place
to solve the governing equations, we must now look in more detail
at how to obtain the solution. If we look at the three equations that
govern two-dimensional incompressible fluid flow, we can see that
the two momentum equations contain all three flow variables, but
that the continuity equation contains only the velocity components.
As most of the terms in the momentum equations are functions of
the velocity components it is natural to use these equations to
produce the solutions for the velocity components. This then leaves
a problem in that the continuity equation does not contain terms that
include the fluid pressure.

One way of overcoming this problem is to discretise the three
equations in such a way that they can be solved together. This leads
to a solution vector that contains all three variables and so is three
times longer than it need be, but it does allow the pressure to be
calculated. Finite element programs have been developed in this
way for some time, but as this approach produces larger matrices
than would be generated if each variable was solved for in turn a
larger amount of computer effort is required to produce the
solution.

An alternative approach is to discretise the momentum equation in
the x-direction so that the u-velocity component can be found and
similarly find the v-velocity component from the momentum
equation in the y-direction. Then a modified form of the continuity
equation has to be developed so that the pressure can be calculated.
This is done by noting that the velocity components that are found
from the momentum equations do not satisfy the continuity
equation and that they should satisfy this equation when the

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

75

solution is converged. If the variables are split into two parts, the
values that satisfy the momentum equations (starred) and the
corrections that would ensure that continuity is satisfied (dashed),
we can write:

(3.40)

As during the solution procedure we have to ensure that the
continuity equation, equation 2.2, is satisfied, we can take that
equation

(3.41)

and then substitute into it the expressions in equation 3.40 to give

(3.42)

In this equation the derivatives of the correction velocity
components depend on the derivatives of the velocity components
that satisfy the momentum equations. Now when the momentum
equations 2.8 and 2.9 are discretised they can also be written in
matrix form as

(3.43)

Chapter 3. Numerical solutions to partial differential equations

76

and

(3.44)

where bold A, ~bold B, ~bold C and bold D are matrices, and u sub
j, v sub j and p sub j are vectors of the variables at grid points or
nodes. These equations can be rewritten if the variables are split
using equation 3.40, to give

(3.45)
and

(3.46)

When we solve the momentum equations we are in effect solving
the following two equations

(3.47)
and

(3.48)

and so these can be subtracted from the matrix equations 3.45 and
3.46 giving

(3.49)
and

(3.50)

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

77

It is these two equations that are the expressions that enable the
correction quantities for the velocity components to be found, as
they can be rewritten to give

(3.51)
and

(3.52)

Using these two forms of the equations we can find the pressure
from the continuity equation. This is done by substituting them into
the modified continuity equation 3.42, to produce an equation for
the correction pressure {{p sub j} sup '} which has on its right hand
side the imbalance in the continuity of the flow after the momentum
equations have been solved. Once the correction pressure p sup '
has been found, so u sup ' and v sup ' can be formed using equations
3.51 and 3.52. Finally equations 3.40 are used to find the corrected
velocity components and pressure. At this stage in the solution the
velocity components satisfy the continuity equation and a new
value of pressure has been calculated, but the velocity components
do not satisfy the momentum equations. To resolve both the
solution of the momentum equations and the non-linearity, the
momentum equations are used again to produce further
simultaneous equations which are solved, followed by the
calculation of the correction pressure and the correction velocities.
It is this process of using the momentum equations then the
continuity equation that forms the inner loop in Fig. 3.9 and
iterative methods are used to solve all three sets of simultaneous
equations within each inner iteration.

Algorithms such as this are known as SIMPLE (Semi-Implicit
Pressure Linked Equations) algorithms and there are many variants
of the algorithm described above where small modifications are
made to the procedure.

Chapter 3. Numerical solutions to partial differential equations

78

Having found a way of obtaining the pressure solution, there is only
one remaining problem to solve. This concerns the numerical
solution of the equations. Looking at the momentum equations 2.8
and 2.9 we can see that the pressure variable only occurs in a first-
order spatial derivative. The conversion of these derivatives to
numerical form can lead to problems, as the use of central
differences can produce values for the pressure variable at a given
point which are not related to the pressure variables at neighbouring
points. This, in turn, can lead to a pressure solution oscillating in
what is known as a chequerboard pattern. There are ways of
overcoming this and many programs use a grid which is staggered
from the grid for the velocity components to find the pressure.
Effectively, the pressure is stored at the centroid of a volume and
the velocity components are stored at the volume faces [16]. More
recently several programs have turned to storing all the variables at
volume centroids using the transformation of Rhie and Chow [18]
to prevent chequerboarding.

3.5.3 The Convection Operator

One other problem that has had to be addressed by researchers is
that of producing numerical forms of the convection operator.
Problems occur when this operator is discretised using central
differences, equation 3.4, for the first derivative of the velocity. For
example, take the equation

(3.53)

where u bar denotes the known velocity that is being used to
linearise the equation. Using central differences for both the first
and second derivatives in this equation gives

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

79

(3.54)

which can be rearranged to give

(3.55)

where Pe is the Peclet number, or local cell Reynolds number,
given by

(3.56)

From equation 3.55 we can see that the value of the Peclet number
has an important effect on the numerical equation. When the Peclet
number is less than two both terms on the right hand side have
positive coefficients but when the Peclet number is greater than two
the first term on the right hand side becomes negative. This
negative term causes problems in that it can lead to unrealistic
solutions. Consequently, there is a restriction on the Peclet number
if we want to get realistic values.

One way around this is to use a first-order accurate difference
equation to model the first derivative in equation 3.53 instead of the
second-order accurate difference equation used above. However,
the reduction in accuracy can lead to a poor solution. Typically the
use of lower-order accuracy schemes gives results which are the
results for a flow which has more viscosity than the one we are

Chapter 3. Numerical solutions to partial differential equations

80

trying to model. Despite this such schemes are in common use
together with more accurate schemes. Usually commercial CFD
packages will have one of the following options for the
discretisation of the convection operator:

• an upwind scheme, where the convection term is formed
using a first-order accurate difference equation equating the
velocity derivative to the values at the reference point and
its nearest neighbour taken in the upstream direction. This
can give very inaccurate solutions but they are easy to
obtain as they converge readily.

• a hybrid scheme, where the upwind scheme is used if the
Peclet number is greater than two, and central differences
are used if the Peclet number is two or less. This is more
accurate than the upwind scheme but does not converge on
some grids of points.

• QUICK, which is a quadratic upwind scheme and is more
accurate than the two schemes described above. For
complex geometries the shape of the volumes can lead to
numerical problems in obtaining the solution.

• power-law schemes, which are derivatives of QUICK but
are more accurate.

A good review of this topic is given by Abbott and Basco [11].

3.5.4 Boundary Conditions For Fluid Flow Problems

When solving any system of partial differential equations it is the
boundary conditions, together with the initial conditions, that
determine the exact solution. The form of the boundary conditions
that is required by any partial differential equation depends on the
equation itself and the way that it has been discretised. Some
common boundary conditions are, however, met when solving fluid
flow problems with computers. These can be classified either in
terms of the numerical values that have to be set or in terms of the
physical type of the boundary condition.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

81

Looking at the variables, we need boundary conditions for the
following variables:

• for the velocity components, which will affect the
momentum equations. These conditions are usually given
by specifying the velocity components and if this is not
done then the derivatives of the velocity components
normal to the boundary are usually zero.

• for the pressure and possibly mass flow, which will
influence the continuity equation if a SIMPLE-like
algorithm is being used. Usually, the fluid pressure needs to
be specified at a minimum of one point in the flow.

• for the turbulence variables such as the turbulence kinetic
energy k and the rate of dissipation of k i.e. epsilon.

These conditions have to be applied at a variety of boundaries such
as:

• solid walls. Many boundaries within a fluid flow domain
will be solid walls, and these can be either stationary or
moving walls. If the flow is laminar then the velocity
components can be set to be the velocity of the wall. When
the flow is turbulent, however, the situation is more

Chapter 3. Numerical solutions to partial differential equations

82

complex. This complexity is due to the velocity of a flow
varying extremely rapidly near a wall if the flow is
turbulent. To capture this rapid variation which occurs in a
direction away from the wall, many grid points would be
required in this direction near the wall, and this increases
the amount of computational effort required to produce a
solution. One way of reducing the effort is to specify the
velocity near a solid wall using experimental data for
boundary layers which shows that the velocity variation
should be logarithmic with the distance from the wall at
points more than a known distance from the wall. This can
be seen in Fig. 3.10 where the velocity in the boundary
layer is plotted against distance away from the wall. Both
the velocity and distance have been transformed to non-
dimensional quantities as shown. Looking at the figure
three regions can be seen. Near the wall there is a viscous
sub-layer where the effects of turbulence are damped out by
the wall itself. Then there is a log-law region where the
velocity is a logarithmic function of the distance from the
wall, and finally there is an outer layer which is where the
boundary layer and the external flow merge. If the mesh is
built so that the first point where the velocity is calculated
is in the log-law region then the very rapid variation near
the wall will not need to be modelled. Similar methods can
be used to specify the values of both the turbulence
variables k and epsilon.

• inlets. At an inlet fluid enters the domain and so the fluid
velocity might well be known for the problem being
simulated. In some programs the pressure equation needs to
know the mass flow at an inlet. Also, the fluid carries with
it other quantities such as k and epsilon and so these must
be specified as well. We say that variables are convected
into the domain.

• outlets. Where the fluid leaves the domain is known as an
outlet. Normally, the pressure is set to zero at an outlet and
the velocity components and any turbulence variables are
left to find their own values which will have a zero spatial
derivative in a direction normal to the boundary. If the flow

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

83

is swirling through the outlet then a pressure gradient is
required to provide the necessary centripetal force to the
fluid and so a constant pressure boundary condition will be
invalid. To overcome this iterative procedures are used
which start by specifying a constant pressure at the outlet
but then try to find the pressure that matches the velocity of
the swirling flow.

• symmetry boundaries. When the flow is symmetrical about
some plane there is no flow through the boundary and the
derivatives of the variables normal to the boundary are
zero.

• cyclic or periodic boundaries. These boundaries come in
pairs and are used to specify that the flow has the same
values of the variables at equivalent positions on both of the
boundaries. In Fig. 3.11 two examples of periodic
boundaries are shown. In the first (Fig. 3.11a) a mesh
which is topologically cuboid has been wrapped around
onto itself. On the shaded boundary and the boundary
facing it the fluid variables must be set to be equal at the
corresponding points. The other example concerns the
cascade of aerofoils shown in Fig. 3.11b, where a set of
identical aerofoils are stacked vertically. Rather than take
the domain as including several aerofoils it is simpler to
take the domain to be that shown in Fig. 3.11c where the
domain is rectangular and includes a single aerofoil. To
make the flow within this domain consistent with the full
domain we must set the flow variables on the boundary AB
to be equal to the flow variables at corresponding points on
boundary DC.

Chapter 3. Numerical solutions to partial differential equations

84

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

85

4 COMPUTER-BASED ANALYSIS
PROCEDURES AND TOOLS

In the last two chapters we have looked at the ways in which fluid
dynamics problems can be described mathematically and at how the
governing equations can be transformed to give a numerical
analogue. To produce a solution from the numerical analogue many
equations have to be calculated and this in turn requires vast
numbers of repetitive calculations to be carried out. Computers are
the ideal tool for this numerical processing as they can be
programmed to perform all of these calculations without
intervention. We saw in Chapter Three that the numerical solution
process is specific to the equations that are solved and not to the
actual flow problem being simulated. It is the boundary conditions
and the initial conditions that are applied that determine the flow
problem.

Within a given class of flow problems, say for example those that
have a flow which can be taken to be viscous and incompressible,
general computer software can be written to produce solutions to
the governing equations and this software is not problem-specific.
Many industrial organisations require information on flow
situations and so they either write their own CFD simulation
program or they buy one of the software packages written by a
specialist software company. As there is a growing commercial
market for these programs there are several available.

Not only can the software be general to a flow type, but also the
analysis process that is followed can be general too. This means
that regardless of the software being used there is a clearly defined
set of stages that make up the analysis process. The first main
section of this chapter defines this process by looking at the
material that we have already discussed in the last two chapters and
then determining what the key stages of the CFD analysis process
are. Here only an overview of the process is given but in subsequent
chapters we will discuss each stage of the process in detail. This is
followed by a series of examples that show the process at work.

Chapter 4. Computer-based analysis procedures and tools

86

As the analysis process centres on computational procedures, the
analyst has to use a wide variety of hardware and software tools and
again these can be classified into sets of standard types. So the
second section of this chapter looks at the types of hardware
installation that can be used to run a CFD problem. This is followed
by a section on the use of the hardware and then the final section
discusses the CFD software tools that are available. In all of this
there is a recurring theme of the universality of the analysis process
and the tools that are used in carrying it out.

4.1 The Analysis Process

We have seen in Chapter Two that a mathematical analysis of fluid
flow can be made and that this leads to a series of partial
differential equations that govern the flow. In Chapter Three we
saw that these partial differential equations can be discretised to
produce a numerical analogue of the equations. When boundary
conditions and initial conditions that are specific to the flow
problem being simulated have been applied to these equations, they
can be solved using a variety of direct or iterative solution
techniques producing a numerical simulation of the given flow
problem. Many of the numerical aspects of the flow simulation are
handled by the CFD computer programs that have been written, but
the user of the programs must provide several pieces of information
to the program in order that a successful simulation can be made.

From our study of the ways in which it is possible to produce
numerical solutions to the governing partial differential equations
we have found that the following are required if a solution is to be
produced:

• a grid of points, or a set of volumes or elements, at which to
store the variables that need to be calculated

• boundary conditions that enable the boundary values of the
variables to be calculated

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

87

• initial conditions that define the initial state of the flow for
a transient problem or define the first guess to the variables
for a steady state problem

• fluid properties that appear in the equations such as density
and viscosity and perhaps some turbulence quantities

• control parameters that affect the numerical solution of the
equations

and it is the provision of this information that dictates the stages of
the analysis process. Given that the analyst has the necessary
hardware and software tools, the stages of the analysis process that
must be carried out to generate this information and then produce
the results of the flow simulation are:

• initial thinking. As with many analytical or computational
problems it is worth thinking about the physics of the
problem for a while before committing pen to paper or
fingers to keyboard. In this first stage the analyst should
consider the flow problem and try to understand as much as
possible about it. This might involve a considerable amount
of liaison with any other people involved in the project such
as design engineers and technicians, but it is important that
all sources of relevant information are explored.

• mesh generation. In this stage the analyst has to calculate
the grid of points or mesh that sub-divides the flow domain.
A series of coordinates for the points in the mesh have to be
calculated and sometimes these points must be related to
define the volumes, also known as cells, and elements. It is
the distribution of the points in the flow domain that
defines the positions where the flow variables are
calculated.

• flow specification. Once a mesh exists the boundaries of the
computational domain can be found and the necessary
boundary conditions, determined in the initial phase,
applied. These conditions, together with the initial
conditions and some fluid parameters, specify the actual
flow problem that is to be solved.

Chapter 4. Computer-based analysis procedures and tools

88

• calculation of the numerical solution. Now the CFD
software can be run to calculate the numerical solution to
the flow problem, but first the user must provide the
information that will control the numerical solution.

• results analysis. When some results have been obtained
they must be analysed, first to check that the solution is
satisfactory and then to determine the actual flow data that
is required from the simulation.

It is possible to perform an analysis by taking each stage in the
order given above, so that the required results are generated. This
would only happen in an ideal situation as the simulation of flow
problems can be extremely difficult. The governing equations are
complex, as they are non-linear and highly coupled, and can be time
dependent. This means that the possibilities for some error creeping
into the solution procedure are great, leading to a simulation that
will not converge or to a set of results that are not very good. These
problems can be reduced by a combination of user experience and
good practice during the analysis. By good practice we mean that
the analysis should be carried out extremely carefully so that the
analyst makes sure that each stage is completed successfully before
proceeding to the next stage.

Working in this way will usually mean that the analyst makes a
series of checks during each stage. The necessary checks will be
described in the subsequent chapters but if they show that the
simulation is not progressing well then it may be necessary to
repeat one or more of the stages. By doing this the computer model
can be modified in an attempt to improve the simulation. As
computers are being used the refinement of the computer model is
not too difficult to perform, as, usually, information stored on
computers can be accessed and changed both quickly and easily.
This interaction between the stages of the analysis process should
enable reliable results to be achieved, given the constraints of the
hardware and software. Some of these interactions are shown in the
flowchart of the process given in Fig. 4.1. There the importance of
careful analysis of the results can be seen. By looking at the results

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

89

produced it is possible to see if a simulation is a good one. If it is
not then the flow specification might be incorrect, or the mesh
might not be suitable for the flow being modelled or there could
have been a conceptual mistake made at the beginning of the
analysis process.

Chapter 4. Computer-based analysis procedures and tools

90

4.2 Computer Hardware For CFD

4.2.1 Computers

As we have seen, we need computers to perform the repetitive
calculations that produce the solution to the numerical equations.
As computer technology changes at an alarming rate the
supercomputers of one era becoming the desktop calculators of the
next and, consequently, we need to be wary of reviewing the state
of the art in computer technology. Even so we can still produce a
series of classifications that describe the generic hardware types
that are available.

In the world of engineering computation it is common to classify
computers by their performance in terms of some measure of
calculation speed. Speed can be measured in units based on the
number of instructions that a processor can execute per second or
the number of floating point operations that a system can handle per
second. Common units are mips or millions of instructions per
second and MFLOPS or millions of floating point operations per
second. These measures can give a user some idea of the
throughput of a machine but they say nothing about the ways in
which the systems operate with a particular numerical software
package. This is very important when we consider the CFD analysis
process as the execution of calculations is only one part of the
process of producing a final solution. Other features such as the
speed of access of data are equally important to the overall speed of
the calculation.

If we consider the operational characteristics of the computers that
are used to perform CFD calculations we can divide the computer
types into the following five categories:

personal computers These are standalone systems containing a
central processor, some random access memory (RAM) and some
disk storage. Usually they have single-user operating systems.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

91

• workstations. These are machines that have a central
processor, local RAM storage, and multi-user operating
systems. These are packaged together with a high
resolution graphics display. They are often part of a
network of machines that can include a central data storage
system such as several disks attached to a file server which
is a computer that is dedicated to the task of providing
datafiles to the other machines in the network. The network
can also be used to gain access to high speed computers and
a variety of peripherals. Some workstations also have their
own local disk storage.

• mini-computers. These are machines with a central
processor, large amounts of RAM storage and a central data
storage system. They have multi-user operating systems
and are used by several people simultaneously who gain
access to the system by using terminals.

• mini-supercomputers. These are effectively super-
workstations, with very good graphics performance and
near-supercomputer numerical performance. Again they are
usually part of a network.

• supercomputers. Designed to handle numerical data in the
fastest possible way, these machines are dedicated to the
task of running numerical simulations. They are large high-
technology devices often with multiple processors and
extremely large amounts of RAM storage to reduce the
need for the machine to communicate with slower storage
devices when carrying out calculations. To enable good
graphics facilities to be used, supercomputers are often
networked to workstations.

Figure 4.2 shows the configurations of the machines types in this
list, but this is clearly not a full list as other types of machine are
available. In particular machines that have a large number of
processors such as transputers have a great potential to carry out
numerical calculations extremely quickly. At the time of writing
(1991) the CFD calculations that are carried out on these machines
use specialist programs adapted to take advantage of the internal

Chapter 4. Computer-based analysis procedures and tools

92

architecture of the hardware. Commercial programs are rarely
available on these machines, but no doubt this will change.

As computer power increases and the technology advances, the
boundaries between the machine types are becoming blurred and in
some cases they are being made invalid. For example, again in
1991, the distinction between a personal computer and a low
performance workstation is becoming smaller and smaller, as is the
difference between a mini-supercomputer and a supercomputer.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

93

Equally, the power of the highest performance workstations is
coming close to that of mini-supercomputers or even
supercomputers.

4.2.2 Peripherals

When operating or specifying computer hardware it is not only the
computer that has to be considered. In carrying out the tasks that are
part of a CFD analysis, the availability of various peripheral devices
is either a necessity or can be of great assistance to the analyst,
making the analysis process easier to carry out. These peripherals
include:

• secondary data storage devices. When a program is running
the processor accesses data from the RAM storage which is
the primary data storage device. As we shall see later CFD
programs generate large amounts of data and this data
needs to be accessed by the CFD program during the
solution of the numerical equations and by a variety of
other programs both before and after the solution. The data
can only be stored in the RAM storage during program
execution and so it is also stored on secondary storage
devices such as hard disks. Secondary storage is also used
if the RAM capacity is not sufficient to hold all the data
during the execution of a program and as the access of the
data held on a secondary store is much slower than the
access of data held on a RAM store this can slow the
execution down.

• backup devices. To protect the data that CFD programs
generate from loss due to a failure of a disk drive or a
disaster like a machine-room fire, it is necessary to make
regular copies of the data onto some form of backup data
store. These can be demountable hard disks, magnetic tapes
or other devices which can be removed to a safe storage
area. Often, this is done automatically, or is handled by the
administrator of the computing system.

Chapter 4. Computer-based analysis procedures and tools

94

• high resolution graphics displays. CFD analyses generate
so much data that, quite often, the only way of analysing
the data over the whole domain is to use some form of
graphical representation. High resolution graphics display
devices are used to show the necessary pictures and these
devices include the screen of a workstation or a dedicated
graphics terminal. Typically the resolution of these devices
is 1000 x 1000 pixels, where a pixel is a dot on the screen,
although useful work can be done at lower resolutions such
as 600 x 400 pixels. The addition of colour can also be
extremely helpful in clarifying the pictures produced from
large CFD-generated databases.

• hardcopy devices. As with most engineering activities
report writing is a necessary evil and so a means of
obtaining a hardcopy of the pictures generated on a
graphics device is necessary. These copies can come from a
laser printer which will produce black and white copies or
from a colour plotter which uses ink-jets or heated waxes to
produce a coloured image.

4.3 Using the Hardware

When we simulate fluid flow problems with a computer the
analysis process has three main requirements that have an impact
on the computer hardware. We saw in Chapter Three that the
solution process consists of calculations that are carried out at a
large number of points in the domain under consideration and that
these calculations are part of an iterative process in which
individual calculations have to be repeated many times before the
solution is obtained. Consequently, the numerical calculation phase
of the simulation requires both a large amount of data storage and
considerable computer processing power if real-life engineering
problems are to be solved. Further, the large amount of data that is
generated has to be analysed graphically and so the computer
system must support the production of graphical data as well.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

95

Now, by referring to these requirements of data storage, processing
power and graphics capabilities, each of the computer
classifications that we listed earlier can be analysed in turn. It can
be seen that

• personal computers do not have the processing power or
data storage capacity to enable large simulations to be run.
These machines might be used for training problems, where
the size of the problem is very small and the speed of
analysis is unimportant.

• workstations have all the necessary computing power, data
storage and graphics capabilities for some problems.
However, the largest problems may require extra
computing power such as that provided by a mini-
supercomputer or a supercomputer.

• mini-computers tend to perform like workstations but they
sometimes have less graphics capability.

• mini-supercomputers can used for most problems,
including the largest simulations, if the turnaround time of
the numerical analysis is not too important.

• supercomputers are especially useful for the largest
problems where results are required quickly. They tend to
be linked to workstations, or mini-computers, to enable the
graphics tasks of the analysis to be carried out on a smaller
machine, leaving the raw computing power and large data
storage for the numerical applications that need them.

This situation is summarised in Table 4.1. It should be emphasised
that useful CFD analyses can be carried out with a limited amount
of hardware and so it is not necessary to have access to a
supercomputer to start using CFD. Situations do exist, however,
where access to a supercomputer might be the required if
simulations are to be achieved in a reasonable time scale.
Guidelines for the specification of hardware are given in Chapter
Twelve, but it is worth noting here that the length of time taken for
a simulation will be dependent on both the hardware and the
software used.

Chapter 4. Computer-based analysis procedures and tools

96

4.4 Commercial Software Packages Used For CFD

Each software package aimed at the CFD market has to assist the
user in carrying out the tasks that form the analysis process. This is
done by providing, typically, three main pieces of software:

• a pre-processor
• a solver
• a post-processor

together with a variety of utility programs. The use of all these
programs will be explained below.

4.4.1 Pre-Processing Programs

All the tasks that take place before the numerical solution process is
started are called pre-processing. This includes the first three phases
of the analysis process that we have discussed, thinking, mesh
generation and flow specification and the part of the fourth phase
that defines the numerical control parameters. Whilst the first phase
needs considerable thought, and considerable engineering
judgement, if the physical flow problem is to be translated into a
problem that is solvable by the CFD software; it does not involve
any computing. It is only when this first phase has been completed
that the computing starts.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

97

To assist in the computational part of the pre-processing phase,
most software packages have a pre-processing program that can be
used to carry out the following operations:

• define a grid of points and perhaps volumes or elements.
• define the boundaries of the geometry
• apply the boundary conditions
• specify the initial conditions
• set the fluid properties
• set the numerical control parameters.

In carrying out these tasks the user has to interact with the computer
in some way and so the pre-processing program usually has a
graphical interface, so that parameters can be set, and the resulting
changes seen quickly. This is particularly important when the mesh
is being built. Also, datafiles can be read that contain lists of
commands so that repetitive sets of instructions, say for a similar,
but not identical problem, do not have to be typed too often.

Usually, the most difficult task in the pre-processing phase is the
generation of the grid of points or mesh. Quite often this task can be
simplified by using software that has been especially designed to
carry out mesh generation. One example of this is the use of
programs written to produce meshes suitable for the finite element
analysis of structural problems. Such software is commonly
available and can interface with computer-aided design systems.
This allows the analyst to access computer models of objects, the
surface data of which can form the basis for the geometry around
which the mesh for a CFD simulation can be built.

4.4.2 Solving The Equations

Each package has a program that solves the numerical equations for
the problem under consideration. This program must be given all
the relevant data that has been defined by the pre-processor. To
transfer the data between the programs, the pre-processor writes out
datafiles that the solver program can read. These files can also be

Chapter 4. Computer-based analysis procedures and tools

98

moved, if necessary, between computers. This is extremely useful
as it means that the solver program can run on a machine
specifically designed for high-speed numerical work such as a
supercomputer, while the interactive tasks are carried out on a
smaller machine. This splitting of the tasks between machines
enables the hardware to be used in the most efficient manner,
keeping graphics-intensive and so-called number-crunching
activities separate.

Once the datafiles are in place, the solver program is activated and
the required solution process carried out. At the end of this phase,
further datafiles will be available, which may have to be transferred
back to the machine where the pre- and post-processing programs
are run.

Although the solver program is the core of any CFD software
system, the user sees little of its operation.

4.4.3 Post-Processing Programs

As large numbers of points have to be created within the flow
domain if reasonable simulations are to be obtained and as several
variables are stored at these points, computer graphics is often the
only means of assessing the data written by the solver program. The
post-processing program is used to display the results, and, as with
the pre-processor, this program is interactive and so usually run on
the same machine as the pre-processor.

Typical pictures obtained with the post-processor might contain a
section of the mesh together with vector plots of the velocity field
or contour plots of scalar variables such as pressure. These pictures
enable global trends in the data to be seen.

4.4.4 Utilities

Several utility programs are sometimes provided that do not form
part of the above system of software. These programs can be used

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

99

to convert the datafiles written by one system into a format that can
be read by another system. This is common for files containing
mesh and results data.

Using these utilities the data can be transferred between engineering
software systems and this can be extremely useful if an organisation
has the use of commercial mesh generation software, such as would
be provided with a finite element structural analysis program. These
programs can be used to build a mesh that can then be accessed by
the CFD analysis system. The files that are transferredare often
referred to as neutral files, as they can be read using the standard
text editors of many systems or by small programs that are written
locally.

Chapter 5. Describing flow problems in engineering

100

5 DESCRIBING FLOW PROBLEMS IN
ENGINEERING

Producing a computer simulation of a flow problem requires the
analyst to provide a large amount of data to the solver program. It is
the quality of this data, in terms of both suitability and accuracy,
that may well determine the quality of the results of the simulation.
Because of this, users of CFD software must be very familiar with
the flow problems that they wish to simulate. When using
computers there is a strong temptation to start computing as soon as
possible, but in this case it is much better if considerable thought is
given to the problem before starting to use a computer, and so the
urge to compute before thinking must be resisted.

As an aside, if you are considering having an analysis undertaken
using CFD then please be aware of the following. At times the
analyst will use hard information which will be gleaned from a
variety of sources. This sort of information includes a lot of
information that is not controversial and is well known. At other
times, however, the analyst must rely heavily on the experience of
running similar fluid flow simulations when deciding how to model
the problem. This is because the CFD analysis will sometimes
demand information that does not exist or the software may not
model exactly the situation that is required. In such circumstances
the quality of the analyst can be crucial to the simulation being
successful.

The key to a sound analysis is the production of a specification of
the flow problem. This is a clear exposition of the reasons why the
simulation is being carried out and of what the physical flow
situation is. Once it has been produced it can be translated into the
set of data that is required by the simulation package. This chapter
looks at how such a specification is built up and then looks at an
example of a specification for a realistic flow situation that will be
simulated in Chapter Ten.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

101

5.1 Producing a Specification

A specification for a flow problem must be sufficiently detailed so
that the analyst can obtain from it all the information necessary to
define the flow problem to a CFD solver program. This information
comes from a good understanding of the flow problem which the
analyst must obtain be talking with the people who require the
results of the simulation. In particular the analyst must know three
things:

• why it is that the simulation is required
• what the geometry of the problem is, in broad terms
• what the possible flow behaviour might be.

5.1.1 Knowing What Is Required of the Analysis

Carrying out the analysis of a fluid flow problem is an expensive
business. If someone wants to commission a computational analysis
of a flow problem considerable expense will be involved as access
to computer hardware must be achieved, the necessary software
must be found and the labour costs in either time or money are not
insignificant. Consequently there must be good reasons for carrying
out the analysis and the analyst must therefore explore these
reasons first, by talking to the people that need the results of the
simulation such as design engineers. At this stage the analyst should
also be able to decide if a CFD simulation will give the required
results.

The reasons for an analysis being carried out are many and varied
but they often include such things as the determination of the forces
and moments on a body so that the motion of the body can be
predicted or analysed, the prediction of the pressure throughout a
flow or the prediction of the ways in which the fluid moves over or
through a system. Sometimes the analyst will have to work out the
form of the results that the simulation should produce from a vague
description of an engineering problem. For example, the work done
in pumping a fluid at a given flow rate through a series of passages

Chapter 5. Describing flow problems in engineering

102

of an engineering device might be too great and the reasons for this
may not be known. A computational model of this problem would
show what happens to the fluid as it passes through the passages
and it will also give an prediction of the fluid pressure everywhere
in the device. From this information the areas where the fluid
pressure is lost can be identified, as usually this will occur where
the flow is separated. With this information the computer model
could be altered so that a prediction is made of the flow through a
modified geometry that should reduce the regions of separated
flow. The results of the prediction should show whether the
modification of the geometry would lead to a reduction in the
pressure losses in the physical flow.

Once the analyst knows the reasoning behind the flow problem it is
easier to plan ahead so that the computational model produces the
necessary information. One further benefit of this discussion
between analysts and their clients is that they get to know each
other and their respective problems. Such an understanding can
help the analysis process to be brought to a successful conclusion,
especially if things do not quite go as planned.

At the end of this initial part of the specification phase the analyst
should have a list of the data that the computational model must
produce. This could include the change in pressure through a
system, the local pressure field, the local flow velocities, the time
variation of a variable at a given point or many other pieces of
information. Once this list has been compiled an assessment of the
suitability of CFD in giving reasonable results should be made. We
need to be aware at this stage that CFD cannot produce sensible
results for all physical fluid flow problems, and we will discuss
why this is in Chapter Ten after we have looked at the results of
some simulations. If the analyst concludes that CFD is not a
suitable tool to use in obtaining the required results, whatever the
reasons for this, then the analyst must highlight these problems to
those who want the results and suggest that the analysis is not
carried out with CFD. There is no point in running a simulation if it
is likely that the results will be of poor quality. This would only

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

103

frustrate those who need the information and give the use of CFD a
bad name. Everyone should always be aware that sometimes it is
easier and cheaper to perform a physical experiment rather than a
computational one, and sometimes it is more accurate too.

5.1.2 Specifying the Geometry of the Problem

Once the reasoning behind the analysis is known the actual
specification of the problem can be prepared. When looking at any
flow problem it is important to be able to describe the physical
boundaries that contain the fluid. This is particularly important for
engineering flow problems where it is usual for at least some part of
the boundary to be a man-made object and it is a prediction of the
effect of this object on a flow that is required from a CFD analysis.

When we solve the equations governing fluid flow using a
computer, we need to have mesh of points at which the flow
variables can be stored as we saw in Chapter Three. These points
have to be created both on and within the bounding surfaces of the
flow and so some means of describing the geometry of these
surfaces is required.

Various sources of geometrical data can be available and these can
be used by the analyst to describe the bounding surfaces. For
example, this data might come from:

• analytical descriptions of shapes in two dimensions given
by such things as points, lines, arcs and splines

• engineering drawings
• databases created by computer-aided design (CAD) systems
• measurements taken from existing hardware.

From such sources most of the bounding surfaces of the flow
domain may be determined precisely. When building the mesh of
points inside the flow domain we will use this the precise
information (see Chapter Six), but during the specification stage it
is sufficient to know roughly where these surfaces are in relation to

Chapter 5. Describing flow problems in engineering

104

each other and how they fit together. A simple sketch might help to
show this. It is also worth remembering that when we build the
computational model a complete description of the bounding
surfaces is required, and that some of these surfaces might not be
physical surfaces. For example, the non-physical surfaces could be
the flow inlet or outlet or the boundary of an external flow problem
that is effectively at infinity (the far-field boundary). These non-
physical surfaces will need to be created later, but the sketch should
at least draw attention to where they are.

5.1.3 Defining the Flow

Once the geometry of the problem is understood the analyst must
think about the flow itself and try to visualise what is happening to
the fluid within the bounding surfaces of the flow. The initial step
in defining the flow is to know which fluid is to be studied. This
could be air, water or any other fluid and the values of the density
and viscosity of the fluid need to be found. Once the density and
viscosity are known a calculation can be made of a parameter
known as the Reynolds number. This is a non-dimensional number,
often designated by Re , which is defined as

(5.1)

where V sub {ref} is a reference velocity such as the inlet velocity
and D is a characteristic length which might be something like the
length of an object or the width of a duct. This parameter is useful
in determining whether a flow will be laminar or turbulent, as we
shall see, and is one of a number of non-dimensional parameters
that are used in fluid mechanics to characterise flows. We will
discuss several more in Chapter Eleven when we look at other types
of flow.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

105

Next, the production of the main part of the specification can be
tackled. As we have already stated the CFD solver must be aware of
the boundary and initial conditions that are appropriate for the flow
under consideration. The investigation of these conditions can be
started by building up a picture of the flow structure that might
occur. This is done by thinking about the physical boundaries of the
problem that were identified in the previous part of the specification
process. From our sketch of the location of the boundaries we
should be able to identify those surfaces where the fluid enters or
leaves the geometry and those surfaces which are the solid surfaces.
This information can then be used to gain some idea as to the flow
structure within the geometry. The flow structure might include
such things as the direction of the flow, the location of vortices,
areas of separated flow, boundary layers and wakes. The existence
of these features within the flow can then be added to the sketch
that we are building up.

As part of the physical flow structure, areas where the flow
variables such as velocity have large gradients, for example in
boundary layers and wakes, will be identified and this information
can then be used when the mesh is built so that sufficient points are
placed within the mesh in these regions. Also the flow structure will
help to identify the type of boundary condition that should be
applied to each of the boundaries and the initial state of the flow
variable. Remember that it is the flow information on the
boundaries of the geometry, the boundary conditions, and the state
of the flow variables at the beginning of a time dependent problem,
the initial conditions, that determine the numerical solution to a
particular set of equations. By now the sketch should have most of
the information about the boundaries on it and this needs to be
translated into the form needed by the analysis. This is done by
looking at each boundary in turn.

Some common specifications that need to be made at boundaries
are:

Chapter 5. Describing flow problems in engineering

106

• to fix the velocity (at an inlet or a wall where the flow is
laminar)

• to activate a log-law velocity profile (at a wall where the
flow is turbulent)

• to activate appropriate functions for the turbulent kinetic
energy and its dissipation rate (at a wall where the flow is
turbulent)

• to fix the turbulent kinetic energy and its dissipation rate (at
an inlet of a turbulent flow)

• to fix the pressure (at an outlet)
• to do nothing (at a symmetry plane where the velocity

gradients normal to the plane are zero)
• to specify a pair of cyclic boundaries where the flow

variables are the same at corresponding points on the two
boundaries.

If we wish to solve a steady state problem the flow should now, in
theory, be completely specified, but if we wish to solve a flow with
a time variation which is either real or assumed in the solution
procedure then the initial conditions must also be specified. These
are the values of all the flow variables at the start of the calculation
and they need to be defined at every point in the flow domain.
Often the values are not known exactly and so some sensible values
have to be assumed. Even if the problem is to be solved as being
steady in time we must sometimes specify some initial conditions.
Many programs will assume an initial set of values for the flow
variables, but it can help to give a better guess as less computational
effort might be used in reaching the final solution.

5.2 An Example of a Flow Specification

So that the above specification process can be illustrated, we will
now take a flow situation and consider how a specification can be
produced by this process. The example that we will use is that of a
two-dimensional slice of the flow of air over a saloon car when it is
placed in a wind tunnel. This is one of the examples that will be

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

107

used as a demonstration example in the chapter of case studies,
Chapter Ten.

