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PREFACE

Computational Fluid Dynamics (CFD) can be described assbe
of computers to produce information about the ways in wihigths
flow in given situations. CFD embraces a variety of teabgiek
including mathematics, computer science, engineering anétphys
and these disciplines have to be brought together to provide the
means of modelling fluid flows. Such modelling is used in many
fields of science and engineering but, if it is to be uséfel results
that it yields must be a realistic simulation of a flunanotion. At
present this depends on the problem being simulated, ftheaso
being used and the skill of the user.

Until recently the user of CFD has been a specialiebhaghly

trained to doctoral level, working in a research and dgveént
department. Now, however, the technology is more widely
available both in industry and academia and so itirghesed to
provide insights into many aspects of fluid motion. Tihiseasing
use has come about as there are now numerous commercial CFD
software packages on the market and so it is not negdesaisers
to have to write their own programs in order to obtain ffeswults.
Whilst the software is widely available, the means afreng about
CFD and how to produce simulations with it tends to beeicesd

to post-experience courses in universities and polytechnicsgwhe
the level of assumed knowledge can be too great, or to saunse
by software suppliers where users are shown how to run aubarti
software product. Also, there are several technical thats
describe the detailed mathematics of the modelling process, but
these are often far too technical for the user of thevaoé.
Consequently, as the variety of users increasesithareeed for a
general text that is an introductory guide to the anabyfsi®w
problems using CFD and describes the various stages ohy/sia
that must be undertaken if the user is to obtain senssuése

This book addresses the needs of new users of CFD programs.
After the introduction there is a description of some aspefdiuid
flow, written specifically for the non-specialist, togetinéth a look



at some of the equations that need to be modelled. Thegl®tus
concentrates on flows which are viscous and incompresaible,
most of the CFD packages solve this type of flow. The ways
which the governing equations are translated into a forraldai

for solution by computer is then described. Having lookedist th
the CFD analysis process can be determined together widh som
information about the software and hardware that will baired.
Then each stage of the analysis process is discus$saah)

followed by a chapter where three examples of the angdystess
are given. These are realistic problems which have $algad
using two commercially available CFD software packaghs T
completes the core of the material, but as other flow tgpesnet

in practice some extensions to the basic analysis pracess
discussed that enable these flow types to be modelled, Tihaily,
there is a review of how the necessary hardware and seftaa

be specified. This looks at the features that mightolnsidered
together with a discusion of how the whole process can beased t
influence engineering design.

The book assumes only a minimal knowledge of fluid mechanics
and mathematics, and so it is hoped that it will beeful guide to
the CFD modelling process, being read by new users of CFD
software, by those interested in what CFD could d¢hifem and
even by their managers. Hopefully, the book will act both as
learning aid and as a reference. Ideally, if readésh 0 perform
simulations then this book should be read in conjunction tvéh
documentation of the appropriate software. Also, it ismended
that the book will replace the support services of the sodtwa
suppliers.

For those who wish to study further some hints on how to do thi
are given together with a list of key references.
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1INTRODUCTION
1.1 Using Computers To Predict Flows

Towards the end of 1987, two disasters occurred in Britiin.
October, a severe storm swept over the South East obtimry
causing considerable damage and loss of life, and then, in
November, there was a fire at King's Cross Undergrouaiibs in
which thirty-one people died. In the investigations that foldw
both of these events, the use of computers to predict haig flui
flow was discussed at great length.

Many people will remember that there was consideralilatdeas
to why it was that the storm was not predicted byiBritveather
forecasters, when forecasters in other countries eudigirthe
storm. Forecasters use computers to predict the flow @fithre the
Earth's atmosphere, finding things such as wind speed and
direction, atmospheric pressure and air temperature. Fisrddta
they can predict what the weather will be several houdsays
ahead. One feature of the debate was a comparison of the
calculation speed and data storage capacity of the comapute
available to the forecasters in Britain and those rpoweerful
machines available elsewhere. As a result of this debatera
powerful computer has been installed in Britain for weather
forecasting [1]. The forecasters make considerable ue of t
technigues known as Computational Fluid Dynamics (CFD) to
produce their weather forecasts and, as we shall szarlahis
book, the storage capacity of the computer can effect thesayc
of the prediction, as can the speed of the machine. Thégef the
CFD calculations can be seen every day as part oféhéher
forecasts on television.