First, we must think about the reasons for carrying out the
simulation. Let us imagine that we are working for a vehicle
manufacturer and ask ourselves the question, 'What does the
company want to find out from the simulation of the flow over a car
?'. Cars are tested in a wind tunnel for a variety of reasons that
include the search for information about the forces and moments on
a vehicle that can be used to predict the vehicle's fuel economy, its
top speed and its acceleration and its response to gusts of wind
hitting the vehicle from the side. The data that is extracted from
these wind tunnel tests includes:

• the drag on the car when the car is at various angles to the
flow

• the lift on the car at the same set of angles
• the side force on the car at the same angles
• the rates at which the cooling system of the car can extract

heat from the engine
• the rate of cooling of the brakes.

If we carried out a three-dimensional simulation of the flow around
a vehicle we could obtain values for the force and moments on a
basic body shape, but none of the above information can be found
from a two-dimensional calculation. This is simply because the
two-dimensionality of the calculation will make the results
meaningless, however the procedures are just the same as those
used for three-dimensional calculations and so this example can be
seen as a reasonable test case to pursue. In Chapter Ten there will
be a discussion of the use of CFD in calculating the three-
dimensional flow over a vehicle after the two-dimensional
calculation has been made.

Let us imagine that we wish to run this simulation to investigate the
flow structure around the vehicle, which can give some pointers to
the three-dimensional flow. Consequently we will want to be able

Chapter 5. Describing flow problems in engineering

108

to plot the velocity vectors around the vehicle at the end of the
simulation. Having decided this we can move to the second step in
the specification process, that is the sources of data for the
geometry and the arrangement of the boundaries must be found. For
the car the shape might be defined as a set of engineering drawings
or as a set of surfaces stored in a CAD system, but the shape of the
wind tunnel must also be decided. Most tunnels comprise of a
parallel working section placed between a contraction and a
diffuser. To simplify this problem the tunnel can be taken to consist
of a straight floor and roof which are placed at the correct
elevations relative to the car, and a vertical inlet upstream of the car
and a vertical outlet some way downstream of the car. This
simplification can be made as the main effect of the tunnel on the
car is to constrain the flow around it and this is done by the working
section immediately around the car. The fact that the working
section has been extended away from the car should have little
effect on the flow around the car, but it does simplify the
computation considerably. In particular, the outlet needs to be far
downstream of the car to reduce the influence, on the flow around
the car, of the approximate pressure boundary condition that will be
specified at the outlet. All this information is summarised in a
sketch of the geometry which is shown in Fig. 5.1. The shape of the
car comes from a set of two-dimensional curves in space that are
derived from the three-dimensional data discussed in Chapter Ten.

Having specified the geometry the fluid can be defined. In this
problem the fluid is air which has the following properties (at a
temperature of 288 K and a pressure of 760 mm of mercury):

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

109

• density 1.225 kg / m sup 3
• viscosity 1.79 x 10 sup {-5} kg / ms
• kinematic viscosity 1.46 x 10 sup {-5} m sup 2 / s

Then the Reynolds number can be found by taking V sub {ref} to
be the inlet velocity of 28 m/s and the typical length dimension to
be the vehicle length of 4.165 m , giving

(5.2)

From this calculation we can assume that the flow will be turbulent
as the Reynolds number is so high.

Now the boundaries of the problem can be analysed and from Fig.
5.1 it can be seen that the boundaries can be listed as:

• the car surface
• the tunnel floor
• the tunnel roof
• the tunnel inlet
• the tunnel outlet

and each must be considered in turn.

The effect of the car surface is simple to understand. At this
boundary the flow will be turbulent and the surface will retard the
flow. Boundary layers will be created on the vehicle surface. In
terms of boundary conditions a log-law profile condition for the
velocity will have to be imposed here together with suitable
conditions for the variables of the turbulence model. Similarly the
tunnel floor will act in the same way and will require similar
boundary conditions to be imposed. On all these surfaces the mesh

Chapter 5. Describing flow problems in engineering

110

will have to be built such that several points are placed near to the
surface in a direction normal to the surface.

The tunnel roof is an interesting boundary in that it will act like the
tunnel floor and have a boundary layer on it. However, as it is some
way from the car, this boundary layer is unlikely to have a major
effect on the flow over the car and so the roof can be taken to be a
symmetry boundary so that no flow goes through the surface. This
is of benefit to the simulation as the mesh does not need to be very
fine near a symmetry boundary, whereas it does need to be fine
where there is a boundary layer so that the variation in velocity near
the solid surface is captured. By making this approximation for the
roof the number of mesh points in the domain can be reduced.

At the tunnel inlet the fluid enters the domain in the horizontal
direction at a speed of 28 m / s and so, as both the magnitude and
direction are known, the velocity can be specified there. Being
carried in with the flow is a natural level of turbulence and this
must be specified at the inlet as well. However, at the tunnel outlet,
we do not know the speed of the flow at all positions as there is a
boundary layer on the floor of the tunnel and a wake behind the car
that is generated by the boundary layers on the vehicle surface. We
can deal with this boundary by assuming that the velocity does not
vary in the horizontal direction at the outlet and so the derivative of
the velocity in the horizontal direction is zero. Further, we can
impose a fixed pressure at the outlet as it sufficiently far from the
vehicle that this boundary condition will not affect the results we
want to obtain. Normally we set the outlet pressure to zero.

In terms of the flow structure the analysis of the boundaries gives
us a picture of what is happening in the flow. Fluid enters through
the inlet, is retarded by the tunnel floor and the vehicle surface,
forming boundary layers there. From our knowledge of fluid flow
we know that the flow will separate somewhere towards the rear of
the vehicle forming an area of fluid that has a reduced speed behind
the vehicle. This is the wake of the vehicle. At the roof of the tunnel
the flow is constrained to move horizontally, and the fluid leaves

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

111

the domain at the outlet. All of this information can be added to the
sketch as shown in Fig. 5.2.

As a last step we must decide upon the initial conditions. For this
problem a sensible way to approach things would be to set the
horizontal component of velocity to the speed of the inlet velocity,
to set the vertical component of velocity to zero and the pressure to
zero. Turbulence values can be set to be the inlet values as well.
Now the specification is complete and we can turn to the building
of the actual computational model.

Chapter 6. Building a mesh

112

6 BUILDING A MESH

Once the specification of the flow problem is known we can turn
our attention to building a computer model. The first part of this is
to build a mesh of points throughout the flow domain and perhaps
produce the necessary volumes or elements. When modelling a
simple problem this process takes very little time, but when
modelling a complex problem such as the flow inside a series of
passages, say the coolant flow in a internal combustion engine, the
process can take several man-months to complete. Often it is this
phase of the analysis process that determines the total time required
to obtain results from a simulation, as all the other phases, including
the actual computation of the results, can be carried out quite
quickly. Similarly, the overall cost of the analysis can be totally
dominated by the costs of the labour required to build the mesh.

In this chapter we will discuss the reasons for building a mesh, the
requirements that a mesh must satisfy if it to give satisfactory
solutions and the types of mesh that can be built. Then we will
discuss how a mesh can be built by using a variety of software
tools. Finally, we will look at ways in which a mesh can be
modified in the light of the results of a flow simulation such that
better results are achieved.

6.1 The Need For A Mesh

In Chapter Three we looked at various ways of discretising the
governing partial differential equations of fluid flow so that
numerical equations were produced. Regardless of which of the
three discretisation techniques is used; the finite difference method,
the finite element method or the finite volume method; a mesh of
points has to be produced within the volume of the fluid. This can
be considered as the discretisation of the space in which the flow
takes place. If we use the finite difference method then the values of
the variables at the points are used to produce equations for the
variables that enable a solution to be determined. This involves a
grid of points. However, if we use the finite volume method then

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

113

the points are arranged so that they can be grouped into a set of
volumes and the partial differential equations can be solved by
equating various flux terms through the faces of the volumes. Also,
if we use the finite element method then the points are grouped to
define elements within which the numerical analogue to the partial
differential equations can be set up. In both the latter cases the
structure of the mesh does not depend on the discretisation method.

As a consequence of this we can see that although we need a mesh
to solve CFD problems regardless of which of the three
discretisation techniques has been used, the mesh itself will be
influenced by the discretisation technique. This is not the only
influence as the expected variation of the flow can also have an
effect on the way in which the mesh is built.

6.2 Creating A Mesh For A Given Flow

Every flow problem will contain a wide variety of flow features in
the domain. That is things such as vortices, boundary layers,
regions of rapid fluid velocity and pressure change and separation
regions occur, and all of these need to be modelled by the CFD
simulation. If we are to have a mesh that is capable of modelling
these features, where the gradients in space of the flow variables are
high, then we must be aware of where these features might occur.
This shows the importance of the sketches that we developed as
part of the specification process, as these can be used to highlight
the positions of the critical regions in the flow.

In the critical regions we need to have a large number of points
within the mesh. To see the reason for this we must refer back to
Chapter Three. There we saw that all the numerical methods
assume that the flow variables vary in some simple way between
the points or within an element or volume. This variation is usually
linear but, for finite element codes, a quadratic or even higher-order
variation is sometimes used. Consequently, if the flow varies
rapidly in space, as it does in the critical regions of the flow, a fine
grid will be needed to describe the variation accurately.

Chapter 6. Building a mesh

114

We can see this clearly in Fig. 6.1 where a one-dimensional
variation in a variable U is assumed to occur in the x-direction. Let
us assume that some numerical method has given us a set of values
for U which is exact at a number of points in the x-direction. This
will never happen in practice but it is the best that a numerical
method can do. If we take the numerical prediction of U to be the
straight lines between these points, then several sources of error in
the variation can be seen. First, if the values are obtained at only a
few points which we will call a coarse mesh, then the solution is not
an accurate representation of the variation. We can see that in the
region of x=1, the numerical value of U is too small and, in the
region of x=0, the numerical approximation to the derivative dU/dx
is too small. If we know the values of U at more points, that is on a
finer mesh, then we can see that numerical description of the
variation is much more accurate.

This is extremely important as we must have accurate values of the
variables and their derivatives if we are to simulate the governing
equations accurately. Any error in either the variable U or its
derivative dU/dx can lead to the numerical solution of the equations
being in error. A typical example of this is that flow separation on
the surface of an object may not be predicted if the mesh is too

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

115

coarse near the surface of the object. There is an example of this in
Chapter Ten.

Even though we know that the mesh must be very fine in the critical
regions we still have the problem of knowing where these regions
are and how fine the mesh should be. Along solid surfaces there
will be a boundary layer and so there must be several points close to
the surface in a direction normal to the surface. This allows the
numerical solution to model the rapid variation in velocity through
the boundary layer. This is an example of the geometry of the
domain influencing the way in which the mesh must be built.
Another example is where a surface has a large amount of curvature
causing a rapid variation in pressure in the flow direction. However,
large flow gradients also exist in areas of the flow away from the
solid surfaces, say in the wake of an object or, if we are modelling a
compressible flow, near a shock wave. Creating a suitable mesh in
these areas is more difficult as the exact location of the critical areas
is difficult to determine. One way of proceeding is to assume the
position of the critical areas and build a mesh taking this into
account. Then, once the simulation has been run, the actual results
of the simulation may help us to determine the actual positions of
the regions of high flow gradients. So we see that information
obtained from the results of a simulation can be used to modify the
mesh and the technique is known as adaptive meshing. We shall
discuss this further in Section 6.5.

6.3 Mesh Structures

6.3.1 The Basic Parts of a Mesh

Given that a mesh must be suitable for the discretisation technique
and also for the flow, we will now look at the different types of
mesh that can be built. A first step in this is to determine what the
basic parts of a mesh are. From our discussions in Chapter Three,
we already know that a finite difference mesh will consist of a set
of points, that a finite volume grid will consist of points that form a
set of volumes and that a finite element mesh will consist of sub-

Chapter 6. Building a mesh

116

domains known as elements on which the variables are found at
fixed points known as nodes. These then are the basic parts from
which meshes are built:

• points, sometimes called nodes
• volumes, also known as cells in some documentation
• elements

but which of these parts are needed for a mesh depends on the
discretisation method being used. In all the discussion that follows
we will use the terms volume, cell and element to mean a sub-
domain without implying that a particular discretisation technique
is being used.

Various mesh structures which are made up of these parts can be
built and we shall look at this in the next section, but it is useful to
note here the range of sub-domains, be they volumes or elements,
that are used. In structural finite element programs a wide range of
element types can be used and these are classified by the shape of
the sub-domain and the placement of nodes in the domain. With
CFD programs a much more restricted set of volumes or elements is
available at present. By far the most common volume or element,
for use in three-dimensional meshes, is a hexahedron with eight
nodes, one at each corner, and this is known as a brick element or
volume. For two-dimensional applications the equivalent element is
a four-noded quadrilateral. Some finite volume programs have now
been released which have the ability to use tetrahedra in three
dimensions or triangles in two dimensions. Most finite element
CFD codes will allow these elements to be used together with a
small range of other element types. Figure 6.2 shows some of the
commonly used sub-domains.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

117

6.3.2 Types of Structure

Now that we know what the constituent parts of a mesh are, we can
think about how to arrange them through the domain. This
arrangement is known as the structure of the mesh or the topology
of the mesh. When using the finite difference method the points are
the positions in space where the variables are calculated and they
are arranged in what looks like a grid of cells. In contrast to this,
when using the finite element method, the points are the nodes of
the set of elements used to split up the fluid volume and the
elements can be arranged in any way, providing that the faces of the
elements are aligned correctly. We are able to do this as the
calculation on any one element requires information from that
element alone. The interaction between the elements takes place
when the element equations are added together to form the global
equations. With the finite volume method the actual implementation
of the numerical solution will determine which scheme of volume
placement can be used. Some programs demand that the volumes
are placed in the same way as they would be for a grid of finite
difference cells and others allow a finite element-like placement.

Chapter 6. Building a mesh

118

From this we can see that there are two ways in which the mesh
structure can be arranged. These arrangements are:

• a regular structure or topology, where the points of the
mesh can be imagined as a grid of points placed in a regular
way throughout a cuboid (also known as a shoebox). These
points can then be stretched to fit a given geometry and this
is shown in Fig. 6.3. Note that when the mesh is stretched
the connections between the points does not change. The
stretching takes place as if the mesh were made of rubber,
and the so-called topology, or form, of the mesh remains
the same. Consequently, if we consider any point in the
mesh it will be connected to the same neighbouring points
both before and after the stretching process. Sometimes
these meshes are called structured meshes as they have a
well defined structure or mapped meshes as they can be
seen as a cuboid mesh that has been mapped onto some
other geometry. When considering these meshes it is useful
to think of a local coordinate system within the mesh. This
is enables the orientation of the cells relative to each other
to be determined, and so before the mesh is transformed the
axes of this system are the edges of the cuboid. Once the
transformation into the actual coordinate system being
used, the global coordinate system, is carried out the the

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

119

local coordinate system axes become dependent on the
position within the mesh. This is shown in Fig. 6.3.

• an irregular structure or topology, where the points fill the
space to be considered but are not connected with a regular
topology. Figure 6.4 shows a two-dimensional example of
this type of mesh formed with triangular elements. Note
that the cell faces do not overlap. We can see from the
magnified section of the mesh that element number 1 has
the three nodes labelled a, c and d at its corners, and that
element number 2 has the nodes labelled a, b and c at its
corners. The fact that any particular node is attached to an
element cannot be known from the form of the mesh, and
so a numerical table must exist that describes the
arrangement of the mesh by listing which nodes are
attached to each element. This contrasts with the regularly
structured mesh where a knowledge of the location of a cell
within the mesh enables the labels of the points at its
corners to be found implicitly. A mesh with an irregular
structure is often referred to as an unstructured mesh or a
free mesh.

Chapter 6. Building a mesh

120

Relating the mesh structure to the numerical method; finite
difference programs require a mesh to have a regular structure and
finite element programs can use a mesh with an irregular structure.
In theory finite volume programs could use a mesh with an irregular
structure, but many implementations insist that the mesh has a
regular structure.

As we mentioned in Chapter Three, when a mesh with a regular
structure is used there is an advantage in that the solver program
should run faster than if a mesh with an irregular structure is used.
This is due to the implicit relationship that exists between the
number of a cell or a point and the number of its neighbours in a
regular mesh, which enables data to be found easily. No such
relationship occurs for meshes that have an irregular structure and
so when trying to find the values of flow variables in neighbouring
volumes there must be a computational overhead. This often takes
the form of a look-up table which relates the faces to the cells or the
nodes to the elements.

Many flows that are of interest to engineers take place in or around
the complex geometries whose boundaries are man-made objects.
With some ingenuity on the part of the analyst, it is possible to fit a
mesh with a regular structure to some of these geometries, but with
many geometries this is not possible. This is where meshes with an
irregular structure can be used to great advantage, as these meshes
can be used to describe the most complex of geometries due to
there being no restriction on the structure of the mesh. This can
make the mesh generation process much easier and in some cases it
is a pre-requisite for producing a simulation. Another advantage of
using irregularly structured meshes is that they can be created by
automatic mesh generation algorithms, some of which are described
in Section 6.4.5. These algorithms generate meshes which are
unstructured using elements such as tetrahedra.

With some CFD programs it is possible to have several meshes
which have a regular structure combined together. Programs use
these meshes in an attempt to gain the speed advantage that comes

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

121

from using a regular mesh whilst retaining the flexibility to model
complex geometry. This combination of meshes is called a
multiblock mesh as it can be seen as a series of blocks built
together. There is, of course, a restriction on the way that these
meshes are built to ensure that the cell faces do not overlap at block
boundaries.

As a final point on the structure of a mesh it is worth mentioning
two terms that are often met when dealing with regular meshes. In
Chapter Three we looked at some examples where each of the
discretisation techniques was used. In these examples the domain
geometry was simple and the partial differential equations were
discretised directly in terms of the Cartesian coordinates. When
meshes are built for more complex geometries, the partial
differential equations are sometimes transformed into a general cell-
based coordinate system. This is especially true when dealing with
finite difference methods and finite volume methods which require
a regular mesh, as the local coordinate system can be used. This
transformation of the equations enables a regular mesh to be used
even though it is not rectangular. In some transformations of the
equations the mesh of points is required to be orthogonal, which
means that the sub-region faces must meet at right angles to each
other. If these meshes are used fewer terms are required to produce
the transformation of the partial differential equations and so less
computational effort is required to compute the solution. If the
mesh is non-orthogonal, then the extra terms have to be
programmed and the solution requires more computational effort.
Sometimes progams which should use an orthogonal mesh can be
run with non-orthogonal meshes but the results that are produced
are less accurate.

6.4 Building Meshes

6.4.1 Defining the Geometry

In the specification stage of the process that we discussed in
Chapter Five we saw that we need to determine the sources of

Chapter 6. Building a mesh

122

geometrical data and to produce sketches of the positions of the
bounding surfaces of the flow domain. Now we must use the
sources of geometrical information, be they sketches or engineering
drawings or computer models, and ensure that we can find the
location of the bounding surfaces in terms of the coordinates say x
and y and, possibly, z.

For two-dimensional problems we can create the bounding surfaces
using points to define a series of lines and curves. These curves
might be defined as circular arcs, simple polynomials or splines. All
of these constructions are described by equations that define the
relationship between the coordinates of points that make up the
curve. For example, we all know that a line can be described by the
relationship

(6.1)

where m is the gradient of the line and c is the value of y when x is
zero. By substituting for the gradient in terms of two known points
on the line, equation 6.1 becomes

(6.2)

where the suffices refer to the two known points. These equations
describe a line which is infinite in length, but we will only use lines
of finite length to describe the geometry of the flow domain. This
means that we need to know the endpoints of the line.

Similarly, a circle can be described by

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

123

(6.3)

where the centre of the circle is at x=a, y=b and the radius is r. A
part of this circle is a circular arc and three points can be used to
define it. Usually these points are taken to be the two endpoints of
the arc and a point on the arc somewhere between them. This
enables both the limits of the arc to be defined and the unknown
constants in equation 6.3, namely a, b and r, to be calculated.

Splines are more complex curves, but they are also defined by
points in space. Usually four or more points are used, but they do
not have to be on the curve itself. Note that there is a hierarchy
being formed here in terms of the numbers of points required to
define a curve. Two points define a line, three points define an arc
and four points or more define a spline.

In three-dimensional problems the geometry might be defined by
similar three-dimensional constructions in the form of a so-called
wire-frame model. In these models the edges of each surface are
defined and, sometimes, the form of the various surfaces is known
as well. Often these surfaces have a simple form such as a plane or
part of a sphere or cylinder, but they can also have a more complex
form. Another type of computer model is known as a solid model,
where the computer stores not only geometric information but
things such as the mass of an object. When using a solid model the
geometry of an object is defined in ways similar to those used by
wire-frame models.

Typical ways of describing the more complex surfaces are:

• numerous simple patches. Here the surface is discretised
into a series of patches which are usually triangular or
quadrilateral in form. This is the way that a surface would

Chapter 6. Building a mesh

124

be described by the faces of a mesh of linear elements or
cells.

• Coons patches. These are patches over which the
coordinates of points on the surface are determined from
the bounding curves alone. Consequently, once the
boundaries of a surface are determined the surface itself is
defined. Three or four curves in space which form a closed
loop are often used in define the boundaries. Note that an
infinite number of surfaces will be able to fit through a
given set of boundaries but the Coons patch description
defines only one surface. The assumption is made that the
patches are sufficiently small so that a good approximation
to the surface is given. This can lead to problems if a
surface is highly curved and only a few Coons patches are
used to model it. In this situation each patch will be too
large and the surface definition will not have the required
curvature.

• Bezier surfaces. These are surfaces which are described by
a set of Bezier polynomial curves. Each curve is defined by
four points, the two end-points of the curve plus two
interior points which need not be on the curve. By moving
the two interior points the curve can be manipulated to have
a wide range of shapes. Bezier surfaces give an improved
description of a surface when compared to a Coons patch
description as information from within the boundaries is
used to define the surface. This helps to lock a surface in
space and so the number of surfaces that could fit the
description is reduced. These surfaces were developed for
Renault, the French vehicle manufacturer, as they had a
requirement for computational surfaces that could be
manipulated interactively when modelling new vehicles in
the styling studio.

• non-uniform rational B-spline surfaces (NURBS). These
are similar to Bezier surfaces, but the curves that are used
to define them are based on different points to the Bezier
curves. The end-points of the curves are only approximated,
but the points that are used to define the polynomials ensure

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

125

that the spatial derivatives of the first- and second-order are
continuous at the end-points.

Such is the complexity of these curves and surfaces that a computer
has to be used to manipulate the data. For our purposes of building
a mesh for use in a CFD analysis, it is not necessary to understand
the mathematics behind the descriptions, but the analyst should
have some knowledge of the variety of types of surface that exist.
For those who are interested, several books describe the ways in
which these computer descriptions of objects are handled in
computer-aided design (CAD) systems [19,20,21,22].

When we know that the geometry data exists we can start to build
the mesh as we know that we can find the coordinates of any point
on the bounding surfaces of the domain.

6.4.2 Determining The Mesh Structure

Having made sure that the geometry description is complete the
next step is to decide the type of mesh structure that will be used.
Sometimes this might be dictated to us by the CFD software that is
to be used, as some programs only allow a certain structure, or the
structure might be decided by the geometry of the domain. As a
mesh with a regular structure is simpler to create and should enable
the CFD solver to be computationally more efficient, we might
attempt to fit, mentally at least, such a mesh to the geometry. If this
fails then we must use a mesh with an irregular structure. Although
this will lead to some extra work, the effort can be reduced by
trying to build a mesh that has a regular structure for much of the
domain, only using an irregular structure where absolutely
necessary.

Having decided on the mesh structure, a mesh layout can be
determined and an estimate made of the number of cells that will be
required. To do this requires considerable user-experience, and both
the layout and number of cells will depend on the flow that is
assumed to take place within the domain.

Chapter 6. Building a mesh

126

Once these preliminaries are finished we can think about actually
building the mesh. First we must decide upon the means of creating
the mesh, and this will depend upon the software tools that are
available to us. For simple geometries a short computer program
could be written to produce a mesh, but often we will need to find a
solution to flow problems in more complex geometries. Some CFD
packages have a mesh generator built into the pre-processor
program and this may well be suitable for some problems. Also,
there are other commercial packages that can be used. Usually,
these will be commercial finite element pre-processors, but other
programs do exist as we shall see later. It is important to note that
every organisation will have different tools available, and the
analyst must find out what these are.

6.4.3 Building a Simple Mesh With a Regular Structure

Many problems can be solved by using a mesh that has a simple
regular structure. This is made easier by the fact that many CFD
packages, if they require a mesh to have a regular structure, allow
some cells to be declared as what are known as dead cells. This is
an extremely useful feature that enables a variety of blocks of
regular cells to be used to model some complex geometries. For
example, the car problem described in Chapter Five can be thought
of as nine two-dimensional blocks arranged as shown in Fig. 6.5.
The flow domain consists of blocks 1, 2, 3, 4, 6, 7, 8 and 9, and
block 5 is obviously inside the vehicle surface. It is, therefore, the
cells in block 5 that are declared as dead cells. It should be noted
that even when dead cells are declared the appropriate number of
cells must be created as it is the existence of these cells that keeps
the book-keeping of the analysis program correct. This book-
keeping is essentially the management of the data storage in arrays,
and leads to efficient solutions.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

127

One common way of producing a regular mesh on each block is to
use the hierarchy of entities as shown in Fig. 6.6. In this figure we
consider the hierarchy for four-noded two-dimensional cells or

Chapter 6. Building a mesh

128

eight-noded three-dimensional cells. We can see that at the bottom
of the hierarchy is the basic geometrical entity which is a point,
several of which can be linked to form lines (from 2 points), arcs
(from 3 points) or splines (from 4 points or more). By combining
adjoining lines, arcs and splines the third level entity, the edge, can
be created. If four edges form a closed loop they can be seen to be
the boundaries of a surface and six surfaces can be used to bound a
volume. This set of relationships is determined by the elements
being considered as, once the surfaces for a two-dimensional
problem or the volumes for a three-dimensional problem are
defined, the cells can be formed. This is done by mapping the
surfaces into a square, and by mapping the volumes into a cube.
These squares and cubes are used to define a local coordinate
system in which the cells can be created before being transformed
back to the global coordinate system which defines the real domain.
Whilst commercial software packages use such a hierarchy to
produce a mapped mesh, often it is useful to think in terms of this
hierarchy even if the mesh is to be produced by some other means
such as a simple computer program.

Returning to the car example, Fig. 6.5, each block can be seen to be
a surface with four edges. The mapping of a mesh onto this surface
is fairly straightforward and will be discussed in Chapter Ten. The
mesh can be created with the cells unevenly spaced so that more
cells are placed in critical regions of the flow. This is done by using
a geometrical progression to bias the positions where the points are
created. Such a progression creates points with the distance
between neighbouring points being governed by a simple ratio. For
example each cell may be 0.8 times the length of the previous one.

Finally, before creating a mesh, the node and cell numbers have to
be calculated within each block. This is done by allocating the
number of cells in the local coordinate directions for each block,
remembering that the number of cells in the two or three local
coordinate directions must be consistent with a regular mesh. For
the car example a sensible number of cells might be as shown in
Fig. 6.7 where the cells within each block are shown for a region

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

129

close to the vehicle surface. This mesh has been created by placing
several cells in the direction normal to the solid surfaces so that the
boundary layer region can be predicted more accurately.

Fig. 6.7 A mesh around a car.

6.4.4 Using Commercial Mesh Generation Software

Commercial mesh generation packages have been around for some
time now and are aimed at the finite element structural analysis
market. The meshes that they produce can also be used for CFD
calculations, providing that they are built with the special
requirements of the CFD solver program in mind. As structural
finite element work involves many different element types and the
use of many materials, these mesh generation packages are
extremely general in their capability. This generality is a great
strength but it can also make the packages slow to use for CFD
applications, as the database of the package is often very large and
so stored on the secondary storage media of a system, usually disks.
This can make data access slow. Another inefficiency can arise
when the programs ask for information that is not relevant for CFD
applications. Often this involves the definition of material

Chapter 6. Building a mesh

130

properties for every block in the mesh. In structural calculations the
properties may well vary form block to block as different materials
are used, but in flow problems it is usual to have only one fluid.

Commercial mesh generation packages usually have the following
components:

• a geometry creation routine, where two- or three-
dimensional geometrical data can be created in the form of
points, lines, arcs, splines and, sometimes, surfaces. An
interface to extract similar data from CAD systems is a
common feature as well.

• a domain definition routine. This allows the creation of
surfaces, in two dimensions, or volumes, in three
dimensions.

• a mapped-mesh generation routine. This enables a mesh
with a regular structure to be created within the domains.
These domains must be topologically consistent with the
element type being used. For example, if four-noded
quadrilaterals are being used to mesh a two-dimensional
domain, then a four-edged domain must be used.

• a free-mesh generation routine. This enables a mesh
without a regular structure to be created within the
domains. In this case there is no restriction on the form of
the domains, and so they can be either surfaces bounded by
any number of edges (for two-dimensional problems) or
volumes enclosed by a set of these surfaces (for three-
dimensional problems).

When using commercial mesh generation software, hierarchies such
as that shown in Fig. 6.6 are used. Usually, this does not cause a
problem, but there is one area where errors in the modelling of a
geometry can occur. Coons patches are an obvious choice for
defining the geometry of a surface within the hierarchy, as the
edges are used to define the surface. As we discussed in Section
6.4.1 such a representation of a surface may not be adequate if the
patch is too large for the curvature of the surface. One way of

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

131

overcoming this problem is to define smaller surfaces, but this
involves much more work on the part of the analyst. Another way is
to use more accurate surface descriptions, say Bezier surfaces or
NURBS, derived from a CAD model of an object. Many
commercial finite element pre-processors can read these more
accurate surfaces from the database of a CAD system. Then, a set of
edges can be used to define a Coons patch surface. Once this has
been done, the user can tell the pre-processor to calculate the mesh
points on this surface by first calculating the coordinates of the
points on the Coons patch and then recalculating the coordinates so
that they are positioned on the more accurate surface.

As has already been stated, when using mesh generators aimed at
producing meshes for finite element structural analysis problems
extra information has to be provided during the mesh generation to
define the structural properties of the elements as they are created.
This not only slows down the mesh generation, but it also means
that we have to be selective when extracting the data required by a
CFD analysis. At this stage in the CFD analysis process all that is
required is a simple definition of the mesh that can be read by the
CFD pre-processor. This minimum set of information is restricted
to two items:

• a list of the positions in space of all the nodes in the mesh,
usually this will be a list of x-, y- and z-coordinates.

• a list of the element numbers, together with their type and
the numbers of the nodes that are attached to them. This
known as the connectivity list.

Most mesh generation packages can write this data to a file which
has then to be read by the CFD pre-processor. Some pre-processors
will read the mesh information file from a small number of the most
common commercial mesh generators. If the pre-processor does not
do this, then the data has to be translated into a suitable format. This
is done by a small computer program which must be written by, or
for, the analyst. It is worth noting that each pre-processor reads the
mesh data in a different format, and that this can depend on the

Chapter 6. Building a mesh

132

needs of the software. For example, programs that only use a
regular mesh need only read the nodal coordinates, provided that
they are given in a pre-defined order, as the connectivity list is
implicit in the regular mesh structure. Conversely, programs that
can use an unstructured mesh will read both the nodal data and the
connectivity list in their own pre-defined format.

6.4.5 Some Automatic Mesh Generation Algorithms

For simple geometries it is easy to see how a mesh can be built, but
when the geometry becomes more complicated the meshing process
is more difficult. Several techniques have been developed that can
take complex two- and three-dimensional geometries and then
automatically produce a mesh that models the geometry. Typically,
the mesh will have an irregular structure. As we said at the
beginning of this chapter, mesh generation is a costly part of the
CFD analysis process because of the large amount of manpower
that can be required to build the mesh for a complex geometry. Any
savings in the time taken to build a mesh could make CFD a more
attractive solution for some engineering design problems, and so
these automatic mesh generation techniques are being actively
researched.

The first method that we will discuss is Delaunay Triangulation
[23,24,25]. Figure 6.8 shows this algorithm at work for a two-
dimensional case where triangular elements are to be created. The
algorithm is easily extended to three dimensions where tetrahedral
elements would be formed. In Fig 6.8a we can see that the basic
technique is started by producing nodes on the boundary of the
domain and nodes inside the boundary. In this case there are twelve
nodes on a square boundary and one node inside the domain. To
ensure that the final triangulated mesh has no gaps in it, three extra
nodes are then created that define a super-triangle. From Fig. 6.8b
we can see that these extra nodes have to be placed so that they
define a super-triangle which encloses all of the original nodes of
the problem. This super-triangle is taken to be the first element and
then one of the original nodes is used to split this element into three

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

133

new elements (Fig. 6.8c). Now an iterative element creation
procedure can begin. One by one each of the remaining nodes is
considered and the mesh modified. To do this a circle is created for
each element such that it passes through each of the three nodes of
that element. Looking at Fig. 6.8d we can see the circles of the
elements and we will consider node number 2. This node lies
outside two of the circles and inside the other. The triangulation
algorithm states that if a node lies inside a circle then the element
that the circle is attached to should be deleted. Once all the
necessary elements have been deleted, new elements can be created
that include the node being considered. This is shown in Fig. 6.8e
where the lower element of Fig. 6.8c has been deleted and three
new elements have been created which are joined at node number 2.
Then another node is considered and the process continues.
Eventually, a final mesh is created such as that in Fig. 6.8f. This can
then be modified so that only the original domain, in this case the
square, is modelled. This is done by deleting all the elements which
are attached to the nodes that formed the super-triangle. Finally, the
shape of the remaining elements is checked and, where necessary,
the elements are modified to be as near to equilateral triangles as
possible. This produces a mesh which does not have elements with
a very distorted shape as these elements could cause numerical
problems when the solver is run.

Chapter 6. Building a mesh

134

The second method is based on the use of the Quadtree and Octree
methods [26,27]. These methods take a domain and place it inside
four squares, if it is a two-dimensional problem, or eight cubes, for
a three-dimensional problem. These are then sub-divided until the
required definition is acquired. Hence the name Quadtree refers to
the structure of the elements in two dimensions and Octree refers to
the three-dimensional method. Looking at Fig. 6.9a we can see an
example of a two-dimensional domain that is to be meshed. Four
squares are placed over the domain, as shown in Fig. 6.9b, and a
node created where the squares are joined inside the domain. Each
square can then be sub-divided into four more squares and more
internal nodes created. Two further sub-divisions are shown in Figs.
6.9c and 6.9d. Once the element size for the bulk of the mesh is
small enough, only the elements that cover the domain boundary
are sub-divided. This selective sub-division is shown in Fig. 6.9e,
where the shaded circles denote the nodes that are external to the
domain but are attached to elements that cover the domain

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

135

boundary, and the other circles denote internal nodes. This selective
sub-division can be continued as required, but it leaves a mesh that
is a stepped representation of the domain. To overcome this the
external nodes are moved so that they are on the surface of the
domain. Finally triangular elements can be created to link all the
nodes.

Specialised software is available to perform mesh generation using
forms of Delaunay triangulation and Quadtree/Octree methods, but
commercial finite element mesh generation software can also be
used to generate a mesh with an irregular structure in an automatic
way. This is often done by meshing the surface of the domain,
using triangular elements. Then the volumes that have been defined
by the surfaces can be meshed using tetrahedral elements formed
from the elements on the surface. At first sight this might appear to
restrict such free-mesh generation methods to only using tetrahedra.
These can, however, be easily converted to eight-noded brick

Chapter 6. Building a mesh

136

elements as shown in Fig. 6.10. There a single tetrahedral element
is taken and new nodes formed at each of the mid-sides of the
element edges, at the centroids of each face of the element and at
the centroid of the whole element. These can then be joined as
shown to produce four eight-noded brick elements.

All of these techniques are still in their infancy when it comes to
their application to CFD problems. Much research has still to be
done before meshes that are suitable for CFD problems can be built

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

137

quickly and with a minimum of user intervention. Some people
would even claim that this situation will never be achieved.

6.5 Modifying An Existing Mesh To Give A Better Solution

Once a mesh has been built it is possible to modify it in such a way
that the CFD solution that is produced on the modified mesh should
be a better one. This modification can take place before a solution
to the flow problem is found or afterwards. Some CFD pre-
processors can take a mesh with a regular structure and smooth it,
such that the cells form an orthogonal mesh. This can reduce the
computing effort required to produce a solution and increase the
accuracy of the solution, as we saw in Section 6.3.2. These
smoothing routines are based on the solution of a series of partial
differential equations that describe the variation in the grid
coordinates [28]. In this process the original mesh is used as the
first guess in an iterative solution procedure.

Other mesh modification techniques can be applied after a CFD
solution has been produced on an initial mesh. These techniques are
used to modify the mesh in the light of the results achieved on it
and so the dependence of the quality of the results on the user's
experience is reduced. These modification procedures require that
an initial analysis is made using a crude but realistic mesh of points
in the flow domain. From the results of this initial analysis the mesh
is recreated such that the density of the mesh points is greatest in
areas of the domain where the fluid variables change rapidly or
where the error in the numerical equations is found to be large [15,
see Chapter 14]. The mesh is said to be adapted to take account of
the results generated. Two types of mesh modification are
commonly used:

Chapter 6. Building a mesh

138

• mesh enrichment, where additional points are placed within
the domain at the locations where they are needed as shown
in Fig. 6.11. In this figure a mesh is required to model a
boundary layer. The original mesh of triangles has a regular
spacing but the enriched mesh has additional nodes and
elements in it so that there are more elements near the solid
surface. This techniques is usually applied to meshes that
consist of triangular cells or elements in two dimensions
and tetrahedral cells in three dimensions. Such meshes
allow additional points to be created in the mesh and then
the Delaunay Triangulation method, or similar methods,
can be used to create a new set of elements.

• mesh adaption, where the topology of the mesh stays the
same but the mesh points are moved so that the density of
points increases where required as shown in Fig. 6.12.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

139

Here, a boundary layer is again modelled. Note that the
number of nodes and elements remains the same in the
adapted mesh. Only the node positions are changed. This
movement of the points can be brought about by using
modified forms of the partial differential equations that are
used in some grid generation methods as was discussed at
the beginning of this section.

By using these smoothing or adaption techniques the accuracy of
the solution can be increased, but there is a penalty in that extra
computational effort is required.

Chapter 7. Setting the fluid flow parameters

140

7 SETTING THE FLUID FLOW
PARAMETERS

We have seen in Chapter Six how to build a mesh. This is the first
computational task of the pre-processing of a CFD analysis. Now
that the mesh data can be read by the CFD pre-processor, the
specification that was determined during the thinking phase of the
analysis, Chapter Five, has to be translated into terms that the pre-
processor can understand.

This specification of the flow problem tells the CFD software the
exact problem that is to be solved, and it is achieved by performing
the following tasks:

• specifying the fluid properties such density and viscosity
• determining which flow-related variables have to be

calculated
• specifying the boundaries of the geometry as sets of cell

faces
• applying appropriate boundary conditions to each set of

faces
• defining the initial conditions for the simulation.

Note that the geometrical locations within the flow, such as an inlet
or a wall, have to be defined as sets of cell faces or even cells. This
is because the CFD solver knows nothing of the real geometry of
the problem, it only has information on the mesh of the flow
domain.

This stage of the analysis process is carried out by giving
commands to the pre-processor program of the CFD package.
These pre-processor programs are usually interactive programs,
where the commands can be entered using many of the input
devices available to the user such as the keyboard and a mouse.
This allows the specification of the flow to be built up in small
stages. It is useful to enter the commands in groups that relate to
one particular part of the specification. For example, these groups

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

141

might be commands specifying the boundaries of the domain or the
numerical control parameters. Examples of the ways that this
happens in practice are given in Chapter Ten where some
simulations will be performed using commercial software. To assist
the user, the status of the specification can be checked at any time
by asking the pre-processor to show some part of the data.

Sometimes when entering the data for a series of similar fluid flow
problems, interactive input can become a boring and repetitive
process and so most of the CFD pre-processors allow a user to
create a datafile with a text editor. This datafile contains the
necessary input for the pre-processor. Some programs will even
write such a file from the data that has already been entered and this
is extremely useful as the file of commands should be error-free.
Using such files of commands can save a large amount of data
preparation time.

7.1 Specifying Fluid Properties

Fluids possess a variety of properties, as we saw in Chapter Two,
and the solver program must be given some way of calculating the
values of these. When solving problems with CFD two of the most
important properties are the density and laminar viscosity of the
fluid.

For simple problems, where the fluid is assumed to be laminar and
incompressible with no heat transfer effects, the density and
viscosity are taken to be constants. These constants are given to the
software by simply entering the appropriate value. One possible
mistake is to confuse the two ways of stating a fluid's viscosity. The
standard viscosity mu, also known as the dynamic viscosity is the
constant that links the shear of a fluid to the shear stress, and the
kinematic viscosity nu is the ratio of viscosity to density, rho, i.e.

Chapter 7. Setting the fluid flow parameters

142

(7.1)

For air, where the density is about 1 kg/m sup 3, any mistake is
unlikely to be found from the results, but for liquids like water,
where the density is 1000 kg/m sup 3, the result of a mistake could
lead to large errors in the calculated solution. As a check, the units
of viscosity are kg/ms and the units of kinematic viscosity are m
sup 2/s. For the common fluids, tables of the density and viscosity
values have been drawn up [29,30].

If the flow is known to have significant variations of temperature,
perhaps due to heat transfer, then the viscosity will vary as a
function of the temperature. The pre-processor may well allow the
user to specify the relationship or, at least, allow the user to switch
on some standard variation of viscosity. A common variation that is
used is a power law form [3]:

(7.2)

which can be seen to be a non-dimensional relationship. Here the
subscript refers to a reference value of viscosity or temperature and
omega is a constant which has the value of 0.76 for air. Also the
Sutherland formula can be used [3]:

(7.3)

where S is a constant and has a value of {110 sup o} ~K for air.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

143

The same is also true of density, where various gas laws can be
used to find the density from the pressure and temperature of a gas
[31]. For example, we could use

(7.4)

which is the isentropic relationship for processes which are
reversible and adiabatic (where gamma is the ratio of the specific
heats and k is a constant}, or

(7.5)

which is the ideal gas relationship, where T is the gas temperature
and R is the gas constant.

When the viscosity and density vary, the flow problem is more
complex than that of a simple incompressible, viscous flow. Some
discussion of how these problems are solved using CFD is given in
Chapter Eleven.

Finally other properties may have to be defined, but which
properties these are will depend on the problem. Some examples of
these additional properties are the thermal conductivity of a fluid
which is needed if we are simulating heat transfer problems, or an
effective turbulent viscosity which is needed for the simplest
turbulence models.

7.2 Determining the Variables That Need To Be Calculated

Once the fluid properties have been defined we need to determine
which variables are to be calculated. The variables that are needed
depends on the way in which the governing equations have been

Chapter 7. Setting the fluid flow parameters

144

discretised and the algorithm set up to solve them. With the
standard SIMPLE-like algorithms, the pressure has to be calculated
together with some of the velocity components. In one dimension
only a single component, say u, has to be found; whereas in two or
three dimensions u and v or u, v and w have to be found
respectively. When we discussed the governing equations in
Chapter Two, we saw that these variables completely define a
laminar, incompressible flow, and could define a turbulent
incompressible flow, if only we had the computer power to solve all
the equations with sufficient time resolution.

As, usually, there is not sufficient computer power available to
resolve the effects of turbulence, these effects have to be modelled.
This means that a set of variables that are part of the turbulence
model has to be calculated. Exactly which variables are required
depends on the turbulence model that is to be used, and some of the
models were reviewed briefly in Chapter Two. The simplest
turbulence model is to specify a single value of the additional
viscosity mu sub T due to turbulence. This quantity, can be
regarded, in effect, as a property of the fluid and its specification
has already been mentioned. Other common ways of calculating the
additional viscosity due to turbulence are:

• to find it from a mixing length which has to be specified for
a boundary layer or wake. When using this turbulence
model, no additional partial differential equations have to
be solved but the pre-processor has to be used to give the
solver some way of calculating the mixing length and an
expression for converting this to the additional viscosity.
This model is normally only used for very simple
geometries as this makes it easy to specify the mixing
length in terms of the geometry.

• to find it from a set of auxiliary partial differential
equations where one, two or even more equations are
required. The industry-standard method is the two-equation
model that uses turbulence kinetic energy k and the rate of
dissipation of k, denoted by epsilon. Despite the fact that

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

145

this turbulence model can produce poor flow predictions in
some circumstances, it still gives usable results for many
flow situations. As we saw in Chapter Two there are other
relationships that could be used, and these include algebraic
stress models and Reynolds stress models.

For problems that involve heat transfer the fluid temperature, or
perhaps the fluid enthalpy, must be calculated. The equations to do
this are similar to those for momentum transfer. For example, in
equation 2.8 the variation of the scalar variable, the velocity
component u, is described, and the other variables can be treated as
just additional scalar variables. Chapter Eleven looks at how the
effects of heat transfer are modelled and also reviews some other
flow types such as compressible flow. In both of these cases the
density can vary throughout the flow field and so the fluid density
might be an additional variable that needs to be calculated. Equally,
as the flow types become more complex so other variables will
need to be calculated.

7.3 Finding the Boundaries

To calculate the required variables, the governing partial
differential equations must be solved and so the boundary
conditions for each equation must be specified. When the flow
specification was produced the boundaries were defined in terms of
the geometry of the flow domain, and now we must find these
boundaries in terms of the mesh that is being used. This involves
defining the boundaries as a collection of cell or element faces.

7.3.1 Boundaries for Meshes With A Regular Structure

If the mesh has a regular structure, a knowledge of the local
coordinate system (see Section 6.3.2) can be used to define a set of
indices i,j,k. These indices denote the position of a cell within the
mesh structure and range from unity to the maximum number of
cells in each of the local coordinate directions. The local coordinate
system can also be used to define the faces of a cell within the

Chapter 7. Setting the fluid flow parameters

146

mesh. Looking at Fig. 7.1 we can see a mesh with a regular
structure shown in terms of its local coordinate system. Each cell of
the mesh has six faces and a typical cell is shown with its faces
labelled with the points of a compass. Hence the faces are named
North (N), South (S), West (W), East (E), Top (T) and Bottom (B).
The first four names are fairly standard,being used by a wide range
of CFD programs, but the last two are also known as High (H) and
Low (L) in some programs. For example, the face of the cell that is
at the most positive local x-direction position, in the direction of
increasing the index i, is the East face and the one at the most
negative local x-direction position is the West face.

We can also see, by looking at Fig. 7.2, that any plane of cells will
have a constant value of either i, j or k, and that the extent of the
plane can be defined by knowing the limits the other two indices.
The patch of cells shown in Fig. 7.2 has a constant value of the
index i and the limits are defined by jmin, jmax, kmin and kmax.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

147

Also the faces of the cells in the patch shown are in the positive
local x-direction and so they are all East faces. By using this
notation a set of patches can be defined on the boundaries of the
mesh. These patches have to be defined for all the surfaces where
the boundary conditions are not automatically specified by the
solver program.

It is worth remembering that when defining a patch of cell faces on
a boundary, it is sensible to define patches that will have only one
boundary condition type applied on the patch for each partial
differential equation. This means that the whole patch might be an
inlet or an outlet, but not both. By doing this it is simple to specify
the boundary condition that applies on a patch by a single
command.

7.3.2 Boundaries for Meshes With An Irregular Structure

When a mesh has an irregular structure the problem of defining the
boundaries becomes much more difficult. Actually finding the cell
faces that are the boundaries of the mesh is quite straightforward, as
we shall see. It is the collecting of the various cell faces into groups

Chapter 7. Setting the fluid flow parameters

148

that are suitable for the addition of the same boundary condition
that is difficult.

Two pieces of information help us to find the cell faces that are on
the boundary of the mesh. First, each face of a cell is uniquely
defined by the nodes that are on the face and, second, the faces on
the boundary of the mesh can only be associated with one cell,
whilst those internal to the mesh must be associated with two or
more cells. This is shown in Fig. 7.3, where it is clear that the
internal face is common to the two cells and that the external faces
are only related to one of the two cells.

The process of finding the faces that are on the boundary of a mesh
is called a free-face check. The algorithm used to do this is shown
in Fig. 7.4, from which it can be seen that each cell is considered in
turn. Then each face within a cell is found in terms of the numbers
of the nodes attached to it. A unique label for each face on the cell
is then found from these node numbers. Each of these face labels is
then checked against a list of the face labels stored in a database.
This database is created as the process is carried out and records the
number of cells that a given face is attached to. If a face label does
not exist in the database then an entry recording the new face label
is made in the database and the count of occurrences of the face set
to unity. If the face has been listed before the count is increased so

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

149

that it reflects the number of elements associated with the particular
face. Once all the faces on a cell have been processed then a new
cell is chosen, and after all the cells have been processed the
database will be complete. By checking the database, a list can be
made of all those faces that are attached to only one element. These
must be the faces on the boundary of the mesh, and the list of faces
is known as a free-face list.

Once the free-faces have been identified, they can be grouped into
the required sets of faces for the different types of boundary
conditions. This is usually done by displaying the faces in the free-
face list on a graphics screen in a variety of ways. These include:

Chapter 7. Setting the fluid flow parameters

150

• a hidden-line display, where the user sees the faces just as
they would be seen if they existed physically. That is, faces
that are behind other faces, as seen be the viewer, are
hidden from view.

• a display of the faces within a given volume.

Once the displays of the bounding faces of the mesh have been
produced the pointing device of the terminal or workstation can be
used to pick out the faces. This can be done either face by face, or
whole sets of faces can be picked by placing a window on the
screen and noting the faces that are within the window. This is
illustrated in Fig. 7.5 where we can see a simple mesh with an
irregular structure. The flow inlet consists of the nine faces labelled
in the left hand view. These faces could be picked manually using
the cursor on the display screen, but, by changing the view of the
mesh to that shown on the right hand side of the figure, a
rectangular window can be defined using two corner points as
shown. Then all the faces that are wholly within the window, the
nine required faces, can be labelled by the pre-processor as being
boundary faces. This windowing method has great advantages when
dealing with large numbers of boundary faces.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

151

7.3.3 Grouping Faces Together

Regardless of whether the mesh has a regular or an irregular
structure, the boundary faces must be grouped together into sets of
faces using the methods we have just described. Each set of faces
can then be given an index that will allow the set to be related to a
boundary condition. Sometimes, the boundary condition on a set of
faces will be unique to that set, however, in some cases, the same
boundary condition may well be applied to several sets of faces. In
this latter case, each of the sets can be given the same index and
then the index can be linked to the given boundary condition.

Finally, it is useful to know that some CFD solvers will find all the
cell faces on the boundary of the mesh. This list of faces can then
be compared to the boundary faces that have been specified by the
user. It is common for any unspecified boundary faces to be
assumed to be solid walls. This can save a great deal of effort for

Chapter 7. Setting the fluid flow parameters

152

the user if the mesh is for a flow problem such as a complex
internal flow. These meshes can have multiply connected passages,
the boundary faces of which can be very difficult to view. By
considering all unspecified faces to be solid walls, the user does not
have to specify these faces and the saving in effort is large if this is
done.

7.4 Defining the Boundary Conditions

Now that we know where the boundaries of the mesh are, in terms
of the cell faces, and now that we have grouped them appropriately,
we have to consider which boundary conditions should be applied.
For each partial differential equation that has to be solved, the
numerical method that is used determines which boundary
conditions can be specified. In some cases one particular boundary
condition must be specified, such as the specification of the velocity
or pressure. In other cases, certain conditions at a boundary will
happen naturally if nothing is specified there. Often, the software
will predict a flow which has the derivatives of the velocity normal
to a boundary calculated as zero if no other specification is made.
Of course, if the analyst wishes, such conditions at the boundary
can be changed by specifying the appropriate values.

In most CFD problems several different types of boundary
condition are usually applied. Boundary conditions were discussed
in Section 3.5.4, but a summary of the possible types is given here
for completeness. When using a SIMPLE-like algorithm the
common boundary conditions that are applied come from:

• the momentum equations, where the velocity components
can be specified on a boundary. If this is not done then the
derivatives of the velocity components in a direction
normal to the boundary will be automatically set to zero. As
this is the required condition at a plane of symmetry, and is
often the required condition at an outlet, this automatic
specification is extremely useful.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

153

• the pressure correction equation. This requires that the mass
flow through a boundary is specified or it will be given as
zero; and it also requires that the pressure is specified at
some point in the flow domain. This latter requirement
comes from the nature of the pressure correction equation,
which can only relate the derivatives of the pressure, not
absolute values of pressure. Consequently, if the value of
pressure is not specified at some point then the pressure
solution is singular and cannot be found. A further
complication in specifying the pressure is that at places
where it is specified the continuity equation does not hold.
This comes about because the continuity equation is not
enforced at a point if the pressure is fixed at the point, as
the specification of the pressure overwrites any information
about the continuity equation at that point. If the continuity
of the flow is not strictly enforced then fluid can leak into
or out of a system through a point where the pressure is
specified.

Whilst these are the main boundary conditions that come from the
partial differential equations, flow problems are often not described
in such terms. For example, during the initial specification of the
problem, discussed in Chapter Five, we might have decided that the
boundaries should show the following characteristics:

• a solid wall with a turbulent flow over it. To model this
accurately requires many points through the boundary layer
as the shear at a solid wall in a turbulent flow is much
greater than that for a laminar flow. The computational
effort required to do this can be reduced by assuming that
the flow velocity varies in a logarithmic fashion through the
boundary layer, as found in experiments. This was
discussed in Chapter Three. Then empirical approximations
to the values for the velocity at points just away from the
wall can be used. Similarly, the boundary conditions for the
additional turbulence parameters, such as the turbulent

Chapter 7. Setting the fluid flow parameters

154

kinetic energy and its rate of dissipation, can be set in an
automatic way to some empirically-derived values.

• a free surface. Here, the fluid pressure is fixed but the fluid
velocity and the shape of the boundary are not known.
These surfaces occur, typically, when we model the surface
of a liquid in contact with air, for example when calculating
the flow around a ship. Special CFD programs can handle
these boundaries, but if the surface shape does not have
need to have the effects of waves modelled then we can use
a symmetry plane as an approximate model of these
boundaries.

• moving walls, such as a piston in an internal combustion
engine, where a solid surface moves in the flow.

• an inlet with a turbulent flow coming through it. Here the
turbulence parameters are convected into the fluid flow
domain and the levels of the variables that are brought in
must be specified.

Some examples of the application of boundary conditions will be
given when we look at the case studies in Chapter Ten. There we
will see that it is usual for the common boundary condition types to
be pre-programmed options of the software.

At all the boundaries, it is possible that a given boundary condition
may apply for only a fixed amount of time. This could be the case if
the problem is time dependent, for example when modelling the
opening or closing of a valve. In these cases, for each patch of cells
or each boundary index, the CFD pre-processor can be used to
assign the appropriate boundary condition and the duration of its
application.

7.5 Defining the Initial Conditions

Many solution algorithms require that some form of initial flow
field is specified for the solver. This could be due to the flow
actually being time dependent, where the initial state of the
variables is required to start the calculation, or it could be due to the

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

155

CFD solution algorithm using a quasi-time-varying solution
algorithm to calculate a steady state solution. Equally, the non-
linearity of the problem will demand some initial guess for the
variables which will have to be supplied either as a series of default
values or by the user. Chapter Three discusses these factors.

In all cases any initial flow field must be specified for every cell in
the flow domain. Usually, the specification of the initial conditions
is fairly straightforward, as some simple flow field can be given
such as the flow being at rest with zero pressure everywhere or
some uniform fluid motion could be specified such as that
calculated from a potential flow solution. Such a solution is an ideal
flow solution which would occur if a fluid had no viscosity and
could not be compressed. Sometimes the initial conditions are
specified for groups of cells with a constant value of a variable
being set within each group.

If turbulence variables such as k and epsilon are being used then
they are usually set to a small positive value or to some realistic
value. This is done to prevent an error occurring during the
calculation procedure where the program attempts to divide by zero
when these variables are being used. Ways of calculating the size of
the initial magnitude of these variables will be discussed in Chapter
Ten when some simulations are performed.

7.6 Using User-Generated Subroutines To Influence The
Simulation

Each pre-processor will allow the user to specify the properties,
boundary and initial conditions for a wide variety of flow problems.
This is usually sufficient for most CFD simulations that will be
calculated. However, there will always be an exception to this and
sometimes the user will want to define some information that is not
standard. To allow this, some CFD software systems allow users to
write their own computer programs which can influence the
workings of the solver.

Chapter 7. Setting the fluid flow parameters

156

One common way of doing this is for the user to write some
FORTRAN subroutines that are linked into the solver program, or
lines of FORTRAN code can be written into some general access
subroutine that is provided by the CFD software supplier. This
subroutine is then compiled and the object code linked with the
main solver program libraries to provide a new, modified solver
program.

This might sound straightforward but in reality it is very difficult,
as the user has to find out so much about the way the solver has
been written. Users should be extremely familiar with CFD
simulations before they embark on writing their own software and
embedding it into the solver. This is a technique for the expert in
the use of CFD.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

157

8 OBTAINING A SOLUTION

As we have now created a mesh to describe the geometry of the
flow domain (see Chapter Six) and also specified the properties of
the fluid and the boundary and initial conditions of the problem (see
Chapter Seven), the actual flow problem is completely defined.
This means that the CFD software should have all the information
that it requires about the flow. We are nearly ready to run the solver
program and obtain a solution.

This chapter looks at the final preparation of the data and the
running of the solver. In particular we will discuss:

• how to set up the data for the solver. As the simulation is
achieved by a numerical transformation of the governing
equations, we must specify the information that is required
to control the numerical solution algorithm. Further,
administrative information such as the form of the output of
the solver program must be specified.

• running the solver and then analysing the output to identify
any problems that have occurred. These can then be
rectified before running the solver again to obtain a better
solution.

We mentioned in Section 4.1 that the whole analysis process cannot
be carried out by just executing a list of tasks one after the other.
Sometimes we must run the solver, check the results and then
rebuild the computer model so that the simulation is improved.
Often, the production of a good simulation will be a continuing
process of trial and error.

8.1 Final Data Preparation

8.1.1 A Note On Iterative Processes

When using a CFD package the details of the numerical solution
process will usually be hidden from the user. However, some

Chapter 8. Obtaining a solution

158

features of the process are common to all packages and the controls
that have to be used are often similar, even though the values of the
control parameters may be algorithm- or problem-specific or both.
In particular, as we saw in Chapter Three, the non-linearity of the
equations forces the solution process to be iterative, regardless of
whether the problem is time dependent or not. This means that an
initial solution, normally a guessed solution, is required at the start
of the solution process, and then the numerical equations are used
to produce a more accurate approximation to the numerically
correct solution, which is one in which all the variables satisfy the
governing equations. This new approximation, the updated solution,
is then used as the new starting solution and the process is repeated
until the error in the solution is sufficiently small. Each repetition of
the solution process is known as an iteration.

Sometimes during an iterative process the updated solution at the
end of one iteration can be very different from the solution at the
start of the iteration. If we consider Fig. 8.1 we can see a graph of
velocity against time. Let us imagine that we have a numerical
scheme that predicts the velocity V sub {new} at some time
DELTA t ahead of the current time by using values of the current
acceleration a and the current velocity V sub {old} in the following
way:

(8.1)

or

(8.2)

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

159

which is a first-order method in time. If we know both the current
acceleration and velocity then we can predict the new velocity, and
so given the new acceleration and velocity we can march forward in
time finding the velocity-time relationship. Looking at the figure
we can see the actual velocity-time relationship and two
approximations bases on the above equations. In both of these the
initial acceleration is used to predict the velocity. It is clear from
this that if the time interval is small, say DELTA t sub 1, then the
error epsilon sub 1 between the predicted velocity and the actual
velocity is small, but if the time interval DELTA t sub 2 is large
then the error epsilon sub 2 is large. Similar errors can occur when
carrying out a CFD simulation and if the error gets ever larger
during the solution we will have a very inaccurate flow solution and
convergence of the solution will not be achieved (see Section
3.4.1). So that we can see whether or not this is occurring we need a
measure of the error of the solution.

Chapter 8. Obtaining a solution

160

Fortunately, the numerical equations that we wish to solve can also
be used to find such a measure of error. These measures of error can
be used to see if a solution process is converging, and they are
known as residual errors or residuals. At the end of each iteration,
the latest solution can be used to generate all the terms in the
various partial differential equations. For example, if all the terms
in the momentum equation, equation 2.8, are placed on the left hand
side of the equation and the individual components of the equation
formed from the solution for the velocities and pressure, then these
terms can be summed and the sum should be zero. As the solution
is only an approximation to the required values of the variables, the
sum will not be zero. It is this sum that is the residual error.

As the solution process progresses from iteration to iteration, the
residual errors from each equation should reduce. If they do reduce
then the solution is said to be converging. If the residuals become
ever larger then the process is said to be diverging. Most CFD
solvers write the residuals to a datafile or even to the terminal
screen at the end of each iteration. This enables a quick check on
the progress of the solution to be made.

If the solution scheme is time dependent or quasi-time dependent
then the solution at the end of each time step needs to be converged
before moving to the next time step. This can mean controlling
several iteration procedures. As we saw in Section 3.5.1, one
iterative procedure might solve the simultaneous equations
generated by linearising the partial differential equations, the
second iterative procedure finds a solution at one time step and
accounts for the non-linearity of the problem and a final iteration
procedure, if required, moves the solution through the different time
levels. All of these iteration processes need to be controlled.

8.1.2 Controlling The Iterative Processes

To prevent the whole solution process from diverging, when the
residual errors become larger from iteration to iteration instead of
becoming smaller, we must control all the iterative processes in

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

161

some way. In Section 3.4.2 we discussed the use of iterative
solution algorithms to provide solutions to a set of simultaneous
equations. If these are used by the CFD solver program then the
controls are often built-in to the program, but occasionally it may
be necessary to provide values for the number of iterations that are
to be performed in solving the simultaneous equations as well as
values for the relaxation factors. In CFD calculations it is always
important to ensure that the velocity field, used in the momentum
equations, satisfies the continuity equation. This means that when
using a SIMPLE-like algorithm more iterations are used to solve
the pressure correction simultaneous equations than are used to
solve those from the momentum equations.

Turning to the control of the other iterative procedures, two
methods are commonly used. For steady state problems the terms in
the equations which contain the time variation are often left out,
and so the solution generated by this type of algorithm has to be
controlled by using relaxation parameters. These take the solution
calculated during the current iteration and scale it so that the
solution used in the next iteration is not too different from the
solution at the start of the current iteration. This is done by using a
relaxation factor omega and the scaling of a variable phi can be
calculated from

(8.3)

Here, phi sub old is the value of a variable at the start of the current
iteration and phi sub calc is the value of the same variable
calculated at the end of the iteration. The relaxation process given
in equation 8.3 uses these two values of phi to produce a value of
phi , i.e. phi sub new , which is between phi sub new and phi sub
old. The solution phi sub new then becomes phi sub old for the next
iteration. This scaling uses values of omega which are between zero
and unity and is known as under-relaxation. Note that if omega is

Chapter 8. Obtaining a solution

162

unity there is no relaxation and that if omega is zero then the
solution does not change at all. Intermediate values of omega
provide scaling between these extremes and enable the user to
prevent divergence of the solution process. Looking at Fig. 8.1
again, a reduced value of velocity obtained by iteration and
relaxation would be more accurate if the time step was too large.
Note that the scaling is carried out for every value of a given
variable, that is at each node or cell.

In CFD simulations where relaxation factors are required to control
the overall iteration process, the factors are usually applied to all
the variables, with omega normally being set in the range 0.1 to 0.3
for the pressure solution and in the range 0.5 to 0.9 for to the
velocity solutions. If the k-epsilon turbulence model is used then
the omega values for these two equations are set to be the same as
those used for the velocity solutions or to lower values. If a mesh is
complex and the cells are not near-cuboid in their shape then the
relaxation factor applied to the turbulence variables might have to
be much smaller, say up to ten times smaller, than the relaxation
factor applied to the velocity variables.

The second means of controlling the overall solution process is to
use a time dependent solution scheme, even if the flow is known to
be steady. Such a scheme mimics the physical changes that a flow
would undergo if it were changing with time, as the modelling of
the time variation smooths out the way in which the solution
changes from one iteration to the next. With time dependent
schemes the main controlling factor is the value of the time step.
This is set to give as small a number of time steps as possible whilst
maintaining a smoothly converging solution. For steady state
problems, only the converged solution, after what is effectively an
infinite period of time, is required and so the time step can be large,
but for transient problems, when the time variation is of interest, the
time step must be small enough to model accurately the temporal
changes in the flow variables.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

163

It is difficult to give specific rules for calculating a value of the time
step that will always give a converging solution, as the stability
criteria of the Navier-Stokes equations cannot be found analytically.
A time step of the order of the residence time t sub res of a fluid
particle in a cell is often used. This is the time it would take a fluid
particle to move through a cell. For example, if a fluid particle
moves in the x-direction, the residence time is given by:

(8.4)

where DELTA x is the length of the cell in the x-direction and U is
the fluid velocity in the x-direction. These values are found for
some typical cell in the flow field. This works well for the
momentum equations which calculate the velocity components, but
the time step may have to be reduced by a factor of, say, one
hundred for the other transport equations such as those for the
turbulent kinetic energy k and its rate of dissipation epsilon when
the standard two-equation turbulence model is used.

8.1.3 Other Solution Control Information

Having decided how to control the iteration processes that take
place, we can now use the pre-processor to build up the remaining
information that is required by the solver. As well as the iteration
control information that includes the relaxation and time step
parameters, we must give the solver some or all of the following:

• the number of time steps to run. This will be one step if the
solver is to produce a steady state calculation.

• the number of iterations to carry out within each time step
whilst resolving the non-linearity of the problem.

• the number of internal iterations required in solving the
simultaneous equations (if iterative methods are used to do
this).

Chapter 8. Obtaining a solution

164

• limits on the residual errors. Using these limits prevents
computing effort being wasted in trying to compute the
solution to some ridiculous numerical accuracy. Once the
all the residuals fall below this limiting value the
calculations are stopped.

• the form of the discretisation of the convection operator in
the momentum equations. Various methods were discussed
in Section 3.5.3. For CFD calculations that involve
complex geometry it is best to start the calculation with a
discretisation which will be likely to produce a converging
solution. This can often mean that the solution will be
inaccurate due to the diffuse nature of the discretisation, as
was explained in Section 3.5.3.

• the data that the solver should store in files or write to the
screen. This data should include all the values of the
variables that are calculated so that they can be analysed
with the post-processing program and also read again by
the solver program if the calculation has to be continued. If
the solution is time dependent several sets of solutions at
various times might be required. Also we will want to
check the residuals of all the variables and so these are
written to a file. As a further check on the convergence of
the solution, most programs allow the user to specify a
location in the mesh, say one cell or node, at which the
program will write the values of the variables at each
iteration or time step.

• the destination of the data that is to be produced. Some of
this data will be written to datafiles, some will go to the
screen. The location of the files, perhaps a directory on a
disk of the computer, will need to be known by the
software.

Once these choices have been made, the specification process is
completed by entering the values using the pre-processor. In some
cases the CFD software as supplied will not write or even calculate
some of the required data itself. In these cases the user has to write
computer program subroutines that can be linked in to the solver.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

165

These subroutines are used to produce the required data from the
information stored by the solver, and some ways of doing this were
mentioned in Section 7.6. It should be remembered that this is the
realm of the CFD expert.

When all the data has been prepared, the pre-processor can be
instructed to write the datafile or files that will be accessed by the
solver program and the solver can be run.

8.2 Running the Solver and Troubleshooting

The way in which the solver program is run will vary from package
to package. It is common, however, for a small set of computer
operating system commands to be written that will automate the
process. This can be done by either the user or the supplier of the
software. These commands make sure that the correct datafiles are
accessed, possibly copying them to another machine if the solver
and preand post-processors run on different machines. They also
run the solver program and then they return the results files to the
user-specified location if this is required.

At the start of any analysis, the user should instruct the solver
program to perform only a few iterations. This enables the user to
perform convergence checks on the solution process by looking at
the values of the residuals either on the screen or in a datafile and
seeing if they are reducing or increasing. After running something
like ten iterations the initial trends in the residuals should be clear.
If they are reducing the solution process is clearly converging and
this is the desired situation, whereas if they are increasing further
thought is required before the convergence properties of the
solution can be determined. Some typical graphs of the residual
value for one of the flow equations plotted against iteration number
are shown in Fig. 8.2.

Often, there is a large increase in the residual value in the first two
or three iterations, but this is nothing to worry about if the residuals
fall after this, as shown in Fig. 8.2a. However, if the residuals are

Chapter 8. Obtaining a solution

166

still increasing after ten iterations then the differences in the
residuals from iteration to iteration need to be examined. If the
difference is increasing from iteration to iteration, the process is
diverging (Fig. 8.2b), but if the differences are reducing then the
process is probably converging (Fig. 8.2c) and it is likely that the
residuals will start to reduce in value if the solver is run for more
iterations.

When the process is seen to be converging then the pre-processor
can be used to increase the number of iterations, to say 100, and the
simulation continued. At this point the solver must also be told to
use the last solution that was calculated as the new initial solution.
Hopefully, this solution was stored in a datafile at the end of the
first run of the solver program. As this prevents computer time from
being wasted, do not use the initial values that were set before the
solver was run. When the latest values of a solution are used as the
initial solution, the calculation is known as a restart calculation.

If divergence occurs, then the first remedy is to check the computer
model for obvious errors. This can be done by reading any of the
input data that has been written by the solver program and by
meticulously checking the data stored by the pre-processor. The
computer model should reflect the original specification that was

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

167

produced at the beginning of the analysis. If nothing obvious is
found then the next step is to change the relaxation factors or the
time step. When using relaxation factors, if the value of omega for
pressure is already about 0.1, then the values for the velocity and
the turbulence modelling quantities must be reduced. Usually the
turbulence variables must be relaxed more than the velocity, and so
the relaxation factor applied is smaller. This process of changing
relaxation and time step values is very much a question of trial-and-
error and so it can involve running several initial sets of say 10
iterations each with different relaxation values. If a converging
solution cannot be achieved, then it is probable that there is some
sort of error in the computer model.

Common causes of divergence related to poor modelling, and some
possible solutions, are:

• a poor mesh which has cells that differ greatly from a
cuboid shape. This is a typical problem if a finite volume
scheme is being used which has some terms in the
numerical formulation missing. These terms might
describe, for example, the non-orthogonality of the mesh as
detailed in Section 6.3.2. It is these missing terms that
should enable the calculation to be accurate on a non-
orthogonal mesh. Smoothing the non-orthogonal mesh
using a procedure that produces an orthogonal or near-
orthogonal mesh might help to overcome this.

• inadequate prescription of the boundary conditions, such as
not specifying the pressure anywhere. This has to be dealt
with by carefully checking the data defined with the pre-
processor.

• poor initial conditions, that are unrealistic and too far from
the the conditions that exist if the solution is converged.
One way of improving the initial conditions is to run a
potential flow solution first. Such a solution assumes that
the flow is both inviscid and incompressible. This, of
course, will not take into account any effects of flow
separation.

Chapter 8. Obtaining a solution

168

• applying insufficient upwinding for the convection terms as
was discussed in Chapter Three. Smoothing the mesh might
help, but the use of a more diffuse upwinding scheme
usually cures the problem, at the expense of getting a less
accurate solution than would have been hoped for.

• the turbulence model. Running the solver with the simplest
turbulence model, i.e. just specifying an effective turbulent
viscosity everywhere should enable some results to be
obtained. These can then be used to start a new calculation
with a more sophisticated turbulence model.

If modelling errors are found they must be corrected, either by
changing the mesh or by using the pre-processor to modify the
input data. Then the solver can be run again and the solution
process checked all over again.

Eventually, it should be possible to achieve a converged solution.
This is a solution where the residuals are several orders of
magnitude lower than the maximum value recorded during the
solution process. Once a converged numerical solution has been
found all that we can be sure of is that the numerical solution
satisfies the numerical equations on the mesh we have used to some
order of accuracy. What we require is that the converged solution
will bear at least some relationship to the physical flow that would
be obtained. Usually, this is the case, but we must check that the
converged solution is reasonable in the light of the expected flow
structures, as discussed in Section 5.1, and as illustrated in the
examples of Chapter Ten. The difference between the physical flow
and the numerical solution could be due to one of the following:

• an inadequate mesh density being used in regions of high
rates of change of the flow variables, for example in a
boundary layer.

• inadequate physical modelling of the flow, especially due
to the use of turbulence models which are too simplistic.
For some flows this is all turbulence models.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

169

• poor specification of the boundary conditions which have
overor under-constrained the flow, typically at an outlet to
the system where the pressure has been fixed as a constant.
This restricts the flow if it swirls out through the outlet as
the calculated pressure needs to be able to vary across the
outlet to provide the necessary centripetal force.

Sometimes it is possible to see these errors during the post-
processing phase and we shall look at various examples of this in
Chapter Ten when we produce some flow simulations. Finding
these errors is really a matter of experience.

Chapter 9. Analysing the results

170

9 ANALYSING THE RESULTS

In the previous chapter we looked at how to obtain a set of results
using the solver program. These results should be a converged
numerical solution to the governing equations, produced with the
appropriate boundary and initial conditions on a mesh that describes
the geometry of the problem. Remember that the solution is strictly
a solution of the numerical problem not of the physical problem,
and that the differences between these two could be due to such
things as an inadequate mesh or a poor turbulence model.

When the numerical solution is obtained it is necessary to
determine whether or not it bears some relationship to the physical
reality. If it is likely that it does, then the required technical
information can be extracted from the results. This chapter looks at
what the results of a simulation are, how computer graphics can be
used to obtain pictures of the results, how the solution can be
checked to see if it is likely to be reliable and finally how the model
can be refined so that the required data can be obtained from the
results.

9.1 The Results Obtained From The Solver

When the solver runs it produces a large amount of data that has to
be analysed. This analysis might be undertaken so that some cause
of divergence in the solution process can be identified, so that the
quality of the solution can be examined or so that useful technical
information can be extracted if it is a converged solution. First we
must consider what information will actually be available to us
when we want to analyse the results.

Information can be produced by the solver in two main forms.
These forms differ in how the data is stored by the computer. In one
form the data is stored using an internationally agreed format that
defines individual characters of data such as the letters of the
alphabet or the numbers 0 to 9. This form of data is known as
ASCII data, after the committee that divised the data standard, and

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

171

can be written to a terminal screen or stored in a file known as an
ASCII file. Each character has to be defined by one byte, i.e. eight
bits, of computer memory and so 256 different characters can be
specified. ASCII files of data can be edited by text processors and
other software, and they are effectively machine-independent which
means that the data can be transferred from one computer to another
computer, even if the machines are from different manufacturers,
without any translation process taking place. Whilst most computer
manufacturers use the ASCII standard, there are other standards
such as EBCDIC which are used by a minority of manufacturers.

Numerical data can also be stored in the second data storage format,
which is known as binary data format. There is a standard for this
method of data storage, but usually, in 1991 at least, the method of
storage is peculiar to each computer operating system or computer
manufacturer. Each of these binary storage methods enables real
numbers, for example, to be stored by four bytes in single precision
or eight bytes in double precision. Binary data is stored in files
known as binary files. These files are not machine-independent and
so can not be transferred from computer to computer without some
form of translation process taking place. Sometimes when a
workstation, for example, is connected to a mini-supercomputer a
translation program will be provided by the workstation vendor to
facilitate the transfer process. By using binary files to store real
numbers, there is a saving in the amount of storage required, as can
be seen from the number of bytes required to store each number.