During the King's Cross fire, fireman reported that witthie space
of only two minutes the fire changed from being a smafiéla
within the escalator tunnel to a serious conflagrationeghgulfed
the booking hall at the end of the tunnel. At the inquiry that
followed this disaster the results of computer predictioribeof

1
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flow of air in the escalator tunnel and the booking hall werd to
explain this flashover and to discount several of the ibethat
were put forward, such as the burning of the new paint on the
ceiling of the tunnel [2]. These results showed a physical
mechanism for the flashover, but they were so unexpected tha
experiments were carried out to see if such a mechamsuired
in practice. In scale models of the escalator tunnel tlehamesm
was found to occur, although the actual values of the floacitgl
predicted by the computer were not accurate. This meanghth
computer predictions were correct in a qualitative sehgef in a
guantitative sense.

The timing of the two disasters and the debate about thef use
computers that followed are significant. They show thanfr

around the mid-1980's computer predictions of fluid flow have been
used routinely in both science and engineering to producel usef
results. The predictions have to be derived from a technthadgy
combines advances made in several technical areas such as
computer science, mathematics and engineering. These aslvance
have contributed to the increasing use of CFD that has p&ee

since the above date, and it is hoped that the links batthem

will be seen throughout this book.

1.2 Situations Wher e Fluids Flow

In many branches of engineering, there has to be an undengfandi
of the motion of fluids. One classic example of thisighe aircraft
industry, where the aerodynamics of an aircraft must be
determined; i.e. the lift, drag and sideforces of agesiust be
estimated before a prototype flies. This ensuresthiealift

available will be sufficient to carry the weight of Soaded aircraft,
that the required power of the engines can be deternogether
with the aircraft's fuel economy and that the motiorhefdircraft
can be predicted. To obtain this aerodynamic data many nadels
the design could be built and tested in a wind tunnel, tivéh

model positioned in many orientations to the flow. Sucls tesght
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consume many hours of wind tunnel time and cost many thousands
or millions of pounds.

As the equations that govern fluid motion are known, numierica
approximations can be made to these equations, and heith t
arrival of powerful computer hardware and software, sontleof
aerodynamics estimation can be made using these computer tools.
This does not mean that wind tunnels are redundant. ityreal
when computers and experiments are both used to produce
predictions, engineers often choose to reduce the amouimaf w
tunnel time. Sometimes, however, the wind tunnels are useakjust
much as they would have been if they had been used &ldneth

of these cases, wind tunnels can be used to investigapeoblems
that are too difficult to solve with the computational tegbes and
there are many such problems. Effectively, the use of congputer
releases wind tunnel time and this can be used to inviestiga
really difficult aerodynamics problems that could notdxekled
before.

Whilst this combination of experimental and computational
investigations has been used to determine an aircraft's
aerodynamics for some time, the use of computers for fluid flow
prediction in other industrial areas is less advancecemly,
however, other industries have been making the transition from
purely experimental investigations to a mix of experimesmtal
computational investigations. If we look at a variety olsidial
sectors, such as aerospace, defence, power, process, agpmot
electrical and civil engineering, there are many examplaseais
where CFD is now used. For example, predictions can be made of
the:

- lift and drag of aircraft. Here, as we have said, meg)is
need the data for performance prediction. CFD is used in
conjunction with wind tunnel tests to determine the
performance of various configurations.

« flows over missiles. This, again, is an area where tkae
need for lift, drag and sideforce data, so that sitmors of
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performance can be made. As with aircraft, CFD and wind
tunnel tests are used, but because of the wide range of flows
that have to be simulated for a given configuration,isise

also made of semi-empirical methods which are derived
from large amounts of experimental data.