The type of information produced by the solver program can
usually be controlled by the user but it often consists of:

• values of the residual error for the various partial
differential equations that have been solved. These are
listed as a function of the iteration number or time step. As
was explained in Chapter Eight these values give some idea
as to whether the solution is progressing to a converged
solution. This is usually stored as ASCII data so that it can
easily be read later.

Chapter 9. Analysing the results

172

• values of some of the variables at a limited number of
locations, known as monitor locations, for every iteration or
time step. This data also gives an indication of the progress
of the solution towards a converged solution. For time-
varying solutions it also gives a limited history of the
development of the flow with time. Again this is usually
ASCII data.

• a complete list of the flow variables at all the nodes of the
domain or all the cells of the domain as appropriate for the
way in which the solver works. These lists, also known as
dumps of the data, are produced at the end of the solution
process, but the solver can also be instructed to produce
such a list at intermediate stages in the process. This might
be necessary if the results at several discrete times are
needed to describe a time-varying flow. This is normally
binary data to reduce the storage space that is required, but
ASCII forms can also be requested to make reading of the
data easier, if the amount of data is small, or to allow a
transfer between computers.

• mesh data. This is sometimes produced by the pre-
processor but might be produced by the solver program. It
includes the coordinates of the points in the mesh and, if
necessary, the connectivity list. Depending on the CFD
package, such things as cell volumes and face areas might
also be stored. This data is usually held in binary form to
reduce the required storage, but again ASCII data could be
used for the same reasons as those given for the flow
variable data.

• some form of ASCII file that reports on the progress of the
solution. This file might include an echo of the input data
from the pre-processor so that the input actually used by the
solver can be checked, a repeat of the residual values and
monitor data at each iteration or time step, any user-
programmed results, such as the pressure drop between two
points or the integrated values of pressure to give a measure
of the pressure-derived drag and lift on a object, as well as
accounting information such as the length of time that the
solver took to run and the amount of disk resources used.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

173

In Chapter Eight we discussed how the residual errors can be
analysed and a converged solution produced. Now, in this chapter,
we are concerned with how the flow data at all the nodes or cells in
the mesh can be analysed. Large quantities of this data are produced
by a CFD solver, especially if the mesh is complex and has a large
number of nodes or cells, as might be the case for an industrial flow
problem. Only when small test cases are run is it possible to read
the ASCII files that contain the solution and so for realistic
problems we have to resort to the use of computer graphics
techniques to analyse the results visually.

9.2 Using Computer Graphics For CFD

9.2.1 Using Graphics Hardware

Before considering what can be done with computer graphics let us
think about the hardware that is required to drive the software that
will generate the pictures as well as to display the pictures
themselves. A typical hardware installation will consist of the
following devices:

• a screen or visual display unit (VDU) that is able to
produce a grid of points in a variety of colours. These
points are known as pixels as we said in Section 4.2.2. The
resolution of the screen is determined by the number of
pixels that can be displayed and most graphics screens can
display a grid of something like 1000 pixels in the
horizontal direction by 1000 pixels in the vertical direction.
If the display is monochrome then each pixel can only be
shown as either black or white, whereas if the display is a
colour device then each pixel can be displayed in one of
several colours. Typically sixteen colours or even two
hundred and fifty six colours are used. The screen could be
part of a terminal which is attached to a computer or it
could be part of a workstation.

Chapter 9. Analysing the results

174

• a keyboard which allows the user to interact with the
software by typing commands and replying to questions
from the software.

• a pointing device which should enable a cursor to be moved
around the screen. This pointing device could be a mouse
which is a small device that senses movement either
mechanically or optically, or it could be a simple set of four
direction keys.

• a button box. This is used in the more expensive
installations to manipulate the picture. The box has several
knobs on it that can be used to rotate an existing picture
about any of the three coordinate axes, or to zoom in and
out or pan across the picture.

When the user runs the graphics software, the program should
activate the screen, keyboard, pointing device and button box in
such a way that the user can develop an intuitive feel for the
manipulation of the results.

9.2.2 Using Graphics Software

The graphics software itself is usually supplied as part of the CFD
software package and is known as a post-processor. Sometimes,
however, this software is combined together with the pre-processor
to form a single interactive program that is used for both creating
the computer model and post-processing. Also, post-processors
from other sources such as finite element structural programs might
be available and these can also be used.

These programs enable a user to see the geometry of the flow
problem, the mesh and the results of the simulation by producing
pictures of the available data, usually in colour. Displaying the data
in a visual way condenses the vast amount of information that a
CFD solver can generate into a usable format. As computer power
becomes cheaper, graphics software is often run on interactive
colour workstations which have sufficient display resolution for the
task and also have enough of their own computer power to produce

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

175

detailed pictures in a reasonable time without having an impact on
other users on the network.

By entering commands the analyst can use the CFD post-processing
software. These commands direct the software to build up the
required picture of the data on the graphics screen. Several
commands may be needed to create a picture and, in many cases,
the analyst will want to generate similar pictures from one analysis
to the next. To prevent the user from re-entering a lengthy set of
commands it is often possible for the software to read the
commands from an ASCII file. This file can be created by the user
with a text editor or it could be written by the software itself in
some cases.

When generating the pictures, the stages that are followed are
similar regardless of the type of data being displayed. The display
process involves, first of all, displaying some part of the geometry
or mesh on the screen. This could be a collection of the basic
entities that make geometrical hierarchy, Fig. 6.6, or the boundaries
of the mesh or even some part of the mesh itself. Then, the picture
is manipulated so that the required view is displayed before the
solution itself is shown. This final display might be some of the
velocity data, shown as a set of vectors, or the contours of scalar
variables such as the fluid pressure or the turbulence modelling
variables. These three stages; show the geometry, modify the view
and display the results; can be performed in any order but it is usual
to display the actual results last of all. As this post-processing part
of the analysis process is highly interactive, the user can often move
between these three stages in a seemingly random fashion.
However, for most simple cases, it will be most useful if the order
given above is followed. The following sections deal with each of
these three stages in turn.

9.2.3 Plotting the Geometry

When the post-processing software is started it has to read the files
of results and mesh data. Then the user has to find the required

Chapter 9. Analysing the results

176

view. One way of doing this is to plot some part of the geometry,
normally a part of the mesh used in the solution process, onto the
graphics screen. This can be done by asking the program to display
the basic entities used to create the mesh, if it has access to this data
or the boundaries of the mesh or the mesh itself. Exactly which of
these is used will depend on the capabilities of the CFD software
itself and the user's preference. A simple plot of the boundaries of
the mesh is usually good enough at this stage.

Once some part of the geometry has been displayed, the user can
begin to manipulate the view of the geometry so that the particular
section of geometry that is required to be the centre of interest is
displayed on the screen. For example, in the next chapter we will
produce the simulation for the flow about a car. One area of interest
is the rearscreen and boot of the car where the flow separates from
the vehicle surface. To plot the results of the simulation in this area,
we display the outline of the car and then change the view so that
only the required area in visible. Techniques for carrying out this
manipulation of the view will be discussed in the next section.

Another use of the plotting of the geometry or mesh is to check that
the geometry looks like the physical situation and also to check the
integrity of the mesh. By integrity we mean that the mesh should
both represent the required flow domain and be structured in the
correct way. The display of the mesh will show a user the basic
cells or elements that have been used in the calculation procedure,
and so any significant errors in the mesh or bad modelling practice
can be found.

The way in which the mesh is displayed depends on the mesh
structure that is being used. If the mesh has a regular structure then
the local coordinate system and the point or cell indices can be used
to specify areas of the mesh just as was done in Section 7.3.1.
Sheets of cell faces can be defined in this way and then displayed.
On the other hand, if an unstructured finite element or finite volume
mesh is being used then the cells can be grouped in some way and
the group projected onto some cutting plane in space. Another way

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

177

of displaying the mesh is to draw only the free faces of the mesh. In
the next chapter we will show how some of these methods can be
used.

9.2.4 Obtaining the Required View

Once the geometry has been plotted, the view of the geometry may
well have to be manipulated. There are an infinite number of ways
of looking at any image and so there must be some means of
defining the exact view that is required. The picture on the screen is
drawn as if a single eye is looking at the object being drawn. This
situation leads the graphics software to require the user to define a
few fundamental pieces of data. This data can include such things
as:

• the target point, which is the point in space at which the eye
is looking.

• the eye position, which is the point in space at which the
viewing eye is placed.

• the up-direction, which defines where the top of the picture
should be.

• the viewing area, which enables the apparent size of the
objects in a view to be specified.

Looking at Fig. 9.1, the target point is taken to be at the origin of a
set of Cartesian axes. This target is shown being viewed by a single
eye which can be placed in two different positions. Default values
are always given by the CFD software for the initial specification of
both the target point and the eye position. These could be
something like the origin and a point on the x-axis, such as eye
position 1, respectively. When plotting data that relates to
engineering work, the eye will normally be at an infinite distance
from the target and so the effects of perspective are not seen. This
means that even though the eye position can be defined as a point in
space the software will actually place the eye at infinity on the same
directional vector that joins the eye position and the target position.
So, it can be seen that it is the combination of the eye position and

Chapter 9. Analysing the results

178

the target point that defines the vector along which the eye looks.
For some work, however, such as architectural drawing or aesthetic
design, perspective effects can be produced by the software and
then the eye position will be the actual point in space at which the
eye is placed.

Defining these two positions in space in still not sufficient to
specify the view of an object. Humans have a sophisticated balance
system and this gives us information as to which is the vertical
direction and so where up and down are. Computers are not as
sophisticated and so they have to be told where the vertical
direction is. This direction is also known as the up-direction. In Fig.
9.1, the up-direction is in the positive z-direction. A simple example
of how the up-direction is used can be seen by considering the
example of the flow about a car again. We know that a car roof
should be the furthest from the ground and so the up-direction will
be from the ground to the roof. The vector definition of this
direction, within our computer model, will depend upon the
orientation of the mesh and so upon the way the mesh was built.
For example, it might be in the positive or negative global z-
direction, or the positive or negative global y-direction, or the
positive or negative global x-direction, or any one of a host of other
directions. Consequently, we must tell the post-processor which
direction the up-direction is, if the pictures that it produces are to

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

179

have the car in a realistic orientation. One command usually enables
this direction to be specified and some examples of the effect of the
command are given in Fig. 9.2.

If the up-direction cannot be specified to the post-processor, as is
sometimes the case, then the picture has to be orientated by a series
of rotations about the three coordinate axes. This is usually
achieved by specifying the angles for each global coordinate axis,
x, y and z, through which the axes are to be rotated. It is difficult to
produce the correct view this way using a single command. Several
attempts may be needed to get the picture right.

Once the eye position, target point and the picture orientation are
known, the display software can take the three-dimensional data for
the geometry or mesh and draw it on the screen, in what is of course
a two-dimensional representation. This can be done in one of two
ways. The original way that this was done was to transform the
three-dimensional data into two-dimensional data using the post-
processing software. This two-dimensional data can then be plotted.
Many systems still use this technique, but a more recent way of
handling the data is for the post-processing software to send the
three-dimensional data to the display hardware, together with the
current eye-position, target point and the vertical orientation. The
transformation of the data from this set of three-dimensional vectors
into a two-dimensional picture is then carried out within the
hardware itself by a combination of both hardware and software,
known as firmware. This local transformation is extremely fast as
the firmware is dedicated to the task. Once the three-dimensional
data is stored by the firmware it can be manipulated into further
pictures very easily and quickly, and this is where the button-box,
mentioned in Section 9.2.1, can be used very effectively to modify
the target point, eye-position or orientation, signaling the firmware
to produce the new pictures so fast that the objects can be moved in
real time.

Chapter 9. Analysing the results

180

Quite often, we wish to focus our attention on one particular area of
the model, for example to see the detailed flow around a corner of
an object. This can be done by changing the target position and the
viewing area. The mechanics of doing this with the post-processor
can vary, but there is nearly always a zoom command or a centre
command. Figure 9.3 shows an example of the zoom command
being used. This allows a rectangular window to be placed over the
current view by defining the two ends of one of the diagonals of the
window with the cursor. The software then modifies the target
position and the view area to display the picture within the limits of
the window. This is done whilst ensuring that the aspect ratio of the
geometry is preserved. The centre command works in a similar
way, but the user has to define the required centre of the new view,

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

181

together with the magnification required, as shown in Fig. 9.4. By
using these commands in the correct combination, the view of a
mesh or the results can be infinitely varied.

When working with very complex meshes, and the associated
results, the shear volume of information displayed can by too great.
The information content can be restricted by using the following
techniques:

• volume clipping, which enables the user to give limits in
the global coordinates x, y and z within which objects are
displayed, but outside of which they are ignored.

• suppression of hidden lines, which calculates whether
something that would be drawn is hidden from view by any
other object, such as, for example, a cell face. If the object
is hidden from view it is not drawn. The displays that are
generated using this method are often called hidden-line
displays.

9.2.5 Displaying the Results

Now we have looked at how the geometry or mesh of the model can
be displayed and we know how to orientate the view to give the
desired picture. Once this has been done we can add some of the
results to the picture. The results that can be viewed graphically

Chapter 9. Analysing the results

182

have to be derived from the flow velocity data or from the scalar
data for quantities such as the fluid pressure and the turbulence
variables. This data is known at a series of points in space which
might, for example, be the nodes of a mesh or the centroids of the
cells.

With a mesh that has a regular structure the results data can be
drawn for a sheet of cells or nodes, in the same way as the mesh can
be drawn. It is worth remembering that this sheet may not be planar
in global coordinate space, as even a mesh with a regular structure
can be curved in space so that it fits around an object. When the
mesh has an irregular structure the display of results is not so
straightforward. As there is no simple way of referring to a group of
cells, many post-processors allow the user to define a geometrical
plane through the mesh onto which the results are interpolated. This
plane is known as a cutting plane. Other ways of grouping cells can
also be used, such as showing a hidden-line plot of the results
which displays only those results on the boundaries of the mesh, or
displaying the results for a restricted group of cells defined by
creating a list of cell numbers.

No matter which way is used to display the data, there are
essentially two types of results display:

• vector plots, which show the vectors relating to the velocity
results.

• contour plots, which show contours of the scalar variables
over the domain.

Dealing with vector plots first, the vectors are displayed within the
picture as arrows in two dimensions. These plots are what we see
when the so-called wind arrows are shown on weather forecasts.
Plotting velocity information in this way can lead to confusing
displays being produced as information is lost. The arrows that are
drawn are the projections of a three-dimensional vector into two-
dimensions. Take, for example, a vector pointing directly out of the
page, this would be displayed as a point. So that some of the lost

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

183

information can be retrieved, the arrows are often colour coded to
denote the absolute magnitude of the vector which is the local flow
speed. Usually, red denotes a high speed and blue a slow speed with
intermediate shades denoting the speeds in between. This does not
work terribly well on monochrome terminals!

One other problem that has to be dealt with concerns the length of a
typical vector arrow. Depending on the problem, the user will want
the length of the arrows to give as informative a display as possible.
This means that the user must scale the arrows appropriately, either
by letting the computer draw some arrows and then scaling them, or
by giving the computer a typical velocity which might represent,
say, ten per cent of the screen width.

For meshes which have very dense cell distributions the arrows
may be so close together that too much is displayed and the useful
information is obliterated. This can be overcome by the software
interpolating the velocity data on to a coarse, regular grid of points.
The user specifies the distance between the points in the grid, and
the arrows are drawn at the points. One problem with this type of
display is that the true nature of the computed velocity field can be
hidden from the user. Sometimes it is better to display the data at
the positions that it was calculated, and we shall see why this is
when we look at some real data in Chapter Ten.

Turning to contour plots these are pictures of the lines of equal
scalar value of some variable plotted through the domain. They are
similar to the isobars we see on maps for weather forecasts. Little
interaction is required to produce these plots, except perhaps to
specify the number of contours that are to be drawn. Typically,
about ten contours will be calculated, and again these will be colour
coded in the picture to show the value of the variable on the
contour. A coding scheme which is similar to that used for the
magnitude of a vector is used in this case as well. Sometimes, the
contour levels can be chosen by the user to give the required values.
This is done where several separate pictures of contours have to be

Chapter 9. Analysing the results

184

produced to create the required display, and it provides a consistent
display.

A variation of the contour plot is to use a surface plot. This is
generated by displaying a three-dimensional surface, the height of
which above a plane is a measure of some variable. This variable
should be a function of the two dimensions that describe the plane.
Effectively, the display shows a series of mountains and valleys.

9.2.6 Special Displays

All of the above is applicable to the production of two-dimensional
images of the data at a given point in time. Sometimes such
representations may not convey enough information to a user. One
such situation is when the data describes a time-varying situation
such as the flow of air into a combustion chamber of a four-stroke
internal combustion engine. To provide a better feel for the results
animation can be a useful display technique. If several sets of
results for say a scalar variable such as pressure can be stored by
the solver, specialist software can read the data together with the
variation in time of the physical geometry and produce a series of
pictures at various times on the correct geometry for the time
concerned. These pictures can be seen as the frames of a moving
picture and the display software can be used show these pictures in
sequence to produce an animated display. This involves
considerable computer resources to ensure that the speed of display
is sufficient for the purpose.

To overcome the two-dimensionality of images, three-dimensional
displays are being made available. These show the user a stereo
image by interlacing two two-dimensional images the eye positions
of which have been displaced slightly to represent the human eye
spacing. The interleaving can be carried out using a switchable
polarised filter and special glasses. In some systems the glasses act
as the filter and in others the glasses are passive and the filter is
attached to the display device.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

185

One final feature of the display of results that is coming available is
the production of particle tracks. These show where the fluid
particles travel within the flow domain. They are produced by
integrating the velocity data at a point to show where the particle
will move to. Such displays are extremely useful in showing the
qualitative features of a flow such as vortices.

9.3 Checking A Solution

When analysing the results of a simulation, certain pieces of
information will be required. For example, we might need to know
a prediction of the pressure difference between two points in the
flow domain for some physical system. Then slight geometrical
modifications might be made to the mesh and another CFD solution
produced to find the comparable pressure difference for the
modified geometry. Another requirement might be the investigation
of the flow field structure at a series of places in the calculation
domain. Whilst the user can run the solver, obtain converged
numerical results and then find the required data, this is not a very
satisfactory procedure. It is much better to add an intermediate step.
This step is the determination of whether or not the solution
produced by the CFD process is a reasonable one, i.e. it is of high
quality and is likely to resemble the physical flow. Then, if the
simulation is reasonable, the user can find the specific data that is
required and have some confidence in the findings.

Some of the following features of a set of results can be used as
checks on the quality of the results:

• the flow should look qualitatively correct. For example, it
should flow in the directions that might be expected.

• where boundary layers exist the results should show a
velocity change that resembles that in a boundary layer.
Near a stationary wall the velocity vectors should show that
the velocity changes with the distance away from the wall.
The velocity should be seen fall from some value at a point
well away from the wall, the free stream value, to zero at

Chapter 9. Analysing the results

186

the wall. This should take place over several cells, perhaps
five or more. If there are less cells than this inside the
computed boundary layer, then the mesh is too coarse and
should be refined near the wall.

• the mass of fluid entering the domain should equal the mass
leaving the domain. This is often calculated by the program
itself and reported in an ASCII file to the user.

• at points where the pressure is specified, the velocity field
should be smooth. At these points the coontinuity equation
is not satisfied and so fluid can leave or enter the domain in
a non-physical way. If this can be seen to be happening it is
clear that the fluid mass is not being conserved in overall
terms.

If these simple checks show that there might be problems with the
quality of the results then users should consider checking their input
data and changing their models, if necessary, before re-running the
solver program.

9.4 Refining A Computer Model

If it looks likely that a model must be refined, a user must consider
the advantages of producing a better prediction against the cost
constraint of repeating the whole simulation process. Quite often
even crude models can give large amounts of new and useful
information to a user. This might prove adequate for the purposes
of some users but not for others. It all depends on the application
under consideration.

The process of refining a model might include any of the following:

• increasing the density of mesh points in a given area so that
the changes of the flow variables in that area can be more
accurately captured, for example, in a boundary layer.

• improving the physics of the model, such as would happen
if a more suitable turbulence model could be used.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

187

In terms of effort, the first of these involves a large amount of work,
as it would involve rebuilding the mesh of the domain, either by
repeating one of the mesh generation processes that are described in
Chapter Six, or by using an adaptive meshing process. Once the
mesh is built the fluid specification within the pre-processor and the
setting of the boundary and initial conditions has to be carried out
again, transforming the data generated as part of the original
specification process onto the new mesh. Then, finally, the
numerical control procedures have to be repeated before the solver
can be run.

A systematic way of increasing the mesh density for a mesh with a
regular structure is to double the number of cells in each of the local
mesh directions. Similar refinement schemes can also be carried out
with unstructured meshes by, for example, placing a new node at
the centroid of each cell and then remeshing. With the new mesh a
solution is calculated, and the results obtained. When the results do
not vary in global terms from one mesh refinement to the next then
the results are said to be mesh independent. Whilst we would
always like our results to be independent of the mesh size, for many
industrial problems this is not always possible as the constraints in
terms of cost or time or computer capacity are too great.

Chapter 10. Some case studies

188

10 SOME CASE STUDIES

10.1 The Examples

In Chapters Five to Nine we have discussed the various stages of
the CFD analysis process. Each of these chapters acts as a basic
guide for an individual stage in the process. The time has now come
to demonstrate how the whole process is used to produce a CFD
simulation. To do this we will look at three examples that show the
CFD analysis process being used. By going through these examples
in considerable detail, it is hoped that the analysis process can be
brought to life and some of the realities of carrying out the analysis
process can be conveyed to the reader. The three examples that we
will look at are:

• a simple laminar flow. To illustrate the basic procedures,
we will look at predicting the two-dimensional laminar
flow between two plates. Simple examples such as this are
often used to test a new CFD program and to give the user
some confidence that the program produces accurate results
compared to known analytical solutions. Also, they can be
used in the training of CFD users as they require very little
computational effort to produce results.

• the flow of air over a vehicle. In this example, we simplify
the three-dimensional problem of calculating the flow over
a car by considering the flow to be in a two-dimensional
plane corresponding to the vertical plane of symmetry. The
flow is turbulent, however, and so we have to think about
how to model the effects of the turbulence on the flow. To
discretise the flow domain we use a mesh which has a
regular topology, i.e. we use a structured mesh, but the
mesh is distorted to fit around the surface of the vehicle.
Having looked at the two-dimensional problem, some of
the results from three-dimensional simulations will be
discussed together with their implications for the use of
CFD.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

189

• the flow of water around a combustion chamber. This
example considers a three-dimensional flow in a complex
geometry, such as that found inside a water-cooled piston
engine. Again the problem is simplified in that the flow
around a single combustion chamber is modelled. In this
problem the turbulent flow through an inlet, a cooling
chamber and an outlet is modelled as a fully three-
dimensional flow using a mesh that is essentially
unstructured.

These cases are described so that the reader can see exactly how the
CFD solutions were produced by using commercial software and by
following the analysis process that has been described in the
preceding chapters. By studying these examples you should become
more familiar with the tasks that need to be performed during the
analysis; that is the tasks of flow specification, mesh building,
setting the fluid flow parameters, controlling the numerical
solution, running the solver and analysing the results.

10.2 The Software Packages

All the cases have been run using commercial CFD software,
although the meshes for the two turbulent flows have been built
using simple, locally-generated computer programs. For each case,
the operating system commands that have been used to run the
programs have not been given as these are often specific to a
particular type of hardware; but the commands that have been used
to set up the simulations within the software packages have been
given. This has been done to give the reader a feel for the types of
command that need to be issued, not to give a tutorial in the use of
the software. In fact, the syntax of some of the commands will
probably change before this book is published, and so the reader
should be very wary of using the commands listed here. The
reference guide or user manual of the particular CFD software
package should always be consulted when creating the computer
model for a simulation.

Chapter 10. Some case studies

190

Two CFD software packages have been used to generate the flow
simulations discussed here. The packages used are:

• PHOENICS. This has been available since 1981 and is
written by CHAM Ltd. of Wimbledon. It is a CFD software
package which uses the finite volume method to solve the
governing equations on a staggered grid which has a
regular topology. As it was one of the first packages to be
available, it can be used to simulate a very wide variety of
physical problems.

• STAR-CD. This is written by Computational Dynamics
Ltd. of London and is a CFD software package which uses
the finite volume method to solve the governing equations
on a non-staggered grid which can have an irregular
topology. This capability to deal with an unstructured mesh
is achieved by using the Rhie and Chow algorithm which
was mentioned in Chapter Three.

These CFD packages have been used with the permission of the
authors and it is not the intention of this book to draw comparisons
between the two packages. Each of these packages has unique
features and they are both used here solely to give a feel for how
different packages can be used to produce flow simulations. In fact,
if a user follows the simulation process that has been discussed, the
CFD package might be thought of as being reduced to the role of a
translator, translating the flow specification into a form that is
understood by the solver program and then translating the
numerical results into a form understood by the user.

It must be recognised that the needs of users vary as people have to
solve many different types of flow problem. This means that each
user, or commercial organisation, must decide what it is that they
require the use of a CFD software package to give them. In every
case the requirements that are decided upon will be different, but
the process of making decisions can be standardised. This problem
is addressed in Chapter Twelve, where the issues that determine the
specification of a CFD package are discussed.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

191

10.3 Laminar Flow Between Parallel Plates

10.3.1 Producing The Flow Specification

Figure 10.1 shows the flow situation for this simple example. We
can see that two thin parallel plates, of length L m and distance h m
apart, are placed horizontally in a flow which, well upstream of the
plates, has a constant velocity in the horizontal direction. If the flow
velocity is sufficiently small or the kinematic viscosity sufficiently
large, the Reynolds number will be low. If this is the case, then the
flow should be laminar.

Given that this test case is being run as a simple training exercise,
the first task in the production of a simulation is to consider what
will happen to the fluid as it passes between the plates. First let us
assume that the plates are so thin that the flow ahead of the plates is
not affected by them. This means that we need only be interested in
the flow between the plates and the flow above the top plate and
below the bottom plate need not be considered. From this, the flow
domain can be taken to be a simple rectangle. At the left hand side
the flow has a uniform velocity in the horizontal direction moving
from left to right and so this boundary is an inlet. The plates are
stationary solid walls and so the velocity there must be zero. Hence,
there is a retardation of the flow at the plates due to viscous shear
which is generated by friction and two boundary layers are formed
on the plates as shown in Fig. 10.1. These boundary layers become
thicker along the plates from left to right until they merge. At the
end of the plates, the fluid leaves the domain and so the right hand
side of the rectangle may be taken to be an outlet.

Chapter 10. Some case studies

192

This consideration of what happens enables us to see that the the
flow is symmetric about the horizontal plane half-way between the
two plates, and so the flow domain can be halved for the purposes
of our calculations. Figure 10.2 shows the rectangular domain and
gives the four boundary types that will be used. These are a
stationary solid wall on the lower side where the velocity is zero, a
symmetry plane on the upper side where the vertical velocity
component is zero and the normal derivative of the horizontal
velocity component is also zero, an inlet with a uniform horizontal
velocity imposed at the left hand end, and an outlet where the
pressure will be taken to be uniform at the right hand end.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

193

We must also decide upon the values of the density and viscosity
parameters. For simplicity, these will be taken to be unity in each
case (i.e. rho = 1 kg/{m sup 3} and mu = 1 kg/ms). Hence the
Reynolds number Re is given by

(10.1)

Finally, as the flow is a simple shear flow and none of the boundary
conditions change with time, it is reasonable to assume that the
flow itself will not vary with time and so will be steady. This
completes the flow specification.

10.3.2 Some Analysis

We have already said that this flow situation can be used as a test
case to check the accuracy of a CFD code. This comes about
because, some distance after the two boundary layers merge, the
flow becomes one-dimensional. When this occurs the flow is said to
be a fully developed flow, which means that the horizontal
component of velocity does not change in the x-direction and that
the vertical component of velocity is zero. If this flow is simulated

Chapter 10. Some case studies

194

using a mesh which is very long in the x-direction, then the CFD
solver should produce results that are one-dimensional and the
results should be of the form that will now be derived.

When the flow is fully developed the Navier-Stokes equations can
be simplified. If the flow is steady and has the velocity
characteristics given above then the x-momentum equation
(equation 2.8) can be rewritten as

(10.2)

and the y-momentum equation (equation 2.9) can be rewritten as

(10.3)

Equation 10.3 shows that the pressure is a function of x only, and so
when equation 10.2 is integrated with respect to y the pressure
derivative can be taken to be a constant. This gives

(10.4)

where A is a constant or a function of x only. Further integration
with respect to y gives

(10.5)

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

195

where B is also a constant or a function of x. The values of A and B
can be determined by applying the boundary conditions for the
velocity at the two plates. We know that the horizontal velocity
component u is zero at the plates, i.e. u = 0 at y = 0 and y = h,
where h is the distance between the plates, and so equation 10.5
becomes

(10.6)

which describes a parabolic velocity profile.

Finally, we can calculate the mass flow in and out of the system.
For an inlet velocity of 1 m/s and a density of 1 kg/{m sup 3}, the
mass flow per unit area is simply h and this must be the mass flow
at the outlet too. Integrating the velocity expression in equation
10.6 to obtain the mass flow at the outlet:

(10.7)

which can be rearranged to give an expression for the pressure
gradient

(10.8)

Equation 10.8 enables the pressure gradient for a fully developed
flow to be found for a given mass flow rate, and this can then be

Chapter 10. Some case studies

196

used in equation 10.6 to give the fully developed velocity profile
for the same flow. These quantities can then be compared with the
values calculated by the CFD program.

10.3.3 Building a Mesh

Having produced a specification of the flow problem, we can now
use a CFD program to produce a numerical simulation of the
problem. The next step in this analysis process is to decide upon a
suitable mesh and this part of the process is explained in Chapter
Six. The domain and its boundaries are shown in Fig. 10.2 and the
mesh must fit within the domain in such way that the variations in
the flow variables can be calculated as accurately as possible.

For the flow situation that we are considering, we know that there is
a boundary layer on each of the plates due to the shearing of the
fluid caused by friction. We also know that at some distance
downstream of the inlet, perhaps a factor of ten times the distance
between the plates, the flow becomes fully developed and is
effectively one-dimensional. Whilst this takes quite a distance to
occur, the velocity changes most rapidly near the inlet. In the
vertical direction, between the plates, the velocity profile is
parabolic at the outlet and so it varies throughout the vertical
distance.

For the problem that we are going to simulate we will take the
distance between the plates h to be 1.0 m and the length of the
plates to be 20.0 m. Hence, the computational domain is 0.5 m high
and 20.0 m long. For our first mesh we will place ten cells between
the lower plate and the symmetry plane, and ten cells down the
length of the plates. To ensure that the rapid changes in velocity at
the inlet can be captured, we will bias the mesh so that more cells
are placed near the inlet. Between the plate and the symmetry plane
we will use equal cell spacing, as we do not know where the
velocity will vary the most in the vertical direction.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

197

Having considered the layout of the mesh, we must work out how
to create the mesh data in a form suitable for the CFD program. The
way that this is done will be specific to the CFD software being
used. For this example we will use the package PHOENICS, and
so, before we look at the creation of the mesh data, we must first
consider the software tools that make up PHOENICS.

PHOENICS is a finite volume program that is comprised of three
main components or programs. The first of these, named the
SATELLITE program, is a pre-processor; the second, named
EARTH, is the solver program, and the third, PHOTON, is a
graphical post-processor. Initially, the SATELLITE program has to
be given sufficient information for it to produce the data that
EARTH needs. One means of doing this is to prepare an input file
for SATELLITE, which splits the input data into 24 groups. It is in
this file that the mesh data is defined. SATELLITE can also be run
interactively, allowing the user to create data or modify existing
data in any of the 24 groups. When SATELLITE is run, files are
produced for EARTH to read and, from this input data, EARTH
produces the CFD solution in the form of further files, which are
usually binary files, and these can be accessed using PHOTON.
EARTH also produces some ASCII files which can be read by the
user.

The input file for SATELLITE is known as the Q1 file, and several
lines can be used to define a simple mesh. First we must decide
upon the exact location of the mesh points. For this problem we will
change the labels of the coordinate directions from x and y to z and
y respectively, that is, we will take the direction between the plates
to be the y-direction and the direction along the plates to be the z-
direction. This choice of coordinate directions is determined by the
internal structure of the programs that make up PHOENICS. These
programs calculate the flow variables in sheets of points in the local
z-direction, taking one sheet of points at a time. Here, the local z-
direction and the global z-direction are the same (see Chapter Six).
By carrying out the calculations in this way the number of points
being considered at any one time is reduced from 100 to 10 for this

Chapter 10. Some case studies

198

problem. Whilst such a reduction is not significant for this mesh, as
the memory storage requirements for this problem are small, it can
mean the difference, when the mesh is much larger, between having
sufficient computer memory to produce a solution and not having
enough memory.

Returning to the generation of the mesh for this example, we have
already stated that we will use equal cell spacing between the plates
and so the mesh points will be at the following values of y; 0,0,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5. In the z-
direction, the choice of points is more difficult, and so we will try
values which halve the available distance working from the outlet
i.e. we will use z values of 0.0, 0.03906, 0.07813, 0.15625, 0.3125,
0.625, 1.25, 2.5, 5.0, 10.0 and 20.0. Once we have decided upon the
mesh coordinates, we must build the mesh using appropriate
commands in the Q1 file.

Below, we have listed an extract from the Q1 file. Note that where a
line is indented by several spaces SATELLITE takes the line to be a
comment not a command. The commands the specify the mesh are:

TALK=t;RUN(1, 1);VDU=TTY

GROUP 1. Run title and other preliminaries
TEXT(SIMPLE DEVELOPING FLOW IN BETWEEN
PLATES)

A Cartesian coordinate system is used to encapsulate a rectangular
duct
GROUP 2. Transience; time-step specification
GROUP 3. X-direction grid specification
NX=1

GROUP 4. Y-direction grid specification
NY=10
YFRAC(1)=0.05
YFRAC(2)=0.1

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

199

YFRAC(3)=0.15
YFRAC(4)=0.2
YFRAC(5)=0.25
YFRAC(6)=0.3
YFRAC(7)=0.35
YFRAC(8)=0.4
YFRAC(9)=0.45
YFRAC(10)=0.5

GROUP 5. Z-direction grid specification
NZ=10
ZFRAC(1)=0.03906
ZFRAC(2)=0.07813
ZFRAC(3)=0.15625
ZFRAC(4)=0.3125
ZFRAC(5)=0.625
ZFRAC(6)=1.25
ZFRAC(7)=2.5
ZFRAC(8)=5.0
ZFRAC(9)=10.0
ZFRAC(10)=20.0

GROUP 6. Body-fitted coordinates or grid distortion

Looking at the beginning of this extract from the Q1 file, there is a
single line which tells the SATELLITE to read the Q1 file and then
allow the user to interactively modify the data. Then the data is
given group by group as follows:

• Group 1 - Preliminaries. A title for the simulation is given.
This is printed on any ASCII files that are written by
EARTH and on any pictures generated by PHOTON.

• Group 2 - Time Dependence. Here, the transient nature of
the problem can be specified, but PHOENICS assumes that
problems are steady state unless told otherwise, and so
there are no entries in this case.

Chapter 10. Some case studies

200

• Groups 3 to 5 - Mesh Specification. In these groups our
simple mesh can be defined. For this problem, the x-
direction is across the flow and so is not really needed for
the simulation. However, PHOENICS is a program that
must have a three-dimensional mesh and so there has be a
single cell in the x-direction. This is defined in Group 3 and
the cell will have the default width of one metre. The mesh
in the y-direction is specified in Group 4 by setting the
number of cells (NY) to ten and by giving the coordinates
of the mesh points. Similarly, in Group 5, the mesh in the z-
direction is defined. This is all the information that is
required to define the mesh.

• Group 6 - Body-Fitted Coordinates. As the mesh is very
simple and not body-fitted, no entries are required here.

10.3.4 Setting the Fluid Flow Parameters

Having defined the mesh, we can proceed with the next stage of the
process and define the fluid flow problem. It is this part of the
analysis process that tells the CFD software what the fluid
properties are together with the boundary conditions and the initial
conditions. This section of the process is explained in Chapter
Seven and involves translating the flow specification into terms
understood by the CFD solver. Again, an extract from the Q1 file
follows:

GROUP 7. Variables stored, solved & named
SOLVE(P1,V1,W1)

GROUP 9. Properties of the medium (or media)
ENUL=1.0
RHO1=1.0

GROUP 10. Inter-phase-transfer processes and properties
GROUP 11. Initialization of variable or porosity fields
FIINIT(W1)=1.0

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

201

GROUP 12. Convection and diffusion adjustments
GROUP 13. Boundary conditions and special sources
Wall
PATCH(DUCTWALL,SWALL,1,1,1,1,1,NZ,1,1)
COVAL(DUCTWALL,W1,1.0,0.0)
Inlet
PATCH(INLET,LOW,1,1,1,NY,1,1,1,1)
COVAL(INLET,P1,FIXFLU,1.0);COVAL(INLET,W1,ONLY
MS,1.0)
Outlet
PATCH(OUTLET,HIGH,1,1,1,NY,1,NZ,1,1);COVAL(OUTLE
T,P1,FIXVAL,0.0)

GROUP 14. Downstream pressure for PARAB=.TRUE.

It is these entries that determine the flow problem, and the
commands that are entered group by group are:

• Group 7 - Solution Variables. We need to determine the
variables that must be calculated. As this is a two-
dimensional laminar flow problem, the equations to be
solved are the momentum equations in the y- and z-
directions, together with the continuity equation. The
variables that we need to find to complete the solution are,
therefore, the velocity components v and w, and the fluid
pressure p. PHOENICS can solve problems that involve
flows comprising of several fluid components or phases, as
discussed in Chapter Eleven, and so the entry here tells the
software which variables to calculate by listing their names
V1, W1 and P1. These variable names specify that the
variables are those of the first fluid phase, which in this
case is the only phase.

• Group 9 - Properties. We have already decided that the
fluid viscosity and density should both be unity and these
values are set here.

• Group 10 - Multi-Phase Flows. As this is a single phase
flow, no extra specification is needed here.

Chapter 10. Some case studies

202

• Group 11 - Initialisation. In this group the initial conditions
can be defined. The specification of these conditions might
seem to be contradictory as the flow is steady and so, in a
mathematical sense, the numerical solution should not
require initial conditions. Despite this, we specify a set of
initial conditions for the variables and these are then used
as a first guess by the non-linear solution procedure. For
this example we have defined the velocity component w to
be unity within the domain when the time is zero and we let
the other variables take their default value of zero.

• Group 12 - Unused. No entries.
• Group 13 - Boundary Conditions. Finally, in specifying the

fluid flow problem, we must specify the boundary
conditions of the problem. This involves specifying where
in the mesh the boundaries are and then applying the
correct boundary conditions at the relevant boundaries. For
this problem, the boundaries are shown in Fig. 10.2, where
we can see an inlet, an outlet, a solid stationary wall and a
symmetry plane. To identify the location of the boundaries,
PHOENICS uses the notation described in Section 7.3.1
and shown in Fig. 7.1. Hence, the inlet is a LOW boundary,
the wall is a SOUTH boundary, the symmetry plane is a
NORTH boundary and the outlet is a HIGH boundary. The
PATCH commands define the inlet, outlet and wall areas,
giving the limits of a patch in the local coordinate
directions x, y, z and the time t respectively. Note that the
symmetry plane is not defined as this is the default
boundary type in PHOENICS. So-called COVAL
statements can then be used to apply the appropriate
boundary conditions on the given boundary patches. On the
wall the velocity component w is set to zero, at the inlet the
mass flow and inlet velocity are specified and at the outlet
the pressure is set to zero.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

203

10.3.5 Running The Solution

At this stage, all of the fluid mechanics parameters of this example
have been defined, and so we can now set the parameters that
control the numerical solution. The remainder of the Q1 file is
listed below, and it can be seen that some of the groups are empty
as no input is required and the default values will be used. The
groups that do have entries are concerned with the control of the
solver itself.

GROUP 8. Terms (in differential equations) & devices
DIFCUT=0.5

GROUP 15. Termination of sweeps
LSWEEP=100
RESREF(P1)=1.E-6;RESREF(V1)=1.E-6
RESREF(W1)=1.E-6

GROUP 16. Termination of iterations
GROUP 17. Under-relaxation devices
GROUP 18. Limits on variables or increments to them
GROUP 19. Data communicated by satellite to GROUND
GROUP 20. Preliminary print-out
ECHO=F

GROUP 21. Print-out of variables
GROUP 22. Spot-value print-out
IXMON=1
IYMON=2
IZMON=2

GROUP 23. Field print-out and plot control
IPROF=3
ITABL=3;NPLT=1

GROUP 24. Dumps For restarts
STOP

Chapter 10. Some case studies

204

The control commands for this problem are found in the following
Groups:

• Group 8 - Terms in the Differential Equations. Here, only
one parameter, DIFCUT, is specified. This determines the
way in which the convection terms in the momentum
equations are handled. For this simple laminar flow
problem which is calculated on a rectangular mesh, the
discretisation of the convection terms should create very
few problems. If the value of DIFCUT is set to 0.5, this
tells EARTH to use a hybrid upwinding scheme, where the
local cell Peclet number is calculated and if it is two or less
central differences are used, and if it is greater than two
upwinded differences are applied. Further details are
discussed in Section 3.5.3.

• Group 15 - Termination of Sweeps. In this group of data,
the number of overall iterations, or sweeps as they are
known to PHOENICS, is set to 100. Normally, far fewer
iterations would be run to start the calculation and check its
initial convergence performance, but for this problem the
calculation is very robust and converges easily. The
reference residual values or RESREF parameters are set
such that the calculation will stop automatically if the value
of the residual errors from the equations falls below the
values specified.

• Groups 20, 22 and 23 - Print Out. In these groups, the data
that is written to an ASCII file is controlled. The ECHO
command suppresses the printing of the data read by
EARTH and the rest of these commands ensure that the
residuals are printed to the file at each iteration together
with the values of the velocity components and pressure at
one cell in the mesh. This cell has been chosen to be near
the inlet so that the variation in the variable values can be
monitored as the iterations progress. It is known as a
monitor location. As well as numerical values, simple
graphs of the spot values and residuals are printed.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

205

To run this model the following stages are carried out. First, the
SATELLITE program reads the Q1 file and then allows the user to
check the settings of the data in each of the groups interactively.
Once the user is satisfied that everything is in order, the
SATELLITE program writes the datafiles that EARTH requires.
Then EARTH is run and produces a set of output files. Some of
these can be read into PHOTON for graphical analysis or the ASCII
files can be read by the user using a browse facility or text editor.

10.3.6 Analysing the Results

In Section 10.3.2, we derived some analytical results for the flow
under consideration. These are valid near the outlet of the flow
where the velocity field is fully developed and one-dimensional.
Consequently, near the outlet, we can determine the exact values of
the pressure gradient and the velocity profile that should be
calculated by the CFD solver program. From equation 10.8, if we
substitute for the viscosity and domain height, the pressure gradient
can be found to be:

(10.9)

and the velocity profile can be found from equation 10.6 as:

(10.10)

By comparing the output from PHOENICS with the expressions
above, we can obtain some measure of accuracy for our numerical
solution.

For this test case the mesh contains only one hundred cells and so it
is a manageable task to read the output files from PHOENICS in

Chapter 10. Some case studies

206

full. In Appendix A, an edited version of the output written by
EARTH is listed. This output consists of the mesh point data, the
final values of the variables calculated within each cell, the
variation of the values of the variables at the monitor location with
sweep number and the variation of the residuals with sweep
number.

From the data listed in Appendix A it can be seen that, after the first
one hundred sweeps, the following information is available:

• from the pressure field data and the locations of the mesh
points, the pressure gradient near the outlet is -9.564. This
has been calculated manually, knowing that the pressure is
stored at a cell centroid.

• from the velocity field data, the W1 velocity component is
varying all the way down the mesh in the z-direction and so
the flow is not fully developed at the outlet.

• at the monitor location, the value of the pressure P1 is
rising steadily, the velocity component V1 has risen to a
peak and is now falling and the velocity component W1 has
fallen to a minimum and is now rising.

• the residual errors are all falling, but those for V1 and W1
rose initially before falling.

The data calculated for the flow field suggests that the numerical
solution is not that which is expected and the data from the monitor
location shows that the solution is not converged. However, as the
residuals are falling, the solution is progressing satisfactorily and
further sweeps need to be run to see whether a solution will be
produced which is numerically converged and also closer to our
expectations. To do this, a restart calculation has to be performed.
This is done by running SATELLITE again, and telling EARTH to
use the values of the variables that have previously been calculated.
The necessary command is RESTRT(V1,W1,P1) and this is entered
in Group 11. As one hundred sweeps have not produced a
converged solution, the value of LSWEEP is also increased to 400.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

207

Once SATELLITE has written a new set of datafiles, EARTH can
be run to produce a further solution.

Again, Appendix A has an edited listing of the PHOENICS output
after what is now five hundred sweeps. The solution now yields the
following information:

• from the pressure field data, the pressure gradient is now -
12.48.

• from the velocity field data, the W1 velocity component is
approximately constant with distance down the plates in the
columns of cells numbered 6, 7 and 8 in the z-direction.
This shows that the flow is becoming fully developed near
the outlet but the process is not quite complete as yet.

• at the monitor location, the value of the pressure P1 is
rising but at a reducing rate and so can be seen to be
converging. The velocity component V1 is again rising but
converging, and velocity component W1 has fallen to a
minimum and is now rising if only slowly.

• the residual errors are all falling.

This solution is clearly a much better one, the solution is
converging and the actual values are looking like those we would
expect, even if they are not quite right. To improve the situation
still further, or at least to try to, we can run the solution for another
four hundred sweeps, restarting from the latest solution. Again,
Appendix A contains the results after this additional calculation and
from these it can be seen that:

• from the pressure field data, the pressure gradient has
changed slightly to -12.55.

• from the velocity field data, the W1 velocity component is
approximately constant with distance from the plates in the
columns of cells numbered 6, 7, 8 and 9 in the z-direction
and so the flow is effectively fully developed near the
outlet.

Chapter 10. Some case studies

208

• at the monitor location, the value of the pressure P1 is
rising but at a reducing rate and so can be seen to be still
converging. The velocity component V1 is falling but
converging and velocity component W1 is rising and
converging. In fact, the changes are magnified in the plot of
the values, as if we look at the last few sweeps, only the
fourth significant figure is changing.

• the residual errors are all falling.

Now the solution is effectively converged and the accuracy of the
simulation can be calculated. Table 10.1 shows the outlet velocity
at the end of each of the three solution runs together with the
analytical solution from equation 10.10. From this it can be seen
that there is only a small error, which is worse near the wall.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

209

PHOTON can now be used to produce pictures of the flow from the
results. In Fig. 10.3 the velocity vectors can be seen, and this
picture has been created by using the following PHOTON
commands:

grid x 1
magnify grid 10
vector x 1
set reference vector
1.0
redraw

Fig. 10.3. Parallel plates - velocity vectors.

When PHOTON is used, the default view has the y-direction as the
up-direction and the z-direction goes from left to right. This is
exactly the orientation that we require and so no commands are
required to specify it. The first command that is given draws one
sheet of cells onto the screen and these are then magnified by a
factor of ten with the cursor being used to put the center of the
screen near the inlet. Then the vectors are drawn and the reference
vector set so that the length of a typical vector is as shown. This
prevents the vectors being extremely long and filling the screen.
Finally, the completed view is redrawn to give the picture shown.

From the figure, we can see that the velocity profile develops into
the fully developed profile as we move downstream from the inlet.
Also, a large vertical component of velocity is generated near the

Chapter 10. Some case studies

210

junction of the inlet and the bottom wall. This is due to the
horizontal velocity component being changed rapidly in the z-
direction by the plate and so the flow must acquire a large vertical
velocity component if the continuity equation is to be satisfied.

From these results we can see that this simple example has been
simulated with a reasonable accuracy. Changing the mesh so that
more cells are included could improve the simulation especially in
terms of the variation of the flow along the plates. As we only have
information as to what the analytical solution is for a fully
developed flow, i.e. near the outlet, we have no means of checking
the variation of the flow variables along the plates. For now, we
have gained sufficient information from this problem that we can
move on to consider the next example which is slightly more
complicated.

10.4 Turbulent Flow Over a Car

10.4.1 Producing A Flow Specification

For the second example in this chapter, we will consider the two-
dimensional situation that we have discussed already in Chapter
Five. This example involves the simulation of the turbulent flow
over the longitudinal section of a car. In Chapter Five, we
considered this flow in some detail, producing the flow
specification of the problem, and so we can proceed immediately to
build the computer model of this flow. The software that we will
use to produce this simulation is PHOENICS once again, and the
structure of this package has already been discussed. We will use
this software in the same way as we did for the first example, but
we must now consider modelling a turbulent flow as well as fitting
the mesh to the surface of the vehicle. As a matter of personal
preference, the mesh will be produced outside of the PHOENICS
program using locally-written software, but the mesh generation
tools of PHOENICS itself could also be used.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

211

10.4.2 Creating A Mesh

From our consideration of the flow during the flow specification
phase, we know that the flow variables will vary greatly in
boundary layers near the vehicle surface and on the other solid
walls that make up the wind tunnel. This means that we need to be
able to produce a mesh which has many cells near the vehicle
surface. At the same time, however, PHOENICS must be provided
with a mesh that has a regular topology, i.e. a structured mesh. One
way of creating a structured mesh, for this example, is to build the
mesh in nine parts or blocks, as was shown in Fig. 6.5. As the full
mesh must have a regular structure, so the mesh in each block must
also have a regular structure and the distribution of the cells within
each block must be such that the cell faces match those of other
blocks.

Such a mesh can be defined in two stages:

• first, a set of points on the vehicle surface must be
calculated. These points are created such that they define
the front, top, bottom and rear of the fifth block of cells
shown in Fig. 6.5.

• second, points are created in each of the nine blocks using
the points on the vehicle surface and the known geometry
of the wind tunnel.

The shape under consideration here is a two-dimensional section of
a full size model vehicle that has been used extensively to
investigate and compare the wind tunnels used by vehicle
manufacturers. The model vehicle is placed in the wind tunnel
being tested and various forces such as the aerodynamic drag on the
vehicle found, together with the associated moments of these
forces. As well as measuring these forces and moments, engineers
can use the model to measure the surface pressure on the vehicle as
there are a series of holes along the centreline section and around
the waist of the model. Hence, there is an extensive database of
flow data for this model which can be used to validate CFD codes.

Chapter 10. Some case studies

212

These uses of the both the model itself and the data are well
documented [32,33,34,35], as is the shape of the vehicle.

From the drawings of the vehicle, the coordinates of the centreline
section of the vehicle can be computed, as the three-dimensional
surface is comprised of planes, together with cylindrical and
spherical sections. A simple program has been written to produce
the surface coordinates for the centreline section of the vehicle.
This program is given the number of cells that there will be on the
vehicle surface in the flow direction, which we will take to be the
global z-direction, and the number of cells in the vertical direction,
the global y-direction. The coordinates of the points on the top of
the computational block, i.e. the bonnet, the windscreen, the roof,
the rearscreen and the boot, and the bottom of the block, the vehicle
undersurface, are then calculated by the program at the values of z
that it is given. On the front and rear surfaces of the block, the
coordinates of the points are found for a set of y values calculated
by the program using a cosine distribution.

Once the surface coordinates are known, the points within each of
the blocks can be built up. This is done by a second program which
reads the surface coordinates, together with the position of the wind
tunnel inlet, floor, roof and outlet, and the number of cells in each
block in the two directions z and y. Points are placed along
horizontal and vertical lines, as appropriate, within the eight blocks
outside the vehicle surface. Figure 10.4 shows a simplified mesh of
the domain and from this the point creation algorithm can be
deduced. Above the vehicle, in block 6, and below it, in block 4,
vertical lines are created from the points on the vehicle surface to
the tunnel roof or floor. Similarly, ahead of the vehicle, in block 2,
and behind it, in block 8, horizontal lines are created from the
points on the vehicle surface to the tunnel inlet and outlet. Then the
coordinates of the points that form the cell corners are found by
splitting each line into sections using a geometrical progression to
bias the positioning of the points.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

213

Fig. 10.4. Simplified mesh for the car problem.

For simple flows, where the variation of the flow variables is not
too great, the position of each point could be found by splitting the
line into equal intervals, given the number of cells that need to be
placed along the length of the line. As we need to be able to
describe boundary layers along the vehicle surface, geometrical
progression biasing is used to create the points along the line such
that there are more points near the vehicle surface. For a geometric
progression, the sum of n terms is given by

(10.11)

where S sub n can be taken to be the length of the line, a is the
length of the first interval and r is the ratio of neighbouring element
lengths.

The mesh generation program is given the ratio of the length of the
element near the tunnel boundary to the length of the element at the
vehicle surface and then computes the value of the ratio r. From
equation 10.11 the length of the first element a can be found and so
the positions of all the points can be calculated. This gives a set of
points which show a smooth reduction in cell size towards the
vehicle surface.

In the four remaining blocks, numbers 1, 3,7 and 9, the points are
created from the data generated in neighbouring blocks, as can be
seen in Fig. 10.4. Once these two programs have been written, a

Chapter 10. Some case studies

214

wide variety of meshes can be produced very quickly. This is
extremely useful if the mesh has to be changed for whatever reason.

Using these two programs, a mesh that describes the domain of the
flow for this example has been created. Although the programs
already exist, they cannot be used until the mesh has been planned
in some detail. This planning is done by drawing yet another sketch
of the geometry, Fig. 10.5, where the vehicle is shown at the correct
height above the floor of the wind tunnel. The tunnel is taken to be
3.0 m high, with the inlet 5 m ahead of the vehicle nose and the
outlet 15 m downstream of the vehicle nose. The outlet is placed at
this position so that it can be assumed to be so far downstream of
the vehicle that it will have little effect on the flow close to the
vehicle.

Next, the block boundaries are sketched in, and the distribution of
cells is determined. Along the top of the vehicle there are five
distinct regions; the bonnet, windscreen, roof, rearscreen and boot.
Several cells are needed to model each of these regions and so forty
cells have been placed along the whole vehicle length. The
positions of the cells have been chosen so that there are more cells
near the boundaries of the regions on the top of the vehicle. Ahead
of, and behind the vehicle, the flow changes rapidly near the car and
it changes very little near the inlet and outlet. Some ten cells have
been placed in the horizontal direction in these areas and the cells

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

215

are biased so that the cells nearest the vehicle are twenty times
shorter than those near the inlet or outlet. This value of twenty is a
first guess for the biasing required to produce a reasonable
simulation.

In the vertical direction, eight cells have been placed between the
vehicle and the tunnel floor, with the cell sizes being determined by
a cosine distribution. This makes the cell size smaller near the
vehicle surface and the floor to allow the gradients in the boundary
layers to be captured. Through the height of the vehicle ten cells
have been placed and fourteen cells have been placed between the
tunnel roof and the vehicle roof. The positions of the cells above the
vehicle have been chosen such that the cell size at the vehicle is
twenty times smaller than the cell size at the tunnel roof. Of course,
there will be a boundary layer on the tunnel roof and this
distribution of cells will not be able to describe the flow variation
there. For this simulation, we have assumed that the roof is so far
from the vehicle that it will not affect the flow around the vehicle,
and so a symmetry boundary condition will be used. This will
ensure that the tunnel roof will constrain the flow during the
simulation by acting as a frictionless solid boundary.

This completes the specification of the mesh, and the mesh
generation programs produce a datafile which contains the number
of cells in the local coordinate directions, together with the
coordinates of the corner points of the cells. This file is read by the
SATELLITE program of PHOENICS using commands discussed in
the next section.

10.4.3 Preparing the Data Before Solution

Once a mesh has been created, the input file to SATELLITE, the
Q1 file, has to be created. It is this file that is read by the
SATELLITE program before it prepares the data for the EARTH
program. This section discusses both the commands required to
specify the flow problem and the commands required to control the
numerical solution process. The commands are arranged in groups

Chapter 10. Some case studies

216

to assist the user in setting up the computer model, enabling small
sets of data to be handled at any one time. A full listing of the Q1
file is given below followed by a description of the commands in
each of the 24 groups, listed group by group.

TALK=T;RUN(1, 1);VDU=TTY

GROUP 1. Run title and other preliminaries
TEXT(TWO-DIMENSIONAL MOTOR VEHICLE)
REAL(W1IN,KEINIT,EPINIT)

GROUP 2. Transience; time-step specification
STEADY=T

GROUP 3. X-direction grid specification
NX=1

GROUP 4. Y-direction grid specification
NY=32

GROUP 5. Z-direction grid specification
NZ=60

GROUP 6. Body-fitted coordinates or grid distortion
BFC=T
NONORT=T
READCO(GRID)
RSTGEO=F
SAVGEO=T

GROUP 7. Variables stored, solved & named
SOLVE(V1,W1)
SOLUTN(P1,Y,Y,Y,N,N,N)
STORE(UCRT,VCRT,WCRT)

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

217

GROUP 8. Terms (in differential equations) & devices
DIFCUT=0.0
ADDDIF=T

GROUP 9. Properties of the medium (or media)
ENUL=1.46E-05
RHO1=1.225
TURMOD(KEMODL)

GROUP 10. Inter-phase-transfer processes and properties
GROUP 11. Initialization of variable or porosity fields
W1IN=28.0
KEINIT=0.005*W1IN*W1IN
EPINIT=944.0
FIINIT(KE)=KEINIT
FIINIT(EP)=EPINIT
FIINIT(P1)=0.0;FIINIT(W1)=W1IN;FIINIT(V1)=0.0
CONPOR(INTERIOR,0.0,CELL,1,1,9,18,11,50)

GROUP 12. Convection and diffusion adjustments
GROUP 13. Boundary conditions and special sources
PATCH(INLET,LOW,1,NX,1,NY,1,1,1,1)
COVAL(INLET,W1,ONLYMS,W1IN)
COVAL(INLET,P1,FIXFLU,W1IN*RHO1)
COVAL(INLET,KE,ONLYMS,KEINIT)
COVAL(INLET,EP,ONLYMS,EPINIT)
PATCH(FRONT,HWALL,1,1,9,18,10,10,1,1)
COVAL(FRONT,V1,GRND2,0.0)
COVAL(FRONT,KE,GRND2,GRND2)
COVAL(FRONT,EP,GRND2,GRND2)
PATCH(BOTTOM,NWALL,1,1,8,8,11,50,1,1)
COVAL(BOTTOM,W1,GRND2,0.0)
COVAL(BOTTOM,KE,GRND2,GRND2)
COVAL(BOTTOM,EP,GRND2,GRND2)
PATCH(REAR,LWALL,1,1,9,18,51,51,1,1)
COVAL(REAR,V1,GRND2,0.0)
COVAL(REAR,KE,GRND2,GRND2)

Chapter 10. Some case studies

218

COVAL(REAR,EP,GRND2,GRND2)
PATCH(TOP,SWALL,1,1,19,19,11,50,1,1)
COVAL(TOP,W1,GRND2,0.0)
COVAL(TOP,KE,GRND2,GRND2)
COVAL(TOP,EP,GRND2,GRND2)
PATCH(FLOOR,SWALL,1,1,1,1,1,NZ,1,1)
COVAL(FLOOR,W1,GRND2,0.0)
COVAL(FLOOR,KE,GRND2,GRND2)
COVAL(FLOOR,EP,GRND2,GRND2)
PATCH(OUTLET,HIGH,1,1,1,NY,NZ,NZ,1,1)
COVAL(OUTLET,P1,FIXP,0.0)

GROUP 14. Downstream pressure for PARAB=.TRUE.
GROUP 15. Termination of sweeps
LSWEEP=10

GROUP 16. Termination of iterations
LITER(P1)=20;LITER(V1)=1;LITER(W1)=1;LITER(KE)=1;L
ITER(EP)=1

GROUP 17. Under-relaxation devices
RELAX(P1,LINRLX,0.1)
RELAX(W1,FALSDT,0.006)
RELAX(V1,FALSDT,0.006)
RELAX(KE,FALSDT,0.0005)
RELAX(EP,FALSDT,0.0005)
KELIN=1

GROUP 18. Limits on variables or increments to them
GROUP 19. Data communicated by satellite to GROUND
GROUP 20. Preliminary print-out
GROUP 21. Print-out of variables
OUTPUT(W1,Y,N,N,Y,Y,Y)
OUTPUT(V1,Y,N,N,Y,Y,Y)
OUTPUT(P1,Y,N,N,Y,Y,Y)
OUTPUT(UCRT,Y,N,N,N,N,N)

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

219

OUTPUT(VCRT,Y,N,N,N,N,N)
OUTPUT(WCRT,Y,N,N,N,N,N)

GROUP 22. Spot-value print-out
IXMON=1;IYMON=20;IZMON=39

GROUP 23. Field print-out and plot control
NPLT=1;ITABL=3

GROUP 24. Dumps for restarts
SAVE=T

RESTRT(V1,W1,P1,KE,EP)
SAVGEO=F
RSTGEO=T
LSWEEP=150
STOP

The first line of the Q1 file tells SATELLITE to allow both
interactive checking and modification of the data once the file has
been read. It also determines the computer terminal type that will be
used. Then the commands that specify the structure of the mesh,
read the previously prepared mesh data and set up the flow problem
are given in the following groups:

• Group 1 - Preliminaries. This contains a simple title and a
list of user-defined variables that SATELLITE needs to
know are real numbers. These variables will be used later in
the Q1 file as part of some simple calculations.

• Group 2 - Time Dependence. Here theflow is specified as
being steady state, i.e. there is no variation with time. This
is a simplification of the problem, made so that a solution
can be found using a reasonable amount of computer time.
In reality there is always some time variation of a turbulent
flow, but we hope that for our computation the turbulence
model will take this into account.

Chapter 10. Some case studies

220

• Groups 3 to 5 - Mesh Specification. This is where the
program is told how many cells there are in each of the
three local mesh directions.

• Group 6 - Body-Fitted Coordinates. The program is told
that a mesh has been created that is body-fitted and that the
coordinates of the grid points are stored on a file called
GRID. As the mesh has been created using projections of
points in the vertical and horizontal directions, it is clear
that no attempt has been made to ensure that the mesh is
orthogonal. EARTH needs to know this as extra numerical
terms must be used in the numerical analogue of the
governing equations when the grid is non-orthogonal. Once
EARTH has read the set of grid points, it can create a file
which contains a great deal of geometrical information
within it. To save time when performing a simulation, this
file need only be created once and then stored. As the Q1
file listed refers to the first run of a solution, the last two
commands in this group tell EARTH that the geometry file
does not exist and that it should save this file at the end of
this run.

• Group 7 - Solution Variables. To solve this problem we
need to find two velocity components and the pressure of
the fluid. The velocity components, variables V1 and W1,
are calculated by the program in directions defined locally
in each cell, and these directions are determined by the
positions of the corner points of a cell. As the post-
processor PHOTON needs to have access to the velocity
components defined in the Cartesian directions, we must
calculate and store these additional components. These
velocity components are known as UCRT, VCRT and
WCRT. The command SOLUTN is used to activate the
pressure variable P1 so that the default slab-by-slab
solution method is changed to a whole-field solution
method. This does not affect the values of the solution, but
it does speed the solution process up.

• Group 8 - Terms in the Differential Equations. Here, the
convection operator is requested to be formed using upwind
differences regardless of the value of the cell Peclet

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

221

number. This is done by setting the value of DIFCUT to
zero. The ADDDIF command ensures that the pressure
correction equation (see Section 3.5.2) includes the
diffusion terms in the momentum equation and does not
leave them out as it would by default. This inclusion of
terms increases the likelihood of the solution converging.

• Group 9 - Properties. As the vehicle is in air, the density
and laminar kinematic viscosity are set to the values
determined during the flow specification stage, Section 5.2.
The TURMOD command switches on the two-equation k -
epsilon turbulence model, telling EARTH to solve for both
turbulent kinetic energy k and the rate of its dissipation
epsilon, calculating the effective turbulent viscosity using
the relationship given in by equation 2.18 in Section 2.2.3.

• Group 10 - Multi-Phase Flows. No entries.
• Group 11 - Initialisation. This group is used to define the

value of the velocity, turbulent kinetic energy and
dissipation rate at the inlet. At the inlet boundary, the
velocity component of the flow in the local z-direction, W1,
the direction of which coincides with the global z-direction
at the inlet, is 28 m/s. This velocity is convected into the
domain together with the turbulent kinetic energy and its
dissipation rate. To calculate the values of the turbulence
quantities at the inlet, the value of turbulence intensity is
assumed to be 6%. From the definitions of turbulence
intensity I and turbulence kinetic energy k [3,10], the value
of the turbulence kinetic energy can be calculated as:

(10.12)

The epsilon value is set so that it gives an effective turbulent
kinematic viscosity which is one hundred times the laminar
kinematic viscosity, a typical value for air. Hence using equation

Chapter 10. Some case studies

222

2.18 with the coefficient c sub mu set to its standard value of 0.09
we obtain

(10.13)

These values will also be used when the boundary conditions are
prescribed in a later group, but they are calculated here so that they
can be used as the first guess to the variables throughout the field.
The FIINIT commands set the value of the pressure and the velocity
component V1 to zero, and of the velocity component W1 and the k
and epsilon variables to the values at the inlet discussed above.
These FIINIT commands work by setting the values of the variables
at every location to the appropriate numerical value.

Finally in this group, the cells inside the vehicle, which should not
take any part in the simulation as they exist only to assist in the
computational housekeeping, are labelled and switched off using
the CONPOR command.

• Group 12 - Unused. No entries.
• Group 13 - Boundary Conditions. Here the boundary

conditions are defined. We have already identified the
boundaries as being physically located at the inlet, outlet,
floor and roof of the tunnel, and at the vehicle surface. As
we have decided to make the roof of the tunnel a symmetry
plane and not a viscous wall, we do not need to do anything
to apply this boundary condition as this is the default
boundary condition. The vehicle surface can be described
as the top of the car together with the bottom, the front and
the rear. These four sections of the surface form the
boundaries of the fifth block used to create the mesh. The
PATCH commands define the positions of the boundaries
by listing the cell ranges and the face positions using the
compass notation described in Section 7.3.1, and the

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

223

COVAL statements apply the appropriate boundary
conditions. These conditions are specified such that at the
inlet the velocity component in the z-direction, and the
values of k and epsilon are specified, together with a mass
flow boundary condition for the pressure correction
equation (see Sections 3.5.2 and 3.5.4); at the outlet the
pressure is set to zero; and on the other boundaries, wall
functions are used to find the values of k, epsilon and the
necessary velocity components.

Now that the information defining the fluid flow problem has been
explained, the rationale behind the choice of the settings for the
control parameters relating to the numerical solution must also be
explained group by group:

• Group 14 - Parabolic Flow. No entries.
• Group 15 - Termination of Sweeps. The number of sweeps

is set to ten. This enables the initial progress of the residual
errors to be monitored to see if the solution process is
moving in a satisfactory way towards convergence. If the
residual values fall then the process is proceeding well, but
if the residuals get bigger then the solution process may not
converge.

• Group 16 - Internal Iteration Control. Within each sweep,
the calculation of each of the variables involves the solution
of a set of simultaneous linear equations. These solutions
are found by an iterative procedure inside EARTH. It is
important that the solution to the pressure correction
equation is computed as accurately as is realistically
possible, as this ensures that the mass of fluid is conserved
throughout the flow domain, and so twenty internal
iterations are performed when calculating the pressure. For
the other four variables, accuracy at the end of a sweep is
less important, and so only one iteration of the linear
equation solver is performed per sweep.

• Group 17 - Relaxation Parameters. To control the non-
linear solution procedure, the variables that are calculated

Chapter 10. Some case studies

224

must be relaxed in some way. For pressure this is done
using standard linear relaxation, equation 8.3, and the
relaxation factor is set to 0.1. The other variables are
relaxed using a form of time step smoothing which is
sometimes called pseudo-time relaxation. Although this
problem is being calculated as a steady state problem,
PHOENICS allows the addition of a false time-dependent
term that smooths the solution procedure. Effectively, a
time derivative of a variable phi dot , which has the form

(10.14)

is added to the left hand side of the discretised momentum
equations. When the solution is converged this term will be zero,
but in the initial stages it provides a smoothing of the solution. The
value of the time step DELTA t is found by calculating a typical
residence time for a particle in a cell. Here, an average velocity w in
the z-direction is 28 m/s, there are sixty cells N sub c in the z-
direction covering a distance L of 20 m; and so an estimate of the
residence time is given by

(10.15)

For the velocity components a suitable, and conservative, value of
DELTA t is about half of this residence time, i.e. 0.006 s. The
turbulence variables k and epsilon require more relaxation than this
and so a value about one tenth of relaxation for the velocity
components is used, i.e. 0.0005 s. These values are only first
guesses, chosen by what is a useful rule-of-thumb. In practise the

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

225

required values depend on the shape of the mesh and the flow itself,
and so some modification to these values may well be required.

Finally, in this group, the form of the k - epsilon model is made
appropriate for an external flow using the KELIN statement. This
selects one form of the linearisation of the terms in the k - epsilon
model, which the PHOENICS reference manual suggests should be
suitable.

• Groups 18, 19 and 20 - Special Features and Printout. No
entries.

• Groups 21, 22 and 23 - Printout. In these groups the output
from EARTH is specified. In particular, graphs and lists of
the residual errors are requested, together with graphs and
lists of the variables at a monitor location. This location is
chosen to be near the upper surface of the vehicle where the
flow varies rapidly in space. At this position, the change in
the variables from sweep to sweep should provide a
sensitive measure of the convergence of the numerical
solution.

• Group 24 - Restart Data. Here, the results are stored and the
marker denoting the end of the Q1 file is written. The
indented commands do not really belong in this group, but
they are conveniently located at the end of the file as they
are the commands that need to be activated if a restart
solution is to be performed. They tell EARTH to read the
last set of results and use them as the initial values for the
continuation of the solution, to read the existing file that
contains the geometry data and not to re-write this file at
the end of the solution.

Once the input data has been assembled and written in the Q1 file,
the SATELLITE program can be run. This produces input data
suitable for being read by the EARTH program, which can then be
run in turn.

Chapter 10. Some case studies

226

10.4.4 Running the Solver and Analysing the Results

To check that the values of the relaxation parameters are suitable
and that the solver produces results which appear to be converging,
only a few sweeps have been run. As the residuals decreased from
sweep to sweep during this trial run, the Q1 file was edited to
instruct EARTH to run 150 sweeps. By running the SATELLITE, a
new set of datafiles for EARTH were written, and EARTH itself
run again. At the end of its run EARTH produces a report file,
known as RESULT, which is in ASCII format. This contains
various information including the reports that are requested using
the Q1 file. Amongst these results are the values of the variables
within the monitor location cell at the end of each sweep. These are
given in both numerical and graphical form. Similarly, the values of
residuals for each of the equations is listed in the same way. Figure
10.6 shows the graph that EARTH has produced of the monitored
values against sweep number and Fig. 10.7 shows the graph of the
residual error against sweep number.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

227

Chapter 10. Some case studies

228

In both of these figures, the abscissa is the sweep number from 1 to
150, scaled to be in the range 0 to 1. Also, the spot values and the
residuals are plotted as the ordinate with the values being scaled to
fit between 0 and 1. Figure 10.6 shows that the spot values become
constant with sweep number. We can see that the v-component of
velocity and the pressure both fall then rise to a steady value,
epsilon rises then falls and both k and the w-component rise, fall
and then rise again. From the printed numerical values in the
RESULT file, the variation in all of the variables during the final
ten sweeps occurs in the third or fourth significant figure. Looking
at Fig. 10.7, the residuals can be seen to fall steadily with a small
departure for the residual of the w-component equation near the end
of the run.

Using the spot values and residuals as a guide, we can see that the
solution achieved after 150 sweeps is converged to an accuracy of
three significant figures. No further running of the solver is required
and so we can turn our attention to the results calculated throughout
the flow field. PHOTON, the post-processor of PHOENICS, can
read the data produced by EARTH and Figs. 10.8 and 10.9 show
the velocity vectors of the simulated flow for two different views.
These figures have been produced using commands similar to those
given for the PHOTON picture in the first example, see Section
10.3.6, and it is interesting to note that PHOTON has taken account
of the fact that there is no flow within the vehicle surface and not
plotted any data there and that the vectors appear at the cell
positions where they were calculated. Some graphics programs
produce data on a different mesh to that used by the calculation.
This can be useful if the mesh is unstructured. In Fig. 10.8 the
velocity field is displayed for the area of the rearscreen of the
vehicle. The flow is seen to separate from the rearscreen about two-
thirds of the way down the screen and a small vortex is found in the
screen-boot intersection. In reality, a car of this shape would have a
much larger area of separated flow over the rearscreen and so the
results we have obtained, although numerically converged, do not
quite agree with what we might expect. Looking at Fig. 10.9, we
can see the flow field over the roof of the vehicle. Here, the

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

229

boundary layer is hardly noticeable, with nearly all the variation
taking place in the first two cells from the surface. All of this
suggests that the mesh is not refined enough near the vehicle
surface.

Fig. 10.8. Velocity vectors at rearscreen (bias=20).

Refining the computer model is straightforward, now that we have
the tools to build the mesh and a model Q1 file already exists. A
second mesh has, therefore, been created using the same
distribution of cells along the vehicle surface and in the flow field,
but the biasing parameter has been increased from twenty to fifty
for the blocks ahead of, above and behind the vehicle. As we have
not changed the structure of the mesh, or the cell numbers in each if
the local mesh directions, no changes are required to the Q1 file,
but SATELLITE has to be run again, before running EARTH, so
that the new file containing the cell corner points is read and new
geometry data is written for EARTH.

Chapter 10. Some case studies

230

Fig. 10.9. Velocity vectors on roof (bias=20).

For this second mesh, a run of 150 sweeps has been made by
EARTH, and the RESULT file shows very similar trends to those
found with the original mesh for the variation of the spot values at
the monitor location and the residuals with sweep number. Using
PHOTON to look at the velocity field, Figs 10.10, 10.11 and 10.12,
several interesting features can be seen. By changing the biasing
parameter in the mesh building process, more cells are placed near
the vehicle surface and so there are more vectors near the surface.
This leads to a solution which has a larger area of flow separation
(Fig. 10.10) and a much better definition of the boundary layer on
the surface (Fig. 10.11). Consequently, the overall flow picture near
the car, Fig. 10.12, can be seen to be qualitatively correct. Note that
in this last figure the flow slows down as it approaches the front of
the vehicle and that it speeds up at the front of the bonnet and at the
vehicle roof where the surface changes direction rapidly in space.
Also, as well as the separation at the rearscreen, there is a region of
separated flow behind the vehicle where two vortices can be seen.
All of these features can be seen when the physical vehicle model is
placed in an airflow in a wind tunnel.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

231

Fig. 10.10. Velocity vectors at rearscreen (bias=50).

Fig. 10.11. Velocity vectors on roof (bias=50).