« jet flows inside nuclear reactor halls. Such problems
involve the simulation of fault conditions, and so engineers
have great difficulty in performing actual experiments, fo
safety reasons. Hence, computation is the only way of
trying to understand such flows.

« flames in burners. There is a need to understand the
complex interactions between fluid flow and chemical
reaction in flames. This can assist in the productiomarfe
efficient designs for burners in boilers, furnaces ahédro
heating devices.

« air flow inside internal combustion engines. When air is
used to burn fuel inside an internal combustion engine, be it
a gas turbine engine, a petrol engine or a diesel engine, the
air must be drawn into the chamber with the minimum
amount of effort and the flow of the air once it ighe
chamber must be able to promote good burning. Hence,
engineers need to know the pressure drop through a system
and the velocity distribution in the combustion chamber.

« flow of cooling air inside electrical equipment. In this
problem, electrical devices, such as integrated circuits,
produce heat. This heat must be dissipated if the equipment
is not to become too hot. For example, the hot devices heat
the air that surrounds them and this hot air rises,iogeair
currents that move the heat away from the sources of heat.
If insufficient heat is moved away then it may be neagssa
to add fans that will force air over the hot devices.

« dispersion of pollutants into rivers and oceans. Various
pollutants are discharged into rivers and oceans, and
computer programs can be used to predict where pollutants
will travel in these naturally occurring flows and whae t
pollutant concentration will be at given positions in the
river or sea.
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From this list, it is clear that the applications carektremely
varied in nature. Despite this, the computer predictioniseof
different problems can be made with computer software and
hardware that is not specific to a given problem. Nowtthese
computer tools are widely available, CFD has been brougluf out
the research laboratory and is used by many more pebpéa
even be used in the engineering design process.

It is intended that this book should assist scientisiseagineers in
understanding how software tools can be used to predict thenmot
of fluids in a wide variety of situations. The emphasjsowever,

on engineering examples where the speed of the flow is lowhand
fluid is viscous but where the flow does not include any heat
transfer. This type of flow is very common throughout itiduand

it can be used as the basic model upon which can be buifhlaen

of modifications that account for other types of flowst Example,
the flow speed might be such that the density of the flilid

change, or heat transfer or combustion might occur.

1.3Why Read This Book ?

Over the last few years, many commercial CFD packages have
become available. The emergence of these packages hasmag¢ant
CFD is no longer practised solely in a research environlent
highly-trained specialists, but it is also being used inyma
industrial organisations as a design tool. Consequeantyineers
who are not specialists in the CFD field are havingotoeto terms
with this technology, if only in an attempt to understandtvina
benefits of using the technology are, and also to understaaid wh
the drawbacks are.

As a subject, CFD can appear to be far removed from the
experience of those who are not specialists in the fidid
situation is not helped by the numerous books on the magket th
address the subject of CFD, which are mainly writtenHe
theoretical engineer or applied mathematician who is iriesés
the details of how the equations that govern fluid flow ahesgo
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No general text is available for the less-specialised afSeFD
techniques or even for their managers.

There is a wide variety of people that have a need &bleeto
understand something about CFD techniques, be they
computational analysts using CFD for the first time, design
engineers interested in obtaining information about fluidanet
and even engineering managers or computer managers who provide
the computational resources for CFD. Such people are inwariabl
graduates, often with no formal background in CFD, or @ven
basic fluid mechanics. If these people are offered sompayetic
help and guidance, then they can understand the basics ofitG&D
the author's experience that undergraduate engineering stedent
successfully model fluid flow situations, if they are given
appropriate background information as to what the CFtisal
process is and how it is used to obtain predictions of thavoaur

of fluids.

This book is an attempt to put the necessary informatioraint

simple and concise format, so that it can be usedudlgsts or
practising engineers to assist in their understanding of the
technology of CFD, regardless of the particular softwaregupek

they might be using. In fact, the book should act as a pfoner
someone about to explore the documentation of any CFD package.
Once someone is familiar with the material contained hieeg,

should be able to produce simulations of fluid flow sitaiusing

a suitable CFD package or be able to talk confidently thibse

who produce such simulations.