Chapter 10. Some case studies

232

Fig. 10.12. Velocity vectors around car (bias=50).

This refinement process can be continued and the biasing parameter
continually increased. A case has been run with the parameter set to
200 above the vehicle and 50 ahead of it and behind it. One
hundred and fifty sweeps have been calculated yet again. Figure
10.13 shows the residual variation with sweep number and, from
this, the variation of the residual error for the w-component of
velocity can be seen to oscillate wildly. There is also a smaller
oscillation of the pressure residual. This shows that the solution is
not progressing satisfactorily. Confirmation of this is found by
looking at the spot values which also oscillate in magnitude when
plotted against sweep number. One way of suppressing this
oscillation is to run the solution with more relaxation by using
smaller relaxation factors and another way is to create a mesh of the
domain which is smoother.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

233

At this stage in the process we appear to have reached the limit of
accuracy with this particular distribution of cells. Whilst further
simulations could be produced, we will leave this two-dimensional
calculation knowing that we have found a solution which is
qualitatively correct for the velocity field.

10.4.5 A Note On Three-Dimensional Calculations

Knowing that a simulation is qualitatively correct is often all that is
required of a simulation. Such simulations can provide an engineer
with sufficient information to make sensible choices about the
design of an object and the effect of these choices on the flow of the
fluid. In the case of the flow about a car, however, engineers must

Chapter 10. Some case studies

234

know something about the forces and moments produced on a
vehicle by the flow. This is quantitative information.

If we carry out CFD simulations of the flow about a car, we will
also want to know what the forces and moments are that the
simulated airflow would produce. Several manufacturers of
vehicles and CFD software authors have performed such
simulations in three dimensions [33,34,35], but the results have not
been promising. These simulations have shown that the qualitative
picture of the flow produced by the simulation is in good agreement
with that found in wind tunnel tests. Also there is a good agreement
between the prediction of fluid pressure on the surface of the
vehicle with that found by experiment. So far so good, but the bad
news starts when the predicted pressures are integrated over the
vehicle surface, for each cell face on the surface, to give a measure
of the forces and moments on the vehicle body. Even if we take the
problems of the modelling of the wheels of the vehicle and the drag
due viscous shear into account, the predicted drag is in poor
agreement with the experimental values.

One source of the error between the predicted forces and moments
and the experimental values comes from the integration process
itself. A vehicle in a real flow sees what is in effect an infinite
number of fluid particles over the vehicle surface, giving a pressure
which varies continuously over the vehicle surface. When several
hundreds of thousands of cells are used in the simulation, the cost
of the computer time alone for the simulation is greater than the
cost of the corresponding physical experiment and the number of
cells on the surface might still be only of the order of a few
thousand. This means that the simulation cannot capture the same
level of variation that the vehicle in a physical experiment would
see and, consequently, the numerical integration is very inaccurate.
This would still be the case even if the values of the pressure at all
the mesh points on the surface were exact.

I mention this problem to give the reader something to think about.
The aim of CFD in engineering is to produce results which are

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

235

useful in the design process, not to produce pretty colour pictures
for the office wall or for your manager. This means that companies
and individuals must decide whether CFD is the right tool for their
particular application. The ways of doing this are discussed further
in Chapter Twelve. It should be mentioned here that, for some
problems, CFD might be the only means of analysis and it might
also be cheaper than the experiment. The next example shows a
problem that is well suited to CFD, giving real insight into the
technical problem.

10.5 Water Flow Around A Combustion Chamber

10.5.1 Producing A Specification

In many industrial problems, the geometry is sufficiently complex
that the restriction of using a regularly structured mesh cannot be
tolerated. One source of extremely complex geometry is an
automotive internal combustion engine. Two major flow situations
that occur in this device are the flow of air and fuel into the
combustion chamber caused by the motion of a piston and the flow
of water around passages inside the engine where the water
removes excess heat from the engine casing. In this final case study
we will consider the problem shown in Fig. 10.14, where water
flows through an inlet, around the cooling passages outside the
combustion chamber and then flows out through a vertical outlet.
This is a simplified example of the flow of cooling water through
an engine.

Chapter 10. Some case studies

236

When looking at the flow of a coolant, it is important to the
efficiency of the design that there are very few areas where the flow
is separated. In such regions, the fluid moves slowly over the hot
surfaces and so the heat cannot be removed from these surfaces in
an efficient way. One objective of a CFD analysis of such a
situation is to determine where it is, within the cooling system, that
these areas of separated flow occur, if they do occur. Then
modifications can be made to the geometry of the internal passages

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

237

to ensure that such areas do not occur or that their existence is
minimised. Further, it is possible that CFD can give a good estimate
of the pressure loss in the fluid as it passes through the system and
this can be used to specify the required pressure head of the water
pump.

From Fig. 10.14 we can see that the bounding surfaces of the
geometry are simple planes or cylinders and so the production of a
mesh should not be difficult. When considering the flow through
the system only three types of boundary can be present. These are
an inlet, an outlet and a series of solid walls. At the inlet, the
velocity is 5 m/s and the width is 0.0232 m. For water at 15 { . sup
o} C, the Reynolds number based on the inlet width is

(10.16)

As the height of the inlet is 0.02 m, the Reynolds number based on
height will be much the same. Given these values of the Reynolds
number, the flow can be assumed to be turbulent. This can be
determined by considering the flow in a pipe [7,Chapter 7], where
the critical Reynolds number for the flow to change from a laminar
flow to a turbulent flow, the transition process, is about 2000.

10.5.2 Producing A Mesh

To produce a mesh for this problem, we can split the geometry into
a series of blocks as shown in Fig. 10.15. Then a simple structured
mesh can be built in each block and the blocks connected at their
boundaries in such a way that cell faces are aligned across the block
boundaries. A program similar to that used to mesh the car example
has been written to do this, but no biasing is applied to the cell
distribution. The program calculates the x- and y-coordinates of the

Chapter 10. Some case studies

238

mesh points within a block and then writes the full list of
coordinates for each block by writing sequences of these values
together with the appropriate value of the z-coordinate. This means
that the mesh in each block is made up of sheets of nodes at a set of
planes which are defined by having constant values of z.

STAR has the ability to read ASCII files which contain the mesh
data. Two files are required to specify the mesh; one file contains
the list of the x-, y- and z-coordinates for each point in the mesh,
known to STAR as a vertex; and the other file contains a list of the
identification numbers of the vertices that are connected to each
element. These files are written directly by the mesh generation
program.

To calculate the mesh, the program must be given a set of
parameters that state the numbers of cells in the various blocks.
These parameters are labelled n1, n2, nz, ninlet and nriser as shown

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

239

in Fig. 10.16. A complete mesh is illustrated in Fig. 10.17 for
values of these parameters set to 7, 7, 8, 10 and 20 respectively.
This is the mesh that we will use.

Chapter 10. Some case studies

240

Fig. 10.17. Mesh of the water jacket.

10.5.3 Other Pre-Processing Tasks

Before describing how the computer model is created using STAR,
we must outline the structure of STAR. The version that we have
run to produce this simulation is STAR v2.004 which consists of
two separate programs. The first program is PROSTAR which is
used for the interactive tasks of pre- and post-processing and the
second program is STAR itself, which is the solver program.

Once PROSTAR is activated the computer model of the flow
problem can be built up in stages. There are several modules to
PROSTAR and these are used to create the data for the solver. The
first stage is to create a mesh using the MESH module. As we have

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

241

already created the necessary files of mesh data, all that has to be
done in this module is to read the two files. This is done using the
VREAD and CREAD commands, where the V refers to vertices,
which are the corner points of the cells, and the C refers to the cells
themselves.

Next we can use the PROPERTY module to define the fluid. This is
done using the commands:

density,constant,1000.
lviscosity,constant,11.4e-4
turbulence,ke,1.018e5,0.02
initialize,0.0,5.0,0.0,0.0938,2.87,293.

The first two commands set the values of the density and viscosity
to be constant throughout the calculation and define appropriate
values in SI units. The third command switches on the two-equation
k- epsilon turbulence model and gives a typical Reynolds number
and a length. These two parameters were found during the
specification phase in Section 10.5.1. Finally, the initial values of
the variables are given in the following order: u, v, w, k, epsilon , T.
Here the last value T that is listed is the initial temperature and for
this problem it is not used. The velocity values are taken to be those
that apply at the inlet. To calculate the initial values of the
turbulence quantities, approximate inlet values are given and these
are found from an assumed value of turbulence intensity of 5%.
Using the formulae for turbulence intensity, this gives

(10.17)

An approximate value of the mixing length is known for a flow
near a wall, that is

Chapter 10. Some case studies

242

(10.18)

Here kappa is a constant for a boundary layer and the value of y is
taken to be half the inlet height. The value of the mixing length that
is derived will be a maximum value and so an average value will be
used for the mixing length of 0.01 m. Finally, the value of epsilon is
found from the additional turbulent viscosity. This is calculated
from equation 2.17 as

(10.19)

and so, from equation 2.18, epsilon is given by

(10.20)

Once the fluid properties have been defined, the boundary
conditions have to be set using the BOUNDARY module. STAR
assumes that any unspecified boundary is a solid wall and so this
simplifies the specification of the boundary conditions
considerably. All we have to do is specify the location of the inlet
and the outlet and then define the conditions that apply at these two
boundaries. The surface of the cells of the mesh can be plotted on
the screen in PROSTAR. This is done using the
PLTYPE,QHIDDEN command which displays a simplified hidden-
line plot. Then the cursor can be used to pick the cell faces that are
at the inlet and the outlet. The commands used to do this are

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

243

bcross,add,1
bcross,add,2

These define one set of faces to be region 1 and the other set of
faces to be region 2. These regions are then associated with the
boundary conditions using the commands

rdefine,1,inlet
0.0,5.0,0.0,1000.,0.0938,2.87
rdefine,2,outlet

These specify that the first region is an inlet at which the values of
u,v,w, rho , k, epsilon are given as listed. Similarly, the cell faces in
region 2 are defined to be the outlet.

The last module to be used is the CONTROL module, where the
data to control the numerical solution is provided. Within this
module, the commands are used to control the initial run of the
solver. They are listed below together with the variations that would
be used to carry out a restart calculation. The commands are (with
the restart commands given in square brackets):

time,0.005,steady iter,10,500,0.001 [iter,100,500,0.001] simple,on
rdata,none [rdata,restart,binary] wdata,post,binary
relax,0.1,0.1,0.1
monitor,101

These specify that the calculation is a steady state process; that ten
iterations out of of a maximum number of five hundred are to be
run with the program stopping if the residual falls below 0.001; that
the SIMPLE algorithm is to be used; that no initial data is to be read
from a file but that a restart calculation would read in this data; that
a file suitable for post-processing is to be written in binary format;
that the linear relaxation factors for the pressure, velocity
components and the turbulence parameters respectively are set to
0.1 and that the variables in cell 101 are to be printed every
iteration.

Chapter 10. Some case studies

244

Finally, the data necessary for the STAR solver program is written
using the commands

geomwrite,8
probwrite,10

which write the geometry data to the file numbered 8 and all the
other data to the file numbered 10.

10.5.4 Running The Solution

At first, ten iterations are run to check that the model is working.
The STAR solver produces output which lists the residuals and the
monitored values at each iteration and these show that the residuals
are decreasing except for epsilon which is increasing slightly. This
rise in the epsilon residual is not too much of a problem, but in an
attempt to get all the residuals reducing the relaxation factor for the
turbulence variables has been reduced to 0.01. Seventy iterations
have then been run starting from the initial values again.

Yet again, all the residuals decreased except for those from the
epsilon equation, but the rate of increase of this residual was clearly
reducing. This suggests that if further iterations are run with the
same relaxation factors the epsilon residual should start to reduce.
At the monitor location the velocity components and pressure are
changing rapidly, but the turbulence parameters are only moving
slowly due to the severe relaxation. To continue the solution, two
hundred further iterations have been run with the same relaxation
factors. The printout now shows that all the residuals are falling and
that the values of the variables at the monitor locations are changing
less and less.

Finally a further eighty iterations have been run with the relaxation
factor for pressure kept the same at 0.1, but the relaxation factor for
the velocity components was increased to 0.4 and for the turbulence
variables it was increased to 0.1. Initially all the residuals fall but
later the ones for the velocity components and pressure start to

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

245

oscillate. The residuals for the velocity components have decreased
by factors of several hundred and for pressure by several thousand.
By looking at the values of the variables at the monitor location we
can see that they are now only changing in the third significant
figure every sixteen iterations and so, effectively, the solution is
converged.

10.5.5 Analysing the Results

To look at the results graphically, we can use PROSTAR again.
First of all we must tell PROSTAR to access the computer model
that we set up in PROSTAR during the pre-processing phase (file
16) and the file of results that was created during the solution phase
(file 9). This is done using the commands:

resume,16
load,9

Once PROSTAR has read the data that it needs for post-processing,
various commands can be used to plot the data. For this example it
is likely that the most useful information will come from a plot of
the velocity vectors calculated by STAR. These will allow an
engineer to make a qualitative assessment of the way in which the
flow is behaving. For example, the commands:

vescale,0.5
poption,vector
getcell,all,none
plty,section
surf,on
edge,off
view,0,0,1
spoint,0.0,0.0,0.01
cplot

will plot the picture shown in Fig. 10.18. This is a velocity vector
plot at half the height of the main flow channel. The commands

Chapter 10. Some case studies

246

given above are used to scale the vectors to a reasonable size, set
the plot type to vector, use all the available cells, produce a section
plot on a plane through a point (0.0,0.0,0.01) together with the
surfaces taken as if viewed from a view point on the z-axis. The last
command actually plots the picture.

Fig. 10.18. Velocity vectors around water jacket.

From this figure we can see that the flow comes in through the inlet
and then splits into two to go around the cavity formed by the
combustion chamber. At the point of splitting, the magnitude of the
vectors is small, as it is in the upper left and lower right corners of
the flow system. Also, where the two streams come together, the

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

247

flow velocity is small. If the surfaces of the cavity were hot, and the
water was being used to transport heat away from these surfaces
then the heat transfer would not be very good in these areas. Figure
10.19 shows a similar plot through a vertical section which passes
through the outlet channel. This shows that the flow separates from
the passage surfaces at the entry to the outlet passage and we can
see that there is a vortex near to the left hand wall of the channel
where the flow velocity is very small. This area of separated flow
restricts the effective width of the channel, and leads to pressure
losses. The outlet passage could be redesigned to remove this
separation region, reducing the pressure losses in the system and
also improving any heat transfer in the area of the start of the outlet
channel.

Chapter 10. Some case studies

248

Fig. 10.19. Velocity vectors in vertical plane through outlet.

Even in large systems of pipes, it is this sort of information that can
be used to improve the fluid flow within a system and have a
beneficial impact on engineering design.

One thing that is clear from these two figures is that the boundary
layers near the walls of the passages have not been modelled very
accurately. This may not affect the qualitative nature of the
prediction, but it will effect any quantitative data such as the
variation of pressure through the domain. If this simulation is to be
improved it would have to be remodelled using a mesh with more
cells and, perhaps, with the cells being biased towards the walls of
the passages.

10.6 A Review Of The Usefulness Of CFD

From this set of three examples we can find pointers to the
usefulness of CFD. The first example shows that simple laminar
flows can be calculated to a high degree of accuracy with little
effort. The other two examples show that we have to be careful in
using CFD if the flow is more complex. With the example of the
flow over a car, the predicted data provides a reasonable simulation
both qualitatively and quantitatively, but when the numerical
pressure data is integrated then the results are very inaccurate.
Depending on the information that is required this could be a good
simulation or it could be a poor simulation. In the third example we
have only sought qualitative data and this simulation provides a
large amount of information that is of use to an engineer.

Looking at other examples of CFD, the use of the technology in
predicting the weather is extremely useful and accurate in most
circumstances. However, the simulations are restricted in that the
mesh size cannot be too great as the calculations have to be
performed in a reasonable time and not use too much computer
memory. This means that freak weather events which have a spatial
dimension smaller than the distance between mesh points will not

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

249

be predicted very accurately. Without infinite computer power and
memory this will always be the case.

We have also discussed, in Chapter One, the Kings' Cross inquiry
and the use of CFD in determining the cause of the fireball that
occurred. The CFD calculations pointed out a possible mechanism
for this in the form of the so-called trench effect, where the hot
gases stayed near the floor of the escalator tunnel. This
phenomenon had not been thought of before and so experiments
were carried out to investigate if it could actually occur in practice.
These experiments showed similar flow patterns, confirming that
the mechanism predicted using CFD could occur in practice. It was
the combination of both the CFD prediction and the subsequent
experimentation that made this study so conclusive. It is becoming
more common that these two predictive techniques,
experimentation and computation, have to be used together. They
should be seen as complementary means of carrying out
investigations not as opposing strategies.

In summary, it can be said that CFD does have its uses but that the
results of simulations need to be considered carefully before they
are used.

Chapter 11. Modelling flows with heat transfer

250

11 MODELLING FLOWS WITH ADDITIONAL COMPLEXITY

So far, we have considered the ways in which CFD tools can be
used to predict flows which can be classified as incompressible and
viscous. Many industrial flow problems encountered outside the
aircraft industry can be described as flows that fall into this
category. This means that many flows can be modelled by applying
the techniques that we have discussed. If we are to model some, or
all, of the other categories of flows, we must determine the
modifications that need to be made to our modelling technique. In
particular, the modelling of four additional features will enable a
large proportion of the flows, that are not simply incompressible
and viscous, to be modelled. These four features are:

• the prediction of heat transfer within a flow. In this case an
additional equation, the energy equation, which describes
the transport of heat energy through a fluid has to be
solved.

• the effects of compressibility. Many fluids in motion
exhibit the effects of compressibility. This occurs when the
density of the fluid changes in the flow field.

• the existence of multiple phases within the flow. In some
flow problems two or more fluids can flow together. For
example a liquid and a gas could move together. Also the
transport of solid material in a fluid can be described as
being a multi-phase flow.

• the inclusion of combustion. When a fuel is burned
chemical changes take place and energy is released. This
can occur in a fluid that is already flowing or it can cause a
fluid to flow.

In this chapter, we will discuss in a simple way each of these topics
in turn. It should be noted that the material that follows is not meant
to be an exhaustive treatment. The aim of this chapter is to highlight
some of the modifications that are made to the modelling process
which enable these features to be catered for. This will help the

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

251

analyst to look in the right places for further information, if the
need to carry out such modelling ever arises.

11.1 Modelling Flows With Heat Transfer

11.1.1 The Effects of Heat Transfer on a Flow

Heat transfer is the movement of internal energy around a system. It
can occur in three main ways; conduction, where the agitation of
molecules transfers the energy from one molecule to another;
convection, where the transport of material transfers the energy
from one place to another and radiation where electromagnetic
fields are the mechanism of energy transfer. The textbook by
Rogers and Mayhew [31] provides a good basic introduction to the
subject.

Within a given situation, all three modes of heat transfer might
occur. For example, heat might flow through a solid by conduction
and then be transferred into a fluid where it is convected away with
the fluid and if, say, flames are present they will radiate heat energy
all around. However, in the context of fluid flow, it is convection
that is the most important and so we will concentrate on this mode
of heat transfer.

There are two main types of convection. Let us consider the
situation where a fluid is forced by some pressure forces to flow
over a hot object. Some of the heat is removed from the hot object
and convected away. This is known as forced convection.
Conversely, a hot object might heat the surrounding stationary fluid
causing its density to reduce locally. When this happens the hotter
fluid rises through the colder fluid, an effect of gravity, and we
have what is known as natural convection. In the first case, the flow
takes place and the heat transfer is a secondary effect, whereas in
the second case, the heat transfer actually drives the flow of the
fluid.

Chapter 11. Modelling flows with heat transfer

252

When we started our discussions of the modelling of fluid flow, we
had to derive mathematical relationships between the variables that
could then be converted into numerical equations. Similarly, when
modelling heat transfer by convection, we have to have some
mathematical model of the energy transfer process and so now we
must look at how this can be derived.

11.1.2 The Energy Equation For Heat Transfer

When modelling incompressible, viscous flows we must use the
momentum and continuity equations to calculate the velocity
components and the static pressure of the fluid. If we are to model
heat transfer by convection, then we must also find some
relationship between the flow variables and a property related to the
heat flow in the fluid. The property we normally choose to do this is
the temperature, which we need to calculate throughout the flow
domain. This is done by using an energy equation derived from the
first law of thermodynamics. The derivation is shown in detail by
Schlichting [3] and in an abbreviated form by Chapman [36].

If we consider a given patch of fluid, as we did in Chapter Two, the
first law law states that the heat entering the patch can lead to some
combination of two effects. It can raise the internal energy of the
fluid in the patch and it can enable the patch of fluid to do work on
its surroundings. Hence, by considering the rates at which these
events occur, we can write the first law of thermodynamics as

(11.1)

where Q is the heat energy entering the patch by conduction, E is
the internal energy of the patch and W is the work done by the fluid
in the patch.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

253

This can be rewritten in terms of the heat added per unit volume q,
the work done per unit volume w and the internal energy per unit
mass, the specific internal energy e, i.e.

(11.2)

where rho is the fluid density.

Dealing with each of these terms, the first is the rate at which heat
energy is conducted into the patch, which can for two dimensions
be shown to be given by

(11.3)

where k is the constant thermal conductivity of the fluid.

The second term contains the rate of change of specific internal
energy in the patch, and it is possible to describe this as the product
of the specific heat at constant pressure c sub p and the rate of
change of the fluid temperature T, which in this case is the
substantive derivative (see Section 2.2.1) of the temperature. In two
dimensions this gives

(11.4)

The third term is the rate of work done per unit volume of fluid and
this can be taken as being due to viscous forces alone if the fluid is
incompressible. This means that

Chapter 11. Modelling flows with heat transfer

254

(11.5)

Here the negative sign shows that this is, in fact, work done on the
fluid in the patch not the work done by this fluid. Combining these
terms together we obtain the equation for the transport of
temperature through the domain, which is

(11.6)

This equation is very similar in form to the momentum equations
for laminar flow that we discussed in Chapter Two. It is a non-
linear equation describing the temperature in the fluid as being
related to the flow velocity and some properties of the fluid. To
produce a numerical analogue of this equation, any of the
techniques described in Chapter Three can be used and the solution
of the equation can be inserted into the full solution process. If the
SIMPLE algorithm is used to calculate the variables, the
temperature is found after the pressure equation has been used to
update the static pressure and to correct the velocity components
that have been derived from the momentum equations.

Such a procedure will be valid for laminar flows where the effects
of any changes in fluid density can be ignored. This would be the
case in forced convection problems. The effects of turbulence on
the situation and of any changes in the density, the so-called
buoyancy effect, still have to be taken into account.

As a last note on the energy equation, we can see from equation
11.6 that the boundary conditions are likely to be the specification

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

255

of the temperature on a boundary or the specification of the normal
derivative of temperature. In some circumstances these will be
known directly, but often any derivatives will have to be found
from empirical data.

11.1.3 The Effects of Turbulence on Heat Transfer

In Sections 2.2.2 and 2.2.3, we looked at how to account for the fact
that in a turbulent flow the velocity components can be thought of
as being made up of a mean value and a fluctuating component. We
saw there that such an analysis produced additional terms in the
momentum equation which can be modelled as additional stresses.
If we carry out a similar procedure for the energy equation 11.6,
then further heat flux terms are generated. These again have to be
modelled by some means.

As it can be shown that there are analogies between the
modifications to the momentum equations due to turbulence and the
modifications to the energy equation due to turbulence, simple
ways of modelling the additional heat flux terms are often used.

11.1.4 Buoyancy Effects

When a fluid is heated its density changes. This means that as the
density changes so gravity will exert a different force on a patch of
fluid. Consequently, hot fluids will try to rise through cold ones.
This is the mechanism of what is known as natural or free
convection, and this has to be modelled in some CFD simulations.
Take for example the case of a fluid inside a double glazing system,
Fig. 11.1. There, the left hand wall of the cavity is hot, the right
hand wall is cold and the other two walls have no heat flowing
through them. Gravity can be seen to act vertically downwards,
parallel to the hot and cold walls. Due to the temperature of the
walls, on the left hand side the fluid will be hotter than on the right
hand side, and the density of the fluid will be lower on the left than
on the right. As gravity will exert a lower force on the fluid at the
left, there will be a movement of fluid up the hot wall and down the

Chapter 11. Modelling flows with heat transfer

256

cold wall. To model such situations the addition of the energy
equation is not sufficient, as we have to include the effect of gravity
in the momentum equations. This is done by adding an effective
force term due to the density variation to the right hand side of the
momentum equations. This force acts in a direction parallel to the
direction of the gravity force.

Fig. 11.1 The double-glazing problem.

Looking at Fig. 11.1, where the problem is shown with the y-axis
being vertical, i.e. gravity acts in the negative y-direction, we can
see that the density changes will lead to an additional term X in the
y-momentum equation. This term can be modelled, for our usual
patch of fluid, as

(11.7)

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

257

where rho is the local density of fluid and rho sub f is a reference
density. Hence, when the density rho is less than the reference rho
sub f the fluid will have a positive force on it. This density
relationship can be converted into a temperature relationship by
using the coefficient of volume expansion beta to give

(11.8)

Here, T sub f is a reference temperature and beta is defined by

(11.9)

where bold v is the specific volume of the fluid and the p denotes
that the derivative is calculated at constant pressure. Combining the
equation for X, equation 11.8, with the momentum equation in the
y-direction, equation 2.9, gives

(11.10)

It is the additional term that is known as the buoyancy term.

11.1.5 Conjugate Heat Transfer Problems

If we set the velocity components to zero in the energy equation,
equation 11.6, this equation can be used to describe the heat transfer

Chapter 11. Modelling flows with heat transfer

258

in a solid. In some problems, such as the flow in a thick walled
pipe, Fig. 11.2, we might be interested in modelling the total system
of the conduction in the solid pipe wall and the convection in the
fluid. Such a problem is known as a conjugate heat transfer problem
and has some of the thermal boundary conditions set at solid
boundaries not fluid boundaries. Considering Fig. 11.2 as showing
an axisymmetric situation, the pipe has a hot outer wall at which we
might know either the temperature itself or the heat flux through the
surface. Moving towards the centre of the pipe there is a solid wall
in which heat flows by conduction and all velocity terms are zero.
Then there is a solid-fluid interface before we come to the fluid in
the pipe itself. Within the fluid the velocity increases away from
this interface to a maximum at the centre of the pipe, and the
temperature falls towards the centre.

Many CFD software packages can solve such problems, but there
can be numerical difficulties at the fluid-solid interface. These
problems can arise from the distribution of cells with some finite
volume programs, where a cell might straddle the interface. This
would not happen with finite element programs. Also the modelling
of conjugate heat transfer with turbulent flows can lead to problems

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

259

when any of the discretisation techniques are used, as log-law
profiles have to be applied at the interface.

11.1.6 Some Non-Dimensional Groups

When we looked at defining incompressible viscous flows, we saw
that a useful parameter in classifying the flow is the Reynolds
number. There are several non-dimensional groups that are useful
when considering heat transfer problems and these are:

• Prandtl Number, which is defined as

(11.11)

and can be seen to be the ratio of viscous diffusion of momentum to
thermal diffusion through conduction. Typical values of Pr for
gases are in the range 0.65 to 1.0, with air having a value about 0.7.
By comparison water has a value of about 6.0 at room temperature.

• Nusselt Number, which is defined as

(11.12)

where d is a typical length and h is the heat transfer coefficient
defined as the surface flux of heat q dot divided by some
temperature difference i.e.

(11.13)

Chapter 11. Modelling flows with heat transfer

260

where T sub s is the temperature of the surface and T sub f is a
reference temperature, say of the fluid surrounding the surface.
Nusselt number is a non-dimensional measure of the heat transfer
through a surface.

• Grashof Number, which is defined as

(11.14)

where g is the acceleration due to gravity, d is a typical length, beta
is the coefficient of volume expansion, DELTA T is a temperature
difference and nu is the kinematic viscosity. This parameter is used
to characterise natural convection problems.

11.2 Modelling Flows That Are Compressible

11.2.1 Some Features Found In Compressible Flows

Flows that are compressible have a varying density of the fluid
throughout the flowfield. These flows exhibit some features that are
not found in incompressible flows. Amongst these are the
discontinuities known as shock waves where fluid variables change
rapidly over a small spatial distance. Many books show pictures of
the types of flow that can be found [6]. These features are found in
addition to the features of viscous flows already discussed.

One way of classifying a compressible flow is by the parameter
known as the Mach Number. This is defined as the ratio of local
flow speed V sub {local} to the local speed of sound in the fluid a,
or

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

261

(11.15)

From this we can see that once a flow is moving, the Mach number
is not zero. Standard texts on compressible flow, such as Shapiro
[37], show that if the Mach number is small, say less than 0.2, then
the flow may be considered incompressible, but when the Mach
number is greater than this then the flow must be considered as
compressible. If the local Mach number is less than unity
everywhere, a subsonic flow, shock waves will not appear, and the
flow will qualitatively behave like an incompressible flow, hence
our modelling technique need hardly be altered. Whereas, if the
flow has regions where the Mach number is greater than one, which
are known as supersonic flow regions, then shock waves can
appear. If we consider the flow around an object, the Mach number
well away from the object may be very small, however, the flow
must accelerate around or through the object, and so the local Mach
number can be much greater in some places. For example, the flow
through narrow gaps such as that between an aircraft wing and a
slat can reach supersonic speeds if then Mach number of the free
stream, that is away from the wing, is as small as 0.2.

The change in the observed flow types for supersonic flow areas
suggests that something fundamental must be happening in the flow
that is different from what happens in incompressible flow. By
looking at the flow equations for compressible flow, this change in
flow properties can be investigated.

11.2.2 Equations For Compressible Flow

If we assume that the density of a flow can vary, which it often does
in reality, then the equations we developed in Chapter Two need
some modification. For the continuity of mass, the major change
comes from allowing for the possibility of mass accumulating

Chapter 11. Modelling flows with heat transfer

262

inside the patch of fluid due to the density changing with time.
Also, the mass flow terms at each boundary of the patch must now
include the density. This leads to the modified equation

(11.16)

and the momentum equations become [38]

(11.17)

and

(11.18)

where the stress terms tau are known functions of the velocity
gradients and the viscosity.

To model a compressible flow we must be able to describe the
velocity field by its velocity components and we must also be able
to specify the pressure and density. This means that we have to find
four variables for the two-dimensional problem, and so the three
equations above cannot give us enough information. To complete
the mathematical definition of the problem, we can write an energy
equation similar to equation 11.6 in the previous section which adds
yet another variable, temperature.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

263

As before, the two momentum equations (11.17) and (11.18) can be
used to find the velocity components, and the compressible
continuity equation (11.16) can then be used to obtain the fluid
density throughout the flow. Temperature can be calculated using
the energy equation, and finally the fluid pressure can be obtained
from the equation of state for the fluid. Usually, the fluid can be
taken as being a perfect gas, and so the equation of state is [31]

(11.19)

where R is the gas constant.

From this, we can see that the compressible flow equations do not
require a SIMPLE-like algorithm as was discussed in Chapter
Three. The equations derived allow the solution to proceed in a
more intuitive way. Also, historically, people have solved the above
equations with the viscous terms neglected. The equations are then
known as the Euler equations. Once the local Mach number is
greater than unity, the equations change in character to allow the
features such as shock waves to occur. They become hyperbolic,
and have characteristic solution directions. Numerical schemes
capable of solving these equations must reflect these changes [13].

11.2.3 Some Practical Problems With Compressible Flows

Compressible flows, in reality, can exhibit behaviour that is very
different from that of incompressible flows. This comes from the
existence of shock waves in some flows, where the flow variables
change rapidly over very small distances. Effectively, the flow
solution is discontinuous. Also, if the flow speed is very large,
when compared to the local speed of sound, the equations change in
character to reflect the changes that occur in the physical flows.

This leads to CFD software having to be able to handle
discontinuous flow solutions and different types of partial

Chapter 11. Modelling flows with heat transfer

264

differential equation. Hopefully, the CFD software package will
take care of the solution scheme changes, but the analyst must be
aware of the requirements for a suitable mesh. This can be a
problem, as the shock waves appear in the flow and propagate away
from the boundaries not along the boundaries. As the flow near a
shock wave is discontinuous, the mesh must be built such that it has
a large number of cells in areas where shock waves are expected.
Unfortunately, before the solution is run, it is very difficult to
predict where the shock wave will occur, and so one useful
technique is to use adaptive meshing as described in Chapter Six.
Then a solution can be run, the gradients of, say, the pressure
calculated and the domain remeshed to put more cells in the areas
of high gradients [15].

11.3 Multiple-Phase Flows

Multiple-phase flows occur when two or more different states of
material flow together. A solid might flow together with a gas or a
liquid, or a gas might flow with a liquid. Physical examples of this
are:

• the flow of steam and water in power plants
• the flow of water droplets and air in a cooling tower
• the flow of sand and air in a sand-transport system.

Modelling of these systems again uses the concepts of momentum
conservation, continuity and, if necessary, energy conservation or
other physical laws. In particular, each phase of material is assumed
to have its own velocity components and a volume fraction. This
latter quantity is the amount of material of a phase, by volume,
relative to the total amount of material.

Equations are then developed for the conservation laws, and the
interaction of the phases is taken into account by terms which are
derived empirically. Take the case of solid spheres flowing with a
liquid. The spheres gain momentum due to the relative velocity of
the spheres when compared to the fluid, and the fluid looses

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

265

momentum in the same way. Effectively there is a friction between
the phases, and this is known as the interphase friction.
Consequently, the momentum equations have to be modified to
allow for the effects of these interface momentum changes.

Standard papers on the modelling of multi-phase flows are those of
Harlow and Amsden [39] and Spalding [40].

11.4 Modelling the Effects of Combustion

Combustion is the science of burning substances. It is a composite
science, drawing on material from chemistry, thermodynamics and
fluid mechanics. Much of the material that has already been
discussed is of use in solving combustion problems, but there is a
tremendous amount missing especially in terms of chemistry. The
following brief note might be of help if you need to solve flow
problems which involve combustion.

There are several books that give good introductions to the subject,
such as Spalding [41]. In terms of modelling, the simulation of
combustion includes a combination of compressible flow and multi-
phase flow together with some chemistry which models the burning
process. This takes some fuel together with an oxidant and produces
what are known as the products of combustion. The rate at which
this takes place has to be determined and is often controlled by the
mixing of the components or by chemical kinetics, which are
energy processes. The burning process releases heat energy to the
system, and so the rate of heat release has also to be found. These
features are given to the calculation using simple models or
empirical data.

Chapter 12. Acquiring CFD technology

266

12 ACQUIRING CFD TECHNOLOGY

12.1 Preliminaries

In the first eleven chapters of this book, we have discussed the
techniques that are used to produce a simulation of a flow using
CFD. Also, we have looked at the hardware and software that is
commercially available for use in the analysis process. For people
that need to understand what is happening when a fluid flows, these
techniques might provide an additional means of finding
information, but the acquisition of the necessary hardware, software
and expertise is expensive. For this reason, a careful study of the
needs and requirements has to be made before the final decision to
acquire the technology can be taken.

In this final chapter we look at some of the items that should be
considered before committing resources to CFD. This chapter has
been written to help guide those who have to make commercial
decisions about the use of this technology, and so it is aimed mainly
at the industrial user, but it also has some relevance for other users.

12.2 Assessing the Need

The first thing to consider is how a knowledge of fluid flow might
help you or your organisation. To explore this, we need to look at
all the areas that are related to fluid flow. Let us consider the case
of a manufacturer in the motor industry. Fluid flow is an important
topic for many different people within the organisation such as the
vehicle aerodynamicist, the engine designer and the `engineer
developing heating and air conditioning systems. All of these areas
are related to the production of the product of a company, but there
are other areas where fluid flow could be important. For example,
in the design of a new manufacturing facility, the flow of air could
affect the manufacturing process, the ventilation or even the safety
of the plant with regard to a fire.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

267

Once the areas of interest have been listed, the techniques that are
available to investigate the fluid flow phenomena should be
assessed. In the case of the flow over a vehicle, it is cheaper and
more accurate to obtain estimates of the aerodynamic forces that
engineers require using experiments in a wind tunnel. Conversely,
in the case of the flow within an engine, the experiments needed to
determine the characteristics of a flow are extremely expensive due
to the problems of measuring the flow variables, and so CFD might
provide an alternative analysis tool that is cost effective. When all
this information has been assembled, it should be possible to see if
there is a place for CFD in the toolkit of techniques that might be
used.

If CFD has a place in the toolkit then the benefits of using this
expensive technology must be made clear. Remember, it may be
that CFD is just another tool, providing no more or no less than
those tools currently in use. Conversely, it may provide some extra
benefit, such as a direct saving in cash terms, or providing extra
information that is not currently available.

12.3 Producing A Specification For A CFD Program

If there is a need for CFD, then we must decide what type of CFD
software is required. To find out which of the available packages
could be used, we must produce a list of requirements, that the CFD
software should meet. More often than not, no single package will
meet all the requirements but several packages will meet some of
the requirements. Hence, when choosing the software we might
have to make some very subjective decisions.

To draw up the program specification, we must think carefully
about the flow problems that we wish to analyse. For example, we
should have some idea of the following features:

• the geometry of the fluid domains that might need to be
analysed. This will tell us whether we need a package that
can solve problems in one, two or three dimensions. Also,

Chapter 12. Acquiring CFD technology

268

if the geometry is very complex, we might be forced to use
a system that can handle a mesh which is unstructured, but
for many problems a structured mesh will be sufficient.

• the flow type. The classification of a flow depends on such
things as the speed of the flow relative to the speed of
sound, so that an assessment of the compressibility of the
fluid can be made. If the Mach number throughout the flow
is low then an incompressible flow solver can be used, but
if the Mach number is close to or greater than one,
anywhere in the flow, than a compressible solver will be
required. A knowledge of the Reynolds number is also
important, as we can determine from this whether the flow
will be laminar or turbulent. If the flow is turbulent, then
some form of turbulence model will be necessary, and the
level of sophistication required of this model will also be
determined by the characteristics of the flow. In most cases,
a two-equation model such as the $k- epsilon$ model will
be sufficient, but if the flow swirls, for example, then an
algebraic stress or Reynolds stress model might well
perform better. One other aspect of the flow that needs to
be decided upon is the level of variation with time. Many
flows can be assumed not to vary with time, provided that
the gross features do not change with time, even though the
microscopic flow features may vary with time. However,
some flows will vary with time. This might be inherent in
the flow itself even if the geometrical boundaries do not
move. For example, the vortices can be shed behind a
cylinder in a periodic manner at certain Reynolds numbers.
In other cases, the flow will vary with time due to the
movement of the geometrical boundaries. An example of
this is the flow generated by a piston moving within an
internal combustion / engine.

• heat transfer effects. In many flow situations, the
knowledge of the flow of heat throughout the fluid might
be required. Further, the flow of heat in adjoining solid
material might also be of interest, requiring a conjugate
heat transfer problem to be solved, as might the effects of
radiation.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

269

• the number of phases in the flow. This is usually one, but it
could be two or more for some problems.

The above list covers some aspects of the flow, but we also need to
determine some of the features of the simulations. For example, we
should have some ideas about:

• the size of the simulation problem. We need to know
something about the number of cells or elements that a
typical mesh will contain and the number of flow variables
that we need to calculate. This information helps us to
determine the storage requirements of the CFD programs in
terms of both primary and secondary storage. It is worth
remembering that the more data we calculate for a given
flow, the more accurate the solution should be, but the
longer it will take to obtain the results. Clearly some
compromise has to be made here.

• the required results of the analysis; such as velocities,
pressures or forces.

• interfacing requirements. When defining the geometry of a
flow domain, geometrical data is required and, sometimes,
this will come from a CAD system or from a finite element
pre-processor. Equally, we may wish to send the results to
an existing post-processor or some other display software.
If this is the case, then the CFD software should have
appropriate interfaces.

• solution speed. Many things affect the time that it takes to
produce the solution to a simulation problem. Clearly, this
will depend on the processing speed of the hardware that is
used, but it also depends on the CFD solver itself. Some
algorithms for solving the governing equations are much
faster than others. This speed difference might come from
the basic discretisation of the equations, from the internal
organisation of the program or from the speed of the linear
equation solvers used.

• hardware availability. If there is a restriction on the make or
type of computer or graphics terminal that you wish to run

Chapter 12. Acquiring CFD technology

270

the software on, this should be noted. It is common for
CFD pre- and post-processors to be very hardware specific
and for solvers to be much more portable between different
machine types.

From all of the above, we now know a considerable amount about
the flows that we wish to simulate and the simulation process itself.
Finally, it is important to assess what kind of service it is that we
need the software supplier to provide. This will be a very subjective
set of requirements, and will to some extent depend on the people
that are available within an organisation to run the CFD software
and talk with the supplier. At this point, it is worth issuing a
warning. With the proliferation of computers and software, many
people are now used to buying a package, loading it onto a machine
and getting results without too many problems. For business
software this is certainly true, and it is becoming true of many
engineering packages as well. Unfortunately, CFD software is not
as mature as other engineering analysis tools that are on the market.
Structural finite element packages, that solve linear statics
problems, and matrix manipulation packages are much less prone to
error than the latest CFD packages. This is because CFD
technology is still developing and even the researchers in the area
are not entirely sure as to how things will develop in the future.
Further, it is only since, say, 1985 that industrial companies have
started to take an interest in running CFD tools. This means that the
wishes and demands of users have not yet been met in full.

Amongst the requirements that are related to the software supplier
are:

• quality assurance or QA. This is the extent to which the
software has been tested against standard test cases for
which there is a known solution. The comparison data may
come from either analytical expressions or experiments.
These comparisons are carried out to both verify the code,
which means to show that it is correct against the numerical
models that it is simulating; and also to validate the code,

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

271

which is the process of showing that the code gives reliable
results against physical experiments. There should be some
evidence from the supplier that the software has been tested
for both validation and verification. In fact, most pieces of
CFD software are so complex that every possible
combination of operating features will never be tested, until
that is, you as a user run your particular example, and find
that it does not work. This may appear cynical but it is
often true. Hopefully, as more people use CFD so the
problems for users will reduce.

• user friendliness. This is probably the most subjective
feature of all, as what appears friendly to one person will be
unfriendly to another. Again, this will depend on the staff
that run the programs.

• user support. This is very important as users can never be
fully conversant with the programs that they run. Software
suppliers should provide some form of User Hotline that
can give a quick response to a user's questions. This
normally comes as part of the annual licence fee for the
software, or can be purchased separately if the program is
bought with a once-only payment, which is known as a
perpetual licence. There should also be the option of buying
training in the use of the programs, and the chance for users
to work with the supplier in setting up a problem. This is
normally done by paying for consultancy from the software
supplier.

• current users. It is important to know who is currently using
the software, not who has used the software. This enables
companies to see if firms in a similar business are using the
software, and can give some confidence in the suppliers and
their product.

The easiest way to document this information is to draw up a table
of capabilities product by product. Sometimes this can be difficult
to do for someone with little experience. It is at this stage that it is
important to obtain independent advice to guide you. Sometimes
people place too much reliance in the software suppliers

Chapter 12. Acquiring CFD technology

272

themselves, and even though the suppliers can provide much
information, an independent view is worthwhile. A sample
specification table is shown in Table 12-1 and this can be used to
assess each of the competing products.

12.4 Deciding on the Necessary Software

Once the specification of the software is determined, various
software options need to be evaluated against this specification.
This can take a lot of time and effort as there are many CFD
products in the market place and the suppliers of each of them will
be only too willing to shower you with information. The
information that is provided can take many forms, but the simplest
starting point is to look at the brochures that explain the software.
Much of the information required can be determined from these, but
quite a lot of it can not. In particular, the more subjective
information such as the levels of user friendliness, solution times,
QA and user support need to be investigated further.

One way of gaining this more specific information is to produce a
sample problem that is typical of the problems that you wish to
solve. Suppliers will often produce a simulation of this problem
using their software at a reduced cost, or even for free if the
problem is very small. This enables potential customers to see
software products in action on a realistic problem. Such a trial will
help in understanding how the processes outlined in this book relate
to the specification and operation of the software. It will also
produce some hard facts that should help in determining the cost of
obtaining a simulation using a particular CFD package.

When the competing products have been assessed using the
specification table, several suitable products should emerge. In fact
it is probable that none of the products will be ideal, but some
should come closer than others. A simple way of assessing the most
suitable package is to assign numbers to each of the categories in
the specification in some way such that the higher the number the

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

273

better the specification level. Then by adding up these numbers and
getting a total value for each package they can be ranked.

Once the products are ranked in order of suitability, the question of
cost needs to be looked at. Normally, software is licenced on an
annual basis with a single fee being paid to the supplier which
includes the provision of the software and any updates to it as well
as technical support in the form of a hotline service. Sometimes,
however, the software is purchased on perpetual licence terms
where one large payment pays for the software and a smaller annual
fee pays for the updates to the software and the support. Sometimes
both methods are on offer, and it takes careful consideration to
decide which of the two will be the cheapest option in the long run.
This is especially difficult as the market is still developing and the
most suitable program today may not be the best choice in three or
four years time. Finally, it may be that some sacrifice in terms of
the capability of a package has to be made if an affordable solution
is to be chosen for purchase. This has to be achieved by
determining the minimum level of functionality that is acceptable.

12.5 Deciding on the Necessary Hardware

Many organisations already have access to the computer facilities
that are necessary for running large computational analysis
programs such CFD packages. Others will need to acquire the
hardware. In both cases, however, it is important to consider a
number of factors. For the former case this enables the user to
determine if the existing facilities are suitable and have the
necessary spare capacity, and for the latter case it allows estimates
to be made of the various measures that will determine the
hardware.

These factors include the following:

• computer processing power. A large amount of processing
power is needed to run some CFD test cases. Fortunately,
recent technical advances mean that the necessary power is

Chapter 12. Acquiring CFD technology

274

available very cheaply. The factors that affect the speed of
processing include such things as the calculation speed of
the processor which is measured in $mips$ and is the
number of millions of processor instructions carried out per
second, or in $MFLOPS$ where one $MFLOP$ is one
million floating point operations per second. There is no
clear relationship between the two for different processors,
as what takes one instruction on one machine might take
several instructions on another. The speeds of the various
computers are often quoted in these units, but different
software runs in different ways on different machines.
Consequently, the numbers quoted are only a guide to the
raw processing power. To find a true measure of speed for
the software and hardware combination a series of sample
flow problems must be simulated. This assumes that the
CFD software does not make any use of the secondary data
storage during execution, as the speed at which data can be
accessed from devices such as hard disks can have a
marked effect on solution times. Some CFD software
packages write data to these devices during the solution
phase and if the processes of reading and writing to the disk
are slow, then the whole solution process is slowed down.
For a typical analysis on a given computer installation, the
total solution time will depend on all of these things
together with the number of simulations that will be solved
simultaneously on any one system.

• primary data storage capacity. On most computer systems,
the primary data storage system is known as random access
memory (RAM). This is usually sized by the number of
bytes of data that can be stored. Each byte consists of eight
bits, where one bit is the basic unit of storage
corresponding to a stored value of either zero or one.
Numbers can be stored as integers or real numbers and two
or four bytes are used for integers and four or eight bytes
for real numbers. The greater the number of bytes the
greater the maximum integer, and the more accurate a real
number, that can be stored. Sometimes, the software
supplier will specify the number of Megabytes of RAM that

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

275

are required to run their software successfully. In large
machines, such as supercomputers, the memory size is
measured in words. These are usually words of eight bytes
or sixty four bits, and are the machine's minimum storage
for a single real number.

• secondary storage capacity. Random access memory is used
during the execution of a program, but if the user needs to
access the data after the program has stopped running then
the data must be written to some secondary storage device.
These are usually hard disks, which are aluminium disks
covered in magnetic material such as iron oxide, just as
happens with audio tape. In personal computers these disks
may store a few tens of Megabytes and in workstations
several hundred megabytes. In large systems, the disk
storage might consist of sets of disks each storing several
Gigabytes of data. We need to assess how much of this
storage we will need for each problem that we wish to
solve. A rough estimate can be made by taking the number
of nodes in a problem and multiplying by the number of
coordinates used to describe a node plus the number of
variables stored at each point, which would be nine for a
three-dimensional turbulent flow problem solved with three
velocity components, pressure and two turbulence
variables. So for a mesh with 10,000 nodes we must store at
least 90,000 real numbers. If the data is stored in readable
(ASCII) format, say twenty bytes are required to store each
number, 1.8 Megabytes are required in total. If, however,
the data is stored as single precision real numbers in binary
format, only four bytes will be required to store each
number and the total storage required will be 0.36
Megabytes. These are low estimates of the total data
storage requirements, as each software package will store
different information. The software supplier might be able
to give information on the data storage required for a given
model size.

• access points. If several people need to run CFD analyses
simultaneously then several access points will be required.
These might need to be split between a number of graphics

Chapter 12. Acquiring CFD technology

276

screens and a number of text screens. This will enable some
people to perform graphics pre- and post-processing whilst
others run the solver program.

• backup facilities. There is a need to provide some backup
of the data held on disk, to protect against loss of data. This
can occur if a disk drive is broken, such that the data stored
on it cannot be read, or could occur if a user deletes a file in
error. It is common for each disk to be backed-up in full,
i.e. all the data is written to a tape storage device, or
something similar, every week. Then further backup
procedures are carried out once a day, to ensure that all the
new files that are created within the previous twenty-four
hours, and the new versions of edited files, are also written
to a backup device. This is procedure is known as an
incremental backup and ensures that, at worst, only one
day's work can be lost. Once backup tapes have been
prepared it is worth protecting them against fire by using a
fireproof storage facility.

When these items have been considered, it should be possible to
know whether an existing installation will be sufficient to run CFD
problems or whether it will need to be enhanced in some way. If
new facilities are required, either to enhance the existing capacity or
to provide a completely new system, then they could now be
assessed for suitability.

12.6 Finding People To Run CFD Simulations

Having decided upon a software package and a hardware system,
CFD simulations will not run themselves. We must, finally, look at
the most important asset in the CFD analysis process. This is the
analyst who actually translates the engineering problem into a
computational simulation, runs the CFD solver and analyses the
results. It is the skill of this person, or set of persons, that will
determine whether all the hardware and software will be utilised in
the best possible way and produce good quality results.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

277

People from many different backgrounds can be trained to go
through the processes that we have discussed in this book, but it is
my personal belief that more than this is required. The skills that are
required include:

• mathematical skills. These enable the analyst to understand
the underlying features of the numerical processes used to
convert the governing partial differential equations into
numerical analogues, and to coax the solution procedures to
converge to sensible and realistic values.

• computational skills. The production of a CFD simulation
can involve the user in manipulating large amounts of data
with packages that do not interface together and reside on a
variety of types of computers. This can mean, for example,
that CFD analysts have to write their own interface
programs to convert data from one program's format to
another program's format. Also, an analyst might have to
write computer operating system command language
programs that instruct a computer or even a variety of
computers to move data around a network, run some CFD
programs and then move the data around the network again.
Consequently, CFD analysts must be conversant with
computer procedures at a level that is far greater than that
required for analysts who use the more common software
products that perform engineering computations.

• good interpersonal skills. If the analyst is not the end-user
of the data, then there will have to be close liaison between
the analyst and the end-user, who is in effect a customer or
client of the analyst. This requires that a good working
relationship is developed between the two parties so that
the analyst knows what the customer requires, and the
customer is aware of the limitations of the analysis.

• engineering skills. Finally, the analyst must have a working
understanding of the engineering processes that are to be
modelled. This enables the limits of a computer model to be
established and the results of the simulation to be analysed
in a sensible way.

Chapter 12. Acquiring CFD technology

278

Large organisations may well have a pool of analysts in which there
are several people that could be used to produce CFD simulations,
as they have a majority of the qualities listed above. These people
could be engaged at present in running finite element structural
analyses or similar large scale engineering computations. If such
people do not exist within the organisation, or if suitable people
cannot be used for whatever reason, then staff will have to be hired.
Hiring staff of the right technical background to use CFD in
industry, whatever their background is extremely difficult. Not
many people have all the skills necessary and so several people may
be needed. Depending on the size of the organisation, therefore, one
or more people may be employed in the use of CFD, and the right
mixture of abilities is important.

One other way of proceeding is to employ a limited number of
people to work with CFD and then to use external consultants to
supplement the skills where appropriate. These consultants can be
found working with CFD software suppliers, general engineering
consultancy practices and in universities and polytechnics. For
industrial users who are not specialists in this field, it is important
to have access to advice at a moments notice. This can be provided
by a software supplier when problems occur running a particular
package, but another useful source is a local university of
polytechnic, where a specialist in the CFD field may well be willing
to provide consultancy as and when required.

12.7 Integrating CFD Within The Design Process

As a final topic, let us look at how the results of CFD simulations
can be used within the engineering design process. In industry,
CFD can be used to provide information about how fluids flow and
what the effect of the flow is on engineering devices. Chapter One
gave a list of possible uses. At present, there are many situations in
which CFD simulations are being made, and many examples have
been presented at technical conferences, or in journals, which
demonstrate the benefits of using CFD technology in particular
industrial areas.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

279

Now, whilst these demonstrations are useful in that they show a
technical capability, their impact on the engineering design process
is limited. If CFD is to be of use to an industrial organisation, then
it should be capable of being integrated into the design process in
such a way that the simulations can influence the engineering
design. This could happen after a given design has been proposed
and before prototypes are built. However, this can only take place if
the CFD simulation can provide the required engineering data in a
cost-effective way when compared to current methods of analysis,
whatever they are, and in a shorter span of time.

At present, the total integration of CFD into the design process is
not possible because it takes a long time, perhaps several man-
months to build a computer model of a flow problem, run the solver
and produce the results. All of this must be repeated for every
configuration that is considered. Compare this to the use of a
physical model. Whilst it may take some time to build the model,
once built it can be tested at a variety of flow conditions and for a
variety of geometrical configurations with a minimum of extra
effort.

Looking at the CFD process that we have discussed, the generation
of the mesh takes the longest time for complex but realistic flow
geometries. If this mesh building time can be reduced, which it can
be if automatic mesh generation tools are developed further, then
the turnaround time for a CFD simulation can be reduced to a few
hours. Once the results of CFD simulations can be accessed in such
a short space of time for each configuration, then the design process
can be influenced much more easily as several configurations can
be carried out and modifications made to the design which can be
quickly modelled by the CFD analyst and tested computationally.
When this is possible, then CFD will be a mature technology for
use in industry. At present (1991), CFD is a useful tool but there is
still room for improvement.

Appendix A. PHOENICS Results for a Simple Laminar Flow

280

APPENDIX A. PHOENICS RESULTS FOR A
SIMPLE LAMINAR FLOW

Results After 100 Sweeps

 CCCC HHH PHOENICS - EARTH
Version 1.5.3
 CCCCCCCC HHHHH (C) Copyright 1989

CCCCCCC HHHHHHHHHH Concentration Heat and
Momentum Ltd
CCCCCCC HHHHHHHHHHHH All rights reserved.
CCCCCC HHHHHHHHHHHHH CHAM Ltd, Bakery House,
40 High St
CCCCCCC HHHHHHHHHHHH Wimbledon, London,
SW19 5AU
CCCCCCC HHHHHHHHHH Tel: 01-947-7651; Telex:
928517

 CCCCCCCC HHHHH Facsimile: 01-879-3497
 CCCC HHH The option level is -18

...edited...

Group 1. Run Title and Number

TEXT(SIMPLE DEVELOPING FLOW IN BETWEEN
PLATES)

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

281

IRUNN = 1 ;LIBREF = 0

*** GRID-GEOMETRY INFORMATION ***

X-COORDINATES OF THE CELL CENTRES

5.000E-01

Y-COORDINATES OF THE CELL CENTRES

2.500E-02 7.500E-02 1.250E-01 1.750E-01 2.250E-01

2.750E-01 3.250E-01 3.750E-01 4.250E-01 4.750E-01

Z-COORDINATES OF THE CELL CENTRES

1.953E-02 5.860E-02 1.172E-01 2.344E-01 4.688E-01
9.375E-01 1.875E+00 3.750E+00 7.500E+00
1.500E+01

--- INTEGRATION OF EQUATIONS BEGINS ---

TIME STP= 1 SWEEP NO= 100 ZSLAB NO= 2 ITERN
NO= 1

TIME STP= 1 SWEEP NO= 100 ZSLAB NO= 1 ITERN
NO= 1

FLOW FIELD AT ITHYD= 1, ISWEEP= 100, ISTEP= 1
YZPR IX= 1

Appendix A. PHOENICS Results for a Simple Laminar Flow

282

FIELD VALUES OF P1
IY= 10 1.388E+02 1.236E+02 1.622E+02 1.595E+02
1.553E+02
IY= 9 1.371E+02 1.235E+02 1.606E+02 1.586E+02
1.551E+02
IY= 8 1.376E+02 1.248E+02 1.602E+02 1.584E+02
1.551E+02
IY= 7 1.385E+02 1.261E+02 1.601E+02 1.585E+02
1.550E+02
IY= 6 1.395E+02 1.271E+02 1.603E+02 1.587E+02
1.550E+02
IY= 5 1.405E+02 1.280E+02 1.609E+02 1.589E+02
1.550E+02
IY= 4 1.412E+02 1.287E+02 1.620E+02 1.593E+02
1.550E+02
IY= 3 1.421E+02 1.281E+02 1.638E+02 1.595E+02
1.548E+02
IY= 2 1.483E+02 1.210E+02 1.668E+02 1.592E+02
1.547E+02
IY= 1 1.662E+02 9.704E+01 1.702E+02 1.582E+02
1.545E+02
IZ= 1 2 3 4 5
IY= 10 1.490E+02 1.373E+02 1.144E+02 7.173E+01 4.170E-
11
IY= 9 1.490E+02 1.373E+02 1.144E+02 7.174E+01 6.545E-
11
IY= 8 1.490E+02 1.373E+02 1.144E+02 7.174E+01 6.328E-
11
IY= 7 1.490E+02 1.373E+02 1.144E+02 7.174E+01 6.004E-
11
IY= 6 1.490E+02 1.373E+02 1.144E+02 7.174E+01 5.578E-
11
IY= 5 1.490E+02 1.373E+02 1.144E+02 7.174E+01 5.056E-
11

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

283

IY= 4 1.490E+02 1.373E+02 1.143E+02 7.173E+01 4.451E-
11
IY= 3 1.490E+02 1.373E+02 1.143E+02 7.173E+01 3.778E-
11
IY= 2 1.490E+02 1.373E+02 1.143E+02 7.173E+01 3.062E-
11
IY= 1 1.490E+02 1.373E+02 1.143E+02 7.173E+01 5.032E-
11
IZ= 6 7 8 9 10
FIELD VALUES OF V1
IY= 9 1.140E-01 1.174E-01 7.076E-02 4.693E-02 1.220E-02
IY= 8 2.043E-01 1.978E-01 1.427E-01 9.490E-02 2.391E-02
IY= 7 2.719E-01 2.615E-01 2.092E-01 1.403E-01 3.344E-02
IY= 6 3.179E-01 3.072E-01 2.657E-01 1.786E-01 3.925E-02
IY= 5 3.412E-01 3.324E-01 3.094E-01 2.048E-01 4.005E-02
IY= 4 3.391E-01 3.317E-01 3.380E-01 2.133E-01 3.512E-02
IY= 3 3.157E-01 2.927E-01 3.475E-01 1.982E-01 2.482E-02
IY= 2 3.067E-01 1.773E-01 3.294E-01 1.541E-01 1.123E-02
IY= 1 3.592E-01 -8.412E-02 2.657E-01 8.187E-02 -8.201E-
04
IZ= 1 2 3 4 5
IY= 9 5.606E-04 -5.055E-04 -1.038E-03 -7.173E-04 -2.708E-
03
IY= 8 1.103E-03 -9.909E-04 -2.092E-03 -1.783E-03 -2.709E-
03
IY= 7 1.469E-03 -1.441E-03 -3.060E-03 -2.712E-03 -2.710E-
03
IY= 6 1.546E-03 -1.835E-03 -3.885E-03 -3.441E-03 -2.711E-
03
IY= 5 1.287E-03 -2.147E-03 -4.499E-03 -3.904E-03 -2.712E-
03
IY= 4 7.267E-04 -2.342E-03 -4.823E-03 -4.028E-03 -2.712E-
03
IY= 3 2.324E-06 -2.371E-03 -4.751E-03 -3.735E-03 -2.712E-

Appendix A. PHOENICS Results for a Simple Laminar Flow

284

03
IY= 2 -6.434E-04 -2.157E-03 -4.130E-03 -2.948E-03 -
2.712E-03
IY= 1 -8.519E-04 -1.533E-03 -2.689E-03 -1.636E-03 -
2.712E-03
IZ= 6 7 8 9 10
FIELD VALUES OF W1

 IY= 10 1.089E+00 1.162E+00 1.282E+00
1.428E+00 1.505E+00
 IY= 9 1.070E+00 1.124E+00 1.249E+00
1.400E+00 1.474E+00
 IY= 8 1.053E+00 1.097E+00 1.212E+00
1.353E+00 1.414E+00
 IY= 7 1.036E+00 1.070E+00 1.169E+00
1.287E+00 1.324E+00
 IY= 6 1.018E+00 1.039E+00 1.118E+00
1.198E+00 1.204E+00
 IY= 5 9.984E-01 1.004E+00 1.057E+00
1.083E+00 1.052E+00
 IY= 4 9.817E-01 9.604E-01 9.809E-01
9.321E-01 8.672E-01
 IY= 3 9.929E-01 9.059E-01 8.749E-01
7.344E-01 6.488E-01
 IY= 2 1.041E+00 8.186E-01 7.001E-01
4.720E-01 3.961E-01
 IY= 1 7.194E-01 8.144E-01 3.617E-01
1.120E-01 1.174E-01
 IZ= 1 2 3 4
5
 IY= 10 1.512E+00 1.499E+00 1.447E+00
1.376E+00
 IY= 9 1.481E+00 1.469E+00 1.416E+00
1.309E+00
 IY= 8 1.418E+00 1.407E+00 1.359E+00
1.266E+00
 IY= 7 1.325E+00 1.315E+00 1.274E+00
1.201E+00

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

285

 IY= 6 1.200E+00 1.193E+00 1.162E+00
1.116E+00
 IY= 5 1.045E+00 1.040E+00 1.024E+00
1.011E+00
 IY= 4 8.581E-01 8.574E-01 8.610E-01
8.903E-01
 IY= 3 6.406E-01 6.459E-01 6.770E-01
7.557E-01
 IY= 2 3.934E-01 4.090E-01 4.810E-01
6.123E-01
 IY= 1 1.278E-01 1.659E-01 3.003E-01
4.640E-01
 IZ= 6 7 8 9

...edited...

SPOT VALUES VS. SWEEP (/ITHYD IF PARAB)

IXMON= 1 IYMON= 2 IZMON= 2

TABULATION OF ABSCISSA AND ORDINATES...

ISWP P1 V1 W1
1.000E+00 1.000E-10 4.053E-02 9.950E-01
2.000E+00 1.391E-01 1.067E-01 9.617E-01
3.000E+00 3.632E-01 1.313E-01 9.370E-01
4.000E+00 6.851E-01 1.696E-01 9.186E-01
5.000E+00 1.106E+00 1.816E-01 9.050E-01
6.000E+00 1.623E+00 2.056E-01 8.906E-01
7.000E+00 2.239E+00 2.109E-01 8.793E-01
8.000E+00 2.951E+00 2.274E-01 8.670E-01
9.000E+00 3.736E+00 2.315E-01 8.590E-01
1.000E+01 4.601E+00 2.419E-01 8.490E-01

...edited...

Appendix A. PHOENICS Results for a Simple Laminar Flow

286

9.100E+01 1.123E+02 1.790E-01 8.228E-01
9.200E+01 1.133E+02 1.786E-01 8.224E-01
9.300E+01 1.143E+02 1.782E-01 8.221E-01
9.400E+01 1.153E+02 1.779E-01 8.217E-01
9.500E+01 1.162E+02 1.777E-01 8.212E-01
9.600E+01 1.172E+02 1.775E-01 8.207E-01
9.700E+01 1.182E+02 1.773E-01 8.203E-01
9.800E+01 1.191E+02 1.773E-01 8.197E-01
9.900E+01 1.201E+02 1.772E-01 8.192E-01
1.000E+02 1.210E+02 1.773E-01 8.186E-01

 VARIABLE P1 V1 W1
 MINVAL= 1.000E-10 4.053E-02 7.920E-01
 MAXVAL= 1.210E+02 2.747E-01 9.950E-01
 CELLAV= 5.988E+01 2.208E-01 8.211E-01

1.00 W....+...VVVVVVVV...+....+....+....+....+....+..PPP

 . VV VVVV PPPP .

0.90 + VV VVV
PPPP +
 .W V VVV PPP
.
0.80 + V VVV PPP
+
 . V VVV PPP
.
0.70 +W V VVVV
+

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

287

 . PPP VVVVV
.
0.60 + W PPP
VVVVVVVVVVV
 . W PPP
.
0.50 + W PP
+
 . W PP
.
0.40 +V PP
+
 . W PP
.
0.30 +V W PP
+
 . W PP
.
0.20 + W PP
+

 . W PP
WWWWWWWWWWWWWWWWWWW
0.10 + PWW WWWWWW
+
 . PPPP WWW WWWWWW
.
0.00
VPPPP+....+WWWWWWWWWW....+....+....+....+....+....
+
 0 .1 .2 .3 .4 .5 .6 .7 .8
.9 1.0
 THE ABSCISSA IS ISWP. MIN= 1.00E+00 MAX=
1.00E+02

RESIDUALS VS. SWEEP (/ITHYD IF PARAB)

TABULATION OF ABSCISSA AND ORDINATES...

Appendix A. PHOENICS Results for a Simple Laminar Flow

288

ISWP P1 V1 W1
1.000E+00 2.756E+06 6.753E+04 8.983E+08
2.000E+00 2.733E+06 2.124E+06 1.016E+09
3.000E+00 2.465E+06 2.567E+06 1.013E+09
4.000E+00 2.779E+06 3.106E+06 1.509E+09
5.000E+00 2.895E+06 3.011E+06 1.463E+09
6.000E+00 2.636E+06 3.871E+06 2.384E+09
7.000E+00 2.669E+06 4.324E+06 1.043E+09
8.000E+00 2.804E+06 3.729E+06 1.298E+09
9.000E+00 2.676E+06 3.791E+06 1.770E+09
1.000E+01 2.664E+06 3.973E+06 9.224E+08

...edited...

9.000E+01 1.052E+06 2.123E+06 3.499E+08
9.100E+01 1.037E+06 2.095E+06 3.463E+08
9.200E+01 1.022E+06 2.066E+06 3.422E+08
9.300E+01 1.007E+06 2.038E+06 3.387E+08
9.400E+01 9.934E+05 2.010E+06 3.350E+08
9.500E+01 9.790E+05 1.981E+06 3.311E+08
9.600E+01 9.646E+05 1.953E+06 3.274E+08
9.700E+01 9.512E+05 1.926E+06 3.240E+08
9.800E+01 9.372E+05 1.898E+06 3.202E+08
9.900E+01 9.239E+05 1.871E+06 3.170E+08
1.000E+02 9.109E+05 1.845E+06 3.136E+08

 VARIABLE P1 V1 W1
 MINVAL= 1.372E+01 1.112E+01 1.956E+01
 MAXVAL= 1.488E+01 1.532E+01 2.159E+01

1.00 +.PW.+VVVVVVVVVVVVV.+....+....+....+....+....+....+

 PPPVVVPVP P VVVVVVVVVV
.

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

289

 0.90 + VP PP PPPP VVVVVVVVV
+
 .V W PPP
VVVVVVVV .
 0.80 +V PPP
VVVVVV
 . W W PPP
.
 0.70 + W W W PPP
+
 . W PPP
.
 0.60 +W W W W PPP
+
 . W W PPP
.
 0.50 W W W PP
+
 . W W PP
.
 0.40 + WW WWWWWW PP
+
 . WWWWW PP
.
 0.30 + WWWWW PP
+
 . WWWW PP
.
 0.20 + WWWWW PP
+
 . WWWWW
PP .
 0.10 + WWWWW
PP +
 .
WWWWWP .
 0.00
V....+....+....+....+....+....+....+....+....+..WW
W
 0 .1 .2 .3 .4 .5 .6 .7 .8
.9 1.0

Appendix A. PHOENICS Results for a Simple Laminar Flow

290

 THE ABSCISSA IS ISWP. MIN= 1.00E+00 MAX=
1.00E+02

SATLIT RUN NUMBER = 1 ; LIBRARY REF.= 0
RUN COMPLETED AT 16:49:16 ON TUESDAY, 27
NOVEMBER 1990
MACHINE-CLOCK TIME OF RUN = 82 SECONDS.
TIME/(VARIABLES*CELLS*TSTEPS*SWEEPS*ITS) =
2.733E-03

.B
Results After 500 Sweeps

.R

 CCCC HHH PHOENICS - EARTH
Version 1.5.3
 CCCCCCCC HHHHH (C) Copyright 1989

CCCCCCC HHHHHHHHHH Concentration Heat and
Momentum Ltd
CCCCCCC HHHHHHHHHHHH All rights reserved.
CCCCCC HHHHHHHHHHHHH CHAM Ltd, Bakery House,
40 High St
CCCCCCC HHHHHHHHHHHH Wimbledon, London,
SW19 5AU
CCCCCCC HHHHHHHHHH Tel: 01-947-7651; Telex:
928517

 CCCCCCCC HHHHH Facsimile: 01-879-3497

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

291

 CCCC HHH The option level is -18

...edited...

Group 1. Run Title and Number

TEXT(SIMPLE DEVELOPING FLOW IN BETWEEN
PLATES)

IRUNN = 1 ;LIBREF = 0

• GRID-GEOMETRY INFORMATION *** X-
COORDINATES OF THE CELL CENTRES

5.000E-01 Y-COORDINATES OF THE CELL
CENTRES

2.500E-02 7.500E-02 1.250E-01 1.750E-01 2.250E-01
2.750E-01 3.250E-01 3.750E-01 4.250E-01 4.750E-01
Z-COORDINATES OF THE CELL CENTRES

1.953E-02 5.860E-02 1.172E-01 2.344E-01 4.688E-01
9.375E-01 1.875E+00 3.750E+00 7.500E+00
1.500E+01

o INTEGRATION OF EQUATIONS BEGINS -
--

Appendix A. PHOENICS Results for a Simple Laminar Flow

292

TIME STP= 1 SWEEP NO= 400 ZSLAB NO= 2 ITERN
NO= 1

TIME STP= 1 SWEEP NO= 400 ZSLAB NO= 1 ITERN
NO= 1

FLOW FIELD AT ITHYD= 1, ISWEEP= 400, ISTEP= 1
YZPR IX= 1
FIELD VALUES OF P1
IY= 10 1.858E+02 1.879E+02 1.890E+02 1.865E+02
1.821E+02
IY= 9 1.840E+02 1.860E+02 1.873E+02 1.855E+02
1.819E+02
IY= 8 1.846E+02 1.865E+02 1.875E+02 1.855E+02
1.819E+02
IY= 7 1.855E+02 1.872E+02 1.878E+02 1.855E+02
1.819E+02
IY= 6 1.867E+02 1.882E+02 1.882E+02 1.856E+02
1.819E+02
IY= 5 1.886E+02 1.896E+02 1.886E+02 1.856E+02
1.818E+02
IY= 4 1.913E+02 1.915E+02 1.890E+02 1.855E+02
1.818E+02
IY= 3 1.958E+02 1.940E+02 1.892E+02 1.853E+02
1.817E+02
IY= 2 2.036E+02 1.968E+02 1.885E+02 1.848E+02
1.815E+02
IY= 1 2.085E+02 1.894E+02 1.860E+02 1.835E+02
1.813E+02
IZ= 1 2 3 4 5
IY= 10 1.760E+02 1.642E+02 1.407E+02 9.360E+01 7.349E-
11
IY= 9 1.760E+02 1.642E+02 1.407E+02 9.361E+01 7.396E-

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

293

11
IY= 8 1.760E+02 1.642E+02 1.407E+02 9.361E+01 7.085E-
11
IY= 7 1.760E+02 1.642E+02 1.407E+02 9.361E+01 6.617E-
11
IY= 6 1.760E+02 1.642E+02 1.407E+02 9.361E+01 5.994E-
11
IY= 5 1.760E+02 1.642E+02 1.407E+02 9.360E+01 5.216E-
11
IY= 4 1.760E+02 1.642E+02 1.407E+02 9.360E+01 4.283E-
11
IY= 3 1.760E+02 1.642E+02 1.407E+02 9.360E+01 3.197E-
11
IY= 2 1.760E+02 1.642E+02 1.407E+02 9.360E+01 1.963E-
11
IY= 1 1.760E+02 1.642E+02 1.407E+02 9.360E+01 8.367E-
12
IZ= 6 7 8 9 10
FIELD VALUES OF V1
IY= 9 1.102E-01 1.067E-01 9.143E-02 4.990E-02 6.791E-03
IY= 8 2.154E-01 2.078E-01 1.777E-01 9.651E-02 1.296E-02
IY= 7 3.160E-01 3.035E-01 2.559E-01 1.349E-01 1.677E-02
IY= 6 4.117E-01 3.919E-01 3.217E-01 1.604E-01 1.695E-02
IY= 5 5.011E-01 4.694E-01 3.688E-01 1.690E-01 1.284E-02
IY= 4 5.799E-01 5.285E-01 3.880E-01 1.573E-01 4.698E-03
IY= 3 6.381E-01 5.532E-01 3.670E-01 1.247E-01 -6.082E-03
IY= 2 6.495E-01 5.102E-01 2.930E-01 7.681E-02 -1.681E-02
IY= 1 5.318E-01 3.364E-01 1.677E-01 3.063E-02 -2.361E-02
IZ= 1 2 3 4 5
IY= 9 6.101E-04 2.545E-05 -5.636E-06 -6.392E-05 -2.030E-
04
IY= 8 1.169E-03 4.972E-05 -1.117E-05 -1.255E-04 -2.031E-
04
IY= 7 1.575E-03 6.988E-05 -1.640E-05 -1.826E-04 -2.032E-

Appendix A. PHOENICS Results for a Simple Laminar Flow

294

04
IY= 6 1.763E-03 8.401E-05 -2.107E-05 -2.329E-04 -2.032E-
04
IY= 5 1.718E-03 9.129E-05 -2.493E-05 -2.737E-04 -2.033E-
04
IY= 4 1.489E-03 9.196E-05 -2.769E-05 -3.016E-04 -2.034E-
04
IY= 3 1.175E-03 8.692E-05 -2.898E-05 -3.122E-04 -2.034E-
04
IY= 2 8.866E-04 7.690E-05 -2.818E-05 -2.976E-04 -2.034E-
04
IY= 1 6.646E-04 6.028E-05 -2.380E-05 -2.378E-04 -2.034E-
04
IZ= 6 7 8 9 10
FIELD VALUES OF W1

 IY= 10 1.086E+00 1.173E+00 1.310E+00
1.466E+00 1.509E+00
 IY= 9 1.082E+00 1.164E+00 1.293E+00
1.439E+00 1.478E+00
 IY= 8 1.079E+00 1.156E+00 1.273E+00
1.393E+00 1.417E+00
 IY= 7 1.075E+00 1.147E+00 1.245E+00
1.324E+00 1.326E+00
 IY= 6 1.070E+00 1.133E+00 1.202E+00
1.229E+00 1.204E+00
 IY= 5 1.062E+00 1.110E+00 1.136E+00
1.099E+00 1.049E+00
 IY= 4 1.045E+00 1.067E+00 1.030E+00
9.287E-01 8.618E-01
 IY= 3 1.009E+00 9.768E-01 8.577E-01
7.084E-01 6.417E-01
 IY= 2 9.081E-01 7.732E-01 5.760E-01
4.322E-01 3.896E-01
 IY= 1 5.845E-01 3.088E-01 6.953E-02 -
2.636E-02 1.114E-01
 IZ= 1 2 3 4
5

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

295

 IY= 10 1.516E+00 1.517E+00 1.517E+00
1.510E+00
 IY= 9 1.485E+00 1.486E+00 1.485E+00
1.479E+00
 IY= 8 1.422E+00 1.423E+00 1.423E+00
1.417E+00
 IY= 7 1.328E+00 1.329E+00 1.329E+00
1.323E+00
 IY= 6 1.203E+00 1.203E+00 1.203E+00
1.199E+00
 IY= 5 1.046E+00 1.046E+00 1.046E+00
1.043E+00
 IY= 4 8.579E-01 8.577E-01 8.577E-01
8.566E-01
 IY= 3 6.381E-01 6.379E-01 6.379E-01
6.394E-01
 IY= 2 3.869E-01 3.864E-01 3.866E-01
3.926E-01
 IY= 1 1.032E-01 1.017E-01 1.029E-01
1.266E-01
 IZ= 6 7 8 9

...edited...

SPOT VALUES VS. SWEEP (/ITHYD IF PARAB)

IXMON= 1 IYMON= 2 IZMON= 2

TABULATION OF ABSCISSA AND ORDINATES...

ISWP P1 V1 W1
2.000E+00 1.219E+02 1.789E-01 8.181E-01
3.000E+00 1.228E+02 1.756E-01 8.178E-01
4.000E+00 1.237E+02 1.777E-01 8.170E-01
5.000E+00 1.246E+02 1.754E-01 8.170E-01
6.000E+00 1.254E+02 1.774E-01 8.159E-01
7.000E+00 1.263E+02 1.760E-01 8.157E-01

Appendix A. PHOENICS Results for a Simple Laminar Flow

296

8.000E+00 1.271E+02 1.777E-01 8.146E-01
9.000E+00 1.280E+02 1.770E-01 8.142E-01
1.000E+01 1.288E+02 1.784E-01 8.131E-01

...edited...

3.900E+02 1.968E+02 5.108E-01 7.717E-01
3.910E+02 1.968E+02 5.108E-01 7.719E-01
3.920E+02 1.968E+02 5.107E-01 7.720E-01
3.930E+02 1.968E+02 5.107E-01 7.721E-01
3.940E+02 1.968E+02 5.106E-01 7.723E-01
3.950E+02 1.968E+02 5.106E-01 7.724E-01
3.960E+02 1.968E+02 5.105E-01 7.726E-01
3.970E+02 1.968E+02 5.104E-01 7.728E-01
3.980E+02 1.968E+02 5.104E-01 7.729E-01
3.990E+02 1.968E+02 5.103E-01 7.731E-01
4.000E+02 1.968E+02 5.102E-01 7.732E-01

 VARIABLE P1 V1 W1
 MINVAL= 1.219E+02 1.754E-01 7.289E-01
 MAXVAL= 1.968E+02 5.110E-01 8.181E-01
 CELLAV= 1.819E+02 4.077E-01 7.549E-01

1.00
WW...+....+....+....+....+....+....PPVVVVVVVVVVVVVV

 .W PPPPPPVVVVVVV
.
 0.90 +WW PPPPP VVVVV
+
 . W PPPP VVVV
.
 0.80 + W PPP VVV
+

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

297

 . WW PPP VVV
.
 0.70 + W PPP VVV
+
 . WW PP VV
.
 0.60 + W PP VV
+
 . WW PP VV
.
 0.50 + WPP VV
WWW
 . WW VV
WWWWW .
 0.40 + PPWW VV
WWWW +
 . PP W VV WWWW
.
 0.30 + PP WWV WWWW
+
 . P VWW WWW
.
 0.20 + PP VV WW WWWW
+
 . P VV WW WWW
.
 0.10 +P VV WW WWWW
+
 PPVVV WWWW WWWW
.
 0.00
VVV..+....+....+WWWWWWW..+....+....+....+....+....
+
 0 .1 .2 .3 .4 .5 .6 .7 .8
.9 1.0
 THE ABSCISSA IS ISWP. MIN= 2.00E+00 MAX=
4.00E+02

RESIDUALS VS. SWEEP (/ITHYD IF PARAB)

Appendix A. PHOENICS Results for a Simple Laminar Flow

298

TABULATION OF ABSCISSA AND ORDINATES...

ISWP P1 V1 W1
2.000E+00 8.767E+05 1.818E+06 3.089E+08
3.000E+00 8.625E+05 1.794E+06 3.094E+08
4.000E+00 8.521E+05 1.766E+06 3.081E+08
5.000E+00 8.399E+05 1.743E+06 3.035E+08
6.000E+00 8.287E+05 1.715E+06 3.009E+08
7.000E+00 8.179E+05 1.689E+06 2.978E+08
8.000E+00 8.064E+05 1.669E+06 2.944E+08
9.000E+00 7.959E+05 1.641E+06 2.916E+08
1.000E+01 7.848E+05 1.627E+06 2.880E+08

...edited...

3.900E+02 4.374E+04 3.756E+05 2.281E+07
3.910E+02 4.372E+04 3.743E+05 2.265E+07
3.920E+02 4.373E+04 3.730E+05 2.252E+07
3.930E+02 4.359E+04 3.717E+05 2.202E+07
3.940E+02 4.360E+04 3.703E+05 2.191E+07
3.950E+02 4.356E+04 3.695E+05 2.177E+07
3.960E+02 4.358E+04 3.689E+05 2.164E+07
3.970E+02 4.353E+04 3.684E+05 2.150E+07
3.980E+02 4.356E+04 3.680E+05 2.136E+07
3.990E+02 4.367E+04 3.676E+05 2.157E+07
4.000E+02 4.348E+04 3.671E+05 2.105E+07

 VARIABLE P1 V1 W1
 MINVAL= 1.068E+01 1.281E+01 1.686E+01
 MAXVAL= 1.368E+01 1.441E+01 1.955E+01

1.00 WW...+....+....+....+....+....+....+....+....+....+

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

299

 VWWW
.
 0.90 +VVWW
+
 . VVWWW
.
 0.80 + VVWWW
+
 . VVWWW
.
 0.70 + VVWWW
+
 . PVVWWW
.
 0.60 + PVVWWWW
+
 . PVVVWWW
.
 0.50 + PPVVVWWWW
+
 . PPVVV WWWW
.
 0.40 + PVVV WWWW
+
 . PVVVV WWWW
.
 0.30 + PPVVVV WWWW
+
 . PPVVVV WWWW
.
 0.20 + PPPVVVVVWWWW
+
 . PPPPVVVVWWWW
.
 0.10 +
PPPPVVVWWWWW +
 .
PPPPVVVWWW.
 0.00
+....+....+....+....+....+....+....+....+....+PPVW
W

Appendix A. PHOENICS Results for a Simple Laminar Flow

300

 0 .1 .2 .3 .4 .5 .6 .7 .8
.9 1.0
 THE ABSCISSA IS ISWP. MIN= 2.00E+00 MAX=
4.00E+02

SATLIT RUN NUMBER = 1 ; LIBRARY REF.= 0
RUN COMPLETED AT 17:01:37 ON TUESDAY, 27
NOVEMBER 1990
MACHINE-CLOCK TIME OF RUN = 477 SECONDS.
TIME/(VARIABLES*CELLS*TSTEPS*SWEEPS*ITS) =
3.985E-03

.B
Results After 900 Sweeps

.R

 CCCC HHH PHOENICS - EARTH
Version 1.5.3
 CCCCCCCC HHHHH (C) Copyright 1989

CCCCCCC HHHHHHHHHH Concentration Heat and
Momentum Ltd
CCCCCCC HHHHHHHHHHHH All rights reserved.
CCCCCC HHHHHHHHHHHHH CHAM Ltd, Bakery House,
40 High St
CCCCCCC HHHHHHHHHHHH Wimbledon, London,
SW19 5AU
CCCCCCC HHHHHHHHHH Tel: 01-947-7651; Telex:
928517

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

301

 CCCCCCCC HHHHH Facsimile: 01-879-3497
 CCCC HHH The option level is -18

...edited...

Group 1. Run Title and Number

TEXT(SIMPLE DEVELOPING FLOW IN BETWEEN
PLATES)

IRUNN = 1 ;LIBREF = 0

• GRID-GEOMETRY INFORMATION *** X-
COORDINATES OF THE CELL CENTRES

5.000E-01 Y-COORDINATES OF THE CELL
CENTRES

2.500E-02 7.500E-02 1.250E-01 1.750E-01 2.250E-01
2.750E-01 3.250E-01 3.750E-01 4.250E-01 4.750E-01
Z-COORDINATES OF THE CELL CENTRES

1.953E-02 5.860E-02 1.172E-01 2.344E-01 4.688E-01
9.375E-01 1.875E+00 3.750E+00 7.500E+00
1.500E+01

Appendix A. PHOENICS Results for a Simple Laminar Flow

302

o INTEGRATION OF EQUATIONS BEGINS -
--

TIME STP= 1 SWEEP NO= 400 ZSLAB NO= 2 ITERN
NO= 1

TIME STP= 1 SWEEP NO= 400 ZSLAB NO= 1 ITERN
NO= 1

FLOW FIELD AT ITHYD= 1, ISWEEP= 400, ISTEP= 1
YZPR IX= 1
FIELD VALUES OF P1
IY= 10 1.864E+02 1.883E+02 1.894E+02 1.869E+02
1.828E+02
IY= 9 1.847E+02 1.866E+02 1.878E+02 1.860E+02
1.826E+02
IY= 8 1.853E+02 1.870E+02 1.880E+02 1.860E+02
1.826E+02
IY= 7 1.861E+02 1.877E+02 1.883E+02 1.860E+02
1.826E+02
IY= 6 1.873E+02 1.887E+02 1.886E+02 1.861E+02
1.826E+02
IY= 5 1.891E+02 1.901E+02 1.890E+02 1.861E+02
1.826E+02
IY= 4 1.919E+02 1.920E+02 1.893E+02 1.860E+02
1.826E+02
IY= 3 1.964E+02 1.946E+02 1.893E+02 1.858E+02
1.825E+02
IY= 2 2.045E+02 1.974E+02 1.884E+02 1.853E+02
1.825E+02
IY= 1 2.105E+02 1.918E+02 1.838E+02 1.841E+02
1.823E+02
IZ= 1 2 3 4 5

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

303

IY= 10 1.766E+02 1.648E+02 1.413E+02 9.416E+01 7.560E-
11
IY= 9 1.766E+02 1.648E+02 1.413E+02 9.416E+01 7.430E-
11
IY= 8 1.766E+02 1.648E+02 1.413E+02 9.416E+01 7.116E-
11
IY= 7 1.766E+02 1.648E+02 1.413E+02 9.416E+01 6.645E-
11
IY= 6 1.766E+02 1.648E+02 1.413E+02 9.416E+01 6.018E-
11
IY= 5 1.766E+02 1.648E+02 1.413E+02 9.416E+01 5.233E-
11
IY= 4 1.766E+02 1.648E+02 1.413E+02 9.416E+01 4.292E-
11
IY= 3 1.766E+02 1.648E+02 1.413E+02 9.416E+01 3.194E-
11
IY= 2 1.766E+02 1.648E+02 1.413E+02 9.416E+01 1.941E-
11
IY= 1 1.766E+02 1.648E+02 1.413E+02 9.416E+01 5.697E-
12
IZ= 6 7 8 9 10
FIELD VALUES OF V1
IY= 9 1.050E-01 1.015E-01 8.661E-02 4.748E-02 1.036E-02
IY= 8 2.051E-01 1.977E-01 1.682E-01 9.169E-02 1.997E-02
IY= 7 3.010E-01 2.887E-01 2.417E-01 1.277E-01 2.718E-02
IY= 6 3.931E-01 3.731E-01 3.027E-01 1.509E-01 3.070E-02
IY= 5 4.802E-01 4.476E-01 3.446E-01 1.571E-01 2.988E-02
IY= 4 5.592E-01 5.052E-01 3.576E-01 1.431E-01 2.487E-02
IY= 3 6.222E-01 5.312E-01 3.282E-01 1.085E-01 1.687E-02
IY= 2 6.450E-01 4.934E-01 2.425E-01 5.882E-02 8.212E-03
IY= 1 5.452E-01 3.308E-01 1.047E-01 1.133E-02 1.901E-03
IZ= 1 2 3 4 5
IY= 9 6.707E-04 9.450E-06 -9.216E-07 -8.407E-06 -2.710E-
05

Appendix A. PHOENICS Results for a Simple Laminar Flow

304

IY= 8 1.289E-03 1.783E-05 -1.898E-06 -1.653E-05 -2.710E-
05
IY= 7 1.727E-03 2.295E-05 -2.891E-06 -2.408E-05 -2.712E-
05
IY= 6 1.897E-03 2.341E-05 -3.839E-06 -3.078E-05 -2.713E-
05
IY= 5 1.772E-03 1.910E-05 -4.669E-06 -3.632E-05 -2.714E-
05
IY= 4 1.397E-03 1.131E-05 -5.310E-06 -4.029E-05 -2.715E-
05
IY= 3 8.871E-04 2.345E-06 -5.680E-06 -4.215E-05 -2.715E-
05
IY= 2 3.984E-04 -5.036E-06 -5.637E-06 -4.094E-05 -2.715E-
05
IY= 1 7.792E-05 -8.126E-06 -4.840E-06 -3.424E-05 -2.715E-
05
IZ= 6 7 8 9 10
FIELD VALUES OF W1

 IY= 10 1.082E+00 1.161E+00 1.296E+00
1.445E+00 1.510E+00
 IY= 9 1.078E+00 1.153E+00 1.280E+00
1.419E+00 1.479E+00
 IY= 8 1.075E+00 1.146E+00 1.261E+00
1.373E+00 1.418E+00
 IY= 7 1.072E+00 1.138E+00 1.233E+00
1.306E+00 1.328E+00
 IY= 6 1.068E+00 1.126E+00 1.191E+00
1.211E+00 1.206E+00
 IY= 5 1.062E+00 1.107E+00 1.127E+00
1.083E+00 1.052E+00
 IY= 4 1.049E+00 1.070E+00 1.023E+00
9.152E-01 8.652E-01
 IY= 3 1.018E+00 9.883E-01 8.542E-01
6.992E-01 6.450E-01
 IY= 2 9.221E-01 7.951E-01 5.793E-01
4.310E-01 3.916E-01

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

305

 IY= 1 5.741E-01 3.151E-01 1.538E-01
1.174E-01 1.056E-01
 IZ= 1 2 3 4
5
 IY= 10 1.518E+00 1.518E+00 1.518E+00
1.517E+00
 IY= 9 1.487E+00 1.487E+00 1.487E+00
1.486E+00
 IY= 8 1.424E+00 1.424E+00 1.424E+00
1.423E+00
 IY= 7 1.330E+00 1.330E+00 1.330E+00
1.329E+00
 IY= 6 1.204E+00 1.204E+00 1.204E+00
1.204E+00
 IY= 5 1.047E+00 1.047E+00 1.047E+00
1.047E+00
 IY= 4 8.588E-01 8.586E-01 8.586E-01
8.584E-01
 IY= 3 6.389E-01 6.387E-01 6.387E-01
6.389E-01
 IY= 2 3.875E-01 3.874E-01 3.875E-01
3.882E-01
 IY= 1 1.046E-01 1.048E-01 1.051E-01
1.085E-01
 IZ= 6 7 8 9

...edited...

SPOT VALUES VS. SWEEP (/ITHYD IF PARAB)

IXMON= 1 IYMON= 2 IZMON= 2

TABULATION OF ABSCISSA AND ORDINATES...

ISWP P1 V1 W1
2.000E+00 1.968E+02 5.101E-01 7.734E-01
3.000E+00 1.968E+02 5.100E-01 7.735E-01
4.000E+00 1.968E+02 5.099E-01 7.737E-01

Appendix A. PHOENICS Results for a Simple Laminar Flow

306

5.000E+00 1.968E+02 5.099E-01 7.739E-01
6.000E+00 1.969E+02 5.098E-01 7.740E-01
7.000E+00 1.969E+02 5.097E-01 7.742E-01
8.000E+00 1.969E+02 5.096E-01 7.743E-01
9.000E+00 1.969E+02 5.095E-01 7.745E-01
1.000E+01 1.969E+02 5.093E-01 7.747E-01

...edited...

3.700E+02 1.974E+02 4.936E-01 7.949E-01
3.710E+02 1.974E+02 4.936E-01 7.949E-01
3.720E+02 1.974E+02 4.935E-01 7.949E-01
3.730E+02 1.974E+02 4.935E-01 7.950E-01
3.740E+02 1.974E+02 4.935E-01 7.950E-01
3.750E+02 1.974E+02 4.935E-01 7.950E-01
3.760E+02 1.974E+02 4.935E-01 7.950E-01
3.770E+02 1.974E+02 4.935E-01 7.950E-01
3.780E+02 1.974E+02 4.935E-01 7.950E-01
3.790E+02 1.974E+02 4.935E-01 7.950E-01
3.800E+02 1.974E+02 4.935E-01 7.950E-01
3.810E+02 1.974E+02 4.935E-01 7.950E-01
3.820E+02 1.974E+02 4.935E-01 7.950E-01
3.830E+02 1.974E+02 4.935E-01 7.950E-01
3.840E+02 1.974E+02 4.935E-01 7.950E-01
3.850E+02 1.974E+02 4.935E-01 7.950E-01
3.860E+02 1.974E+02 4.934E-01 7.950E-01
3.870E+02 1.974E+02 4.934E-01 7.950E-01
3.880E+02 1.974E+02 4.934E-01 7.950E-01
3.890E+02 1.974E+02 4.934E-01 7.950E-01
3.900E+02 1.974E+02 4.934E-01 7.950E-01
3.910E+02 1.974E+02 4.934E-01 7.950E-01
3.920E+02 1.974E+02 4.934E-01 7.950E-01
3.930E+02 1.974E+02 4.934E-01 7.950E-01
3.940E+02 1.974E+02 4.934E-01 7.951E-01

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

307

3.950E+02 1.974E+02 4.934E-01 7.951E-01
3.960E+02 1.974E+02 4.934E-01 7.951E-01
3.970E+02 1.974E+02 4.934E-01 7.951E-01
3.980E+02 1.974E+02 4.934E-01 7.951E-01
3.990E+02 1.974E+02 4.934E-01 7.951E-01
4.000E+02 1.974E+02 4.934E-01 7.951E-01

 VARIABLE P1 V1 W1
 MINVAL= 1.968E+02 4.934E-01 7.734E-01
 MAXVAL= 1.974E+02 5.101E-01 7.951E-01
 CELLAV= 1.972E+02 4.977E-01 7.900E-01

1.00
VV...+....+....+....+....+....+....+...WWWWWWWWWWWW

 .VV WWWWWWWWWWW
PPPPPPP .
 0.90 + V WWWWWW PPPPP
+
 . V WWWWW PPPPP
.
 0.80 + VV WWWW PPPP
+
 . VV WWW PPPP
.
 0.70 + VV WW PPP
+
 . VV WW PPP
.
 0.60 + VV WW PPPP
+
 . VWW PPP
.
 0.50 + WWV PPPP
+
 . WW VVPP
.

Appendix A. PHOENICS Results for a Simple Laminar Flow

308

 0.40 + WWPPPVVV
+
 . WWPP VVV
.
 0.30 + WP VVV
+
 . WP VVV
.
 0.20 + WW VVVV
+
 . WW VVVVV
.
 0.10 +WW VVVVVVV
+
 PW VVVVVVVVVVV
.
 0.00
W....+....+....+....+....+....+....+....+..VVVVVVV
V
 0 .1 .2 .3 .4 .5 .6 .7 .8
.9 1.0
 THE ABSCISSA IS ISWP. MIN= 2.00E+00 MAX=
4.00E+02

RESIDUALS VS. SWEEP (/ITHYD IF PARAB)

TABULATION OF ABSCISSA AND ORDINATES...

ISWP P1 V1 W1
2.000E+00 4.352E+04 3.666E+05 2.129E+07
3.000E+00 4.345E+04 3.661E+05 2.099E+07
4.000E+00 4.342E+04 3.656E+05 2.086E+07
5.000E+00 4.348E+04 3.652E+05 2.071E+07
6.000E+00 4.347E+04 3.648E+05 2.057E+07
7.000E+00 4.353E+04 3.644E+05 2.043E+07
8.000E+00 4.358E+04 3.641E+05 2.029E+07
9.000E+00 4.358E+04 3.637E+05 2.015E+07
1.000E+01 4.363E+04 3.634E+05 2.000E+07

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

309

...edited...

3.700E+02 1.215E+04 1.446E+05 3.498E+06
3.710E+02 1.131E+04 1.443E+05 3.480E+06
3.720E+02 1.209E+04 1.440E+05 3.449E+06
3.730E+02 1.207E+04 1.437E+05 3.444E+06
3.740E+02 1.122E+04 1.433E+05 3.426E+06
3.750E+02 1.200E+04 1.430E+05 3.396E+06
3.760E+02 1.199E+04 1.428E+05 3.389E+06
3.770E+02 1.114E+04 1.424E+05 3.372E+06
3.780E+02 1.192E+04 1.421E+05 3.341E+06
3.790E+02 1.190E+04 1.418E+05 3.336E+06
3.800E+02 1.187E+04 1.415E+05 3.319E+06
3.810E+02 1.103E+04 1.412E+05 3.302E+06
3.820E+02 1.188E+04 1.410E+05 3.273E+06
3.830E+02 1.186E+04 1.407E+05 3.267E+06
3.840E+02 1.103E+04 1.404E+05 3.250E+06
3.850E+02 1.181E+04 1.401E+05 3.220E+06
3.860E+02 1.179E+04 1.397E+05 3.215E+06
3.870E+02 1.095E+04 1.394E+05 3.198E+06
3.880E+02 1.173E+04 1.392E+05 3.169E+06
3.890E+02 1.170E+04 1.389E+05 3.165E+06
3.900E+02 1.085E+04 1.385E+05 3.147E+06
3.910E+02 1.163E+04 1.382E+05 3.118E+06
3.920E+02 1.160E+04 1.379E+05 3.114E+06
3.930E+02 1.157E+04 1.376E+05 3.098E+06
3.940E+02 1.073E+04 1.373E+05 3.082E+06
3.950E+02 1.151E+04 1.370E+05 3.054E+06
3.960E+02 1.147E+04 1.367E+05 3.051E+06
3.970E+02 1.063E+04 1.363E+05 3.034E+06
3.980E+02 1.178E+04 1.360E+05 3.006E+06
3.990E+02 1.176E+04 1.357E+05 3.007E+06
4.000E+02 1.172E+04 1.354E+05 2.991E+06

Appendix A. PHOENICS Results for a Simple Laminar Flow

310

 VARIABLE P1 V1 W1
 MINVAL= 9.271E+00 1.182E+01 1.491E+01
 MAXVAL= 1.068E+01 1.281E+01 1.687E+01

1.00 WWVVP+....+....+....+....+....+....+....+....+....+

 .WWVVVVV
.
 0.90 + WW VVVV
+
 . WWWWWPVVV
.
 0.80 + WWWWWVVV
+
 . WWWWVV
.
 0.70 + PWWWWV
+
 . PPPWWWV
.
 0.60 + PP WWWW
+
 . PPPP WWW
.
 0.50 + PPP WWWW
+
 . PPPPVWWWW
.
 0.40 + PPPPPVWWW
+
 . PPPPVWWWW
.
 0.30 + PPPPVWWWW
+
 . PPPVVWWW
.
 0.20 + PPPVWWWW
+
 .
PPPVWWWP .

C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

311

 0.10 +
PPVWWWPP +
 .
PWWWWP
 0.00
+....+....+....+....+....+....+....+....+....+..PW
W
 0 .1 .2 .3 .4 .5 .6 .7 .8
.9 1.0
 THE ABSCISSA IS ISWP. MIN= 2.00E+00 MAX=
4.00E+02

SATLIT RUN NUMBER = 1 ; LIBRARY REF.= 0
RUN COMPLETED AT 17:10:24 ON TUESDAY, 27
NOVEMBER 1990
MACHINE-CLOCK TIME OF RUN = 279 SECONDS.
TIME/(VARIABLES*CELLS*TSTEPS*SWEEPS*ITS) =
2.331E-03

References

312

REFERENCES

1. I. Stewart, "Does God Play Dice ? The Mathematics of
Chaos", Blackwell, Oxford, 1989.

2. R. Highfield, Scientists solve flashover cause at King's
Cross, The Daily Telegraph, p 4, Friday 29th. July 1988.

3. H. Schlichting, Boundary-Layer Theory, McGraw-Hill,
New York, 1979.

4. T. Cebeci and P. Bradshaw, Momentum Transfer in
Boundary Layers, Hemisphere (McGraw-Hill), 1977.

5. P.Bradshaw, T. Cebeci and J.H. Whitelaw, Engineering
Calculation Methods for Turbulent Flows, Academic Press,
1981.

6. M. Van Dyke, An Album of Fluid Motion, The Parabolic
Press, Stanford, 1982.

7. W.J. Duncan, A.S. Thom and A.D. Young, Mechanics of
Fluids, Arnold, London, 1970.

8. S. Goldstein, Modern Developments in Fluid Mechanics,
Vols. 1 and 2, Dover, 1965.

9. J.F. Douglas, J.M. Gasiorek and J.A. Swaffield, Fluid
Mechanics, 2nd. Edition, Longman, 1985.

10. P. Bradshaw, An Introduction to Turbulence and Its
Measurement, Pergamon, Oxford, 1971.

11. M.R. Abbott and D.R. Basco, Computational Fluid
Dynamics - An Introduction For Engineers, Longman,
1989.

12. J.O. Hinze, Turbulence, Second Edition, McGraw-Hill,
1975.

13. G.D. Smith, Numerical Solution of Partial Differential
Equations: Finite Difference Methods, Third Edition,
Oxford University Press, Oxford, 1985.

14. J.N. Reddy, An Introduction to the Finite Element Method,
McGraw-Hill, New York, 1984.

15. O.C. Zienkiewicz and R.L. Taylor, The Finite Element
Method, Fourth Edition, Volume 1: Basic Formulation and
Linear Problems, McGraw-Hill, New York, 1989.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

313

16. S.V. Patankar, Numerical Heat Transfer and Fluid Flow,
Hemisphere (McGraw-Hill), New York, 1980.

17. C. Hirsch, Numerical Computation of Internal and External
Flows, Volume 1: Fundamentals of Numerical
Discretisation, Wiley, 1988.

18. C.M. Rhie and W.L. Chow, The numerical study of
turbulent flow past an airfoil with trailing edge separation,
AIAA J., 21, pp. 1527-1532, 1983.

19. J. Encarnacao and E.G. Schlechtendahl, Computer Aided
Design - Fundamentals and System Architectures,
Springer-Verlag, Berlin, 1983.

20. M.F. Hordeski, CAD/CAM Techniques, Reston (Prentice-
Hall), 1986 (See Chapter 7).

21. P. Bezier, The Mathematical Basis of the UNISURF CAD
System, Butterworth, London, 1986.

22. J. Rooney and P. Steadman, Principles of Computer-aided
Design, Pitman and The Open University, London, 1987
(See Chapters 5, 6, 7 and 8).

23. J.C. Cavendish, D.A. Field and W.H. Frey, An approach to
automatic three-dimensional finite element mesh
generation, Int. J. for Numerical Methods in Engineering,
21, pp 329-347, 1985.

24. D.G. Holmes and S.H. Lanson, Adaptive triangular meshes
for compressible flow solutions, in J. Hauser and C. Taylor
(Eds.), Numerical Grid Generation in Computational Fluid
Dynamics, Pineridge Press, Swansea, pp 413-424, 1986.

25. D.F. Watson, Computing the n-dimensional Delaunay
tesselation with application to Voronoi polytypes,
Computer Journal, 24, 2, 1981.

26. M.A. Yerry and M.S. Shephard, Automatic three-
dimensional mesh generation by the modified-Octree
method, Int. J. for Numerical Methods in Engineering, 20,
pp 1965-1990, 1984.

27. J.H. Cheng, P.M. Finnigan, A.F. Hathaway, A. Kela and
W.J. Schroeder, Quadtree/Octree meshing with adaptive
analysis, in S. Senegupta, J.F. Thompson, P.R. Eiseman
and

References

314

28. Hauser (Eds.), Numerical Grid Generation in
Computational Fluid Dynamics, Pineridge Press, Swansea,
pp 633-642, 1988.

29. J.F. Thompson, Z.U. Warsi and C.W. Mastin, Boundary-
fitted coordinate systems for numerical solution of partial
differential equations, J. Comp. Phys., 47, pp 1-108, 1982.

30. G.W.C. Kaye and T.H. Laby, Tables of Physical and
Chemical Constants, 14th. Edition, Longman, 1983.

31. R.W. Haywood, Thermodynamic Tables in SI (Metric)
Units, 2nd. Edition, Cambridge University Press, 1976.

32. G.F.C Rogers and Y.R. Mayhew, Engineering
Thermodynamics Work and Heat Transfer, Third Edition,
Longman, 1980.

33. G.W. Carr, Motor Industry Research Association, Private
Communication.

34. C.T. Shaw, Predicting vehicle aerodynamics using
computational fluid dynamics - a user's perspective, SAE
Technical Paper 880455, in Research in Automotive
Aerodynamics, SP-747, International Congress and
Exposition, Detroit, Michigan, USA, 29 February - 4
March 1988.

35. C.T. Shaw and S. Simcox, The numerical prediction of the
flow around a simplified vehicle shape, in Supercomputer
Applications in Automotive Research and Engineering
Development, Ed. C. Marino, Cray Research, pp 219-231,
1988.

36. I.R. Hawkins, A. Honecker, H. Krus, C.T. Shaw and S.
Simcox, Numerical studies of vehicle aerodynamics, Paper
905129, in The Promise of New Technology in The
Automotive Industry - Technical Papers, Volume II, pp 75-
83, Proceedings of XXIII FISITA Congress, Turin, Italy, 7-
11 May 1990.

37. A.J. Chapman, Heat Transfer, 4th. Edition, New York,
Macmillan, 1984.

38. A.H. Shapiro, The Dynamics and Thermodynamics of
Compressible Flow, Volumes 1 and 2, New York, Ronald
Press, 1953.

C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992

315

39. H.W. Liepmann and A. Roshko, Elements of Gas
Dynamics, Wiley, 1957.

40. F.H. Harlow and A.A. Amsden, 'Numerical computation of
multi-phase flow',

41. Comp. Phys., 17, pp 19-52, 1975.
42. D.B. Spalding, 'Numerical computation of multi-phase

flows and heat transfer', in C. Taylor and K. Morgan (Eds.),
Recent Advances in Numerical Methods in Fluids,
Pineridge Press, Swansea, 1980.

43. D.B. Spalding, Some Fundamentals of Combustion,
London, Butterworth, 1955.

	PREFACE
	1 INTRODUCTION
	1.1 Using Computers To Predict Flows
	1.2 Situations Where Fluids Flow
	1.3 Why Read This Book ?
	1.4 The Objectives Of The Study
	1.5 Using The Book

	2 FLUIDS IN MOTION
	2.1 Some Common Flow Features
	2.1.1 Fluids All Around Us
	2.1.2 The Ways Fluids Flow
	2.1.3 Some Properties of Fluids

	2.2 Equations Describing Fluids in Motion
	2.2.1 Developing the Governing Equations
	2.2.2 Concepts of Turbulence
	2.2.3 Modelling Turbulence

	2.3 Obtaining Greater Understanding of Fluid Flow

	3 NUMERICAL SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS
	3.1 Techniques of Numerical Discretisation
	3.1.1 The Finite Difference Method
	3.1.2 The Finite Element Method
	3.1.3 The Finite Volume Method

	3.2 Numerical Discretisation of a Simple Equation
	3.2.1 Using Finite Differences
	3.2.2 Using Finite Elements
	3.2.3 Using Finite Volumes

	3.3 Comparison of the Discretisation Techniques
	3.4 Producing A Solution From The Discrete Equations
	3.4.1 Convergence and Stability
	3.4.2 Solving The Simultaneous Equations

	3.5 Solving The Coupled Set of Fluid Flow Equations
	3.5.1 Non-Linearity and Time Dependence
	3.5.2 Obtaining the Pressure Solution
	3.5.3 The Convection Operator
	3.5.4 Boundary Conditions For Fluid Flow Problems

	4 COMPUTER-BASED ANALYSIS PROCEDURES AND TOOLS
	4.1 The Analysis Process
	4.2 Computer Hardware For CFD
	4.2.1 Computers
	4.2.2 Peripherals

	4.3 Using the Hardware
	4.4 Commercial Software Packages Used For CFD
	4.4.1 Pre-Processing Programs
	4.4.2 Solving The Equations
	4.4.3 Post-Processing Programs
	4.4.4 Utilities

	5 DESCRIBING FLOW PROBLEMS IN ENGINEERING
	5.1 Producing a Specification
	5.1.1 Knowing What Is Required of the Analysis
	5.1.2 Specifying the Geometry of the Problem
	5.1.3 Defining the Flow

	5.2 An Example of a Flow Specification

	6 BUILDING A MESH
	6.1 The Need For A Mesh
	6.2 Creating A Mesh For A Given Flow
	6.3 Mesh Structures
	6.3.1 The Basic Parts of a Mesh
	6.3.2 Types of Structure

	6.4 Building Meshes
	6.4.1 Defining the Geometry
	6.4.2 Determining The Mesh Structure
	6.4.3 Building a Simple Mesh With a Regular Structure
	6.4.4 Using Commercial Mesh Generation Software
	6.4.5 Some Automatic Mesh Generation Algorithms

	6.5 Modifying An Existing Mesh To Give A Better Solution

	7 SETTING THE FLUID FLOW PARAMETERS
	7.1 Specifying Fluid Properties
	7.2 Determining the Variables That Need To Be Calculated
	7.3 Finding the Boundaries
	7.3.1 Boundaries for Meshes With A Regular Structure
	7.3.2 Boundaries for Meshes With An Irregular Structure
	7.3.3 Grouping Faces Together

	7.4 Defining the Boundary Conditions
	7.5 Defining the Initial Conditions
	7.6 Using User-Generated Subroutines To Influence The Simulation

	8 OBTAINING A SOLUTION
	8.1 Final Data Preparation
	8.1.1 A Note On Iterative Processes
	8.1.2 Controlling The Iterative Processes
	8.1.3 Other Solution Control Information

	8.2 Running the Solver and Troubleshooting

	9 ANALYSING THE RESULTS
	9.1 The Results Obtained From The Solver
	9.2 Using Computer Graphics For CFD
	9.2.1 Using Graphics Hardware
	9.2.2 Using Graphics Software
	9.2.3 Plotting the Geometry
	9.2.4 Obtaining the Required View
	9.2.5 Displaying the Results
	9.2.6 Special Displays

	9.3 Checking A Solution
	9.4 Refining A Computer Model

	10 SOME CASE STUDIES
	10.1 The Examples
	10.2 The Software Packages
	10.3 Laminar Flow Between Parallel Plates
	10.3.1 Producing The Flow Specification
	10.3.2 Some Analysis
	10.3.3 Building a Mesh
	10.3.4 Setting the Fluid Flow Parameters
	10.3.5 Running The Solution
	10.3.6 Analysing the Results

	10.4 Turbulent Flow Over a Car
	10.4.1 Producing A Flow Specification
	10.4.2 Creating A Mesh
	10.4.3 Preparing the Data Before Solution
	10.4.4 Running the Solver and Analysing the Results
	10.4.5 A Note On Three-Dimensional Calculations

	10.5 Water Flow Around A Combustion Chamber
	10.5.1 Producing A Specification
	10.5.2 Producing A Mesh
	10.5.3 Other Pre-Processing Tasks
	10.5.4 Running The Solution

	10.6 A Review Of The Usefulness Of CFD

	11 MODELLING FLOWS WITH ADDITIONAL COMPLEXITY
	11.1 Modelling Flows With Heat Transfer
	11.1.1 The Effects of Heat Transfer on a Flow
	11.1.2 The Energy Equation For Heat Transfer
	11.1.3 The Effects of Turbulence on Heat Transfer
	11.1.4 Buoyancy Effects
	11.1.5 Conjugate Heat Transfer Problems
	11.1.6 Some Non-Dimensional Groups

	11.2 Modelling Flows That Are Compressible
	11.2.1 Some Features Found In Compressible Flows
	11.2.2 Equations For Compressible Flow
	11.2.3 Some Practical Problems With Compressible Flows

	11.3 Multiple-Phase Flows
	11.4 Modelling the Effects of Combustion

	12 ACQUIRING CFD TECHNOLOGY
	12.1 Preliminaries
	12.2 Assessing the Need
	12.3 Producing A Specification For A CFD Program
	12.4 Deciding on the Necessary Software
	12.5 Deciding on the Necessary Hardware
	12.6 Finding People To Run CFD Simulations
	12.7 Integrating CFD Within The Design Process

	APPENDIX A. PHOENICS RESULTS FOR A SIMPLE LAMINAR FLOW
	REFERENCES