1.4 The Objectives Of The Study

As we have seen, CFD can be used to produce predictioas fo
wide variety of flows. So that the basics of the subjentle
clearly understood, particularly by those outside the aircraft
industry, the content of this book has in the main beeériatesl to
the class of problems that can be described as being viscous
incompressible flows. These flows are slow speed flows enier
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fluid is not compressed and features such as shock wavest d
occur. Many industrial flow problems are of this type, aodnost
of the available CFD packages can simulate these flolmeseTis a
separate chapter that describes how to model variatiomstlfris
basic type of flow.

After reading this book, it is hoped that you will be &bte

« understand something of how incompressible, viscous
flows behave

« understand the numerical techniques that are used to solve
the governing equations of fluid flow

« follow the stages undertaken during a CFD analysis

« recognise the need for a mesh of points to be specified
within the fluid volume

« specify a flow, in terms of the relevant boundary anighini
conditions

« understand the documentation for commercial CFD
software packages

« be aware of the limitations of the CFD process.

Once the reader has this information, it should not beedliffto

run some simple examples and hence gain experience in using
commercial CFD packages. Having done this, the prediction of
more involved fluid flow situations, where such things as fieat
combustion and compressibility occur, should be relatively
straightforward.

1.5 Using The Book

The book is intended to be an introductory guide to CFetisas

a working reference for analysts and their managerssecprently,

as readers will probably come from a variety of technical
backgrounds, very little background knowledge is assumed and the
book has been structured so that its chapters can bewread i
isolation.
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Chapter Two describes the properties of fluids thatansidered
important when fluids flow and describes some of the fleatires
that usually occur. It also provides a review of the egoatihat
govern fluid flow and the factors that determine the flopesy
This chapter is intended to be read by those witle littino formal
training in fluid dynamics, and so can be skipped by atteers.

As the equations describing the flow of a fluid are partial
differential equations, Chapter Three looks at the standayd of
solving these equations using numerical approximations. Three
different techniques for transforming partial diffeiehequations
into a numerical form are explained and the features @nim
them are emphasised. Solving the fluid flow equations l&ads
some special problems, regardless of the numerical tpetyrand
so these problems and the ways of overcoming them are also
explained. By using one of these techniques of approximating
partial differential equations, equations can be derivediwtan
then be programmed into a CFD software package. Tharedsof
operations that needs to be carried out to use suclkageain a
way that will produce sensible simulations of fluid flpnoblems,
and so Chapter Four outlines this CFD analysis proceb®aks at
the hardware and software that is available to assikid process.

In both Chapters Three and Four, emphasis is given fathéhat
the basic features of the software and hardware tools are@ono
all the packages. These chapters should be read by thoszrev
unfamiliar with the numerical solution of partial diffetianh
equations and the software and hardware associateduweith
solutions.

Whilst the first four chapters cover some background météna
subsequent chapters, Five to Nine, concentrate on the G&l3 s
process itself. These chapters describe in detail deble o
processes that must be undertaken in order that the sionutdia
fluid flow problem is successful. These processes inchele t
formulation of the fluid flow problem, producing a flow
specification that is easily translated into termdanstood by the
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software packages, the production of a computer model, the running
of the numerical solution so that reasonable resudtslatained and

the analysis of the results. Whilst any individual chafaens a
stand-alone module describing one particular phase in thellovera
process, the five chapters taken as a whole detail tigsana

process from start to finish.

Having explained the analysis process in Chapters Fivang N
Chapter Ten attempts to bring the process to life by apptyie
technigues described to a series of representative Rampes. It
is in this chapter that we show how the techniques arellgaisad
in practice, as the simulation process used to model éxesaples
is described in full based on the use of commercial CFivaie.
From these examples the areas where CFD can be usefakand t
areas where it is of little use can be seen.

Finally, the last two chapters round off our study byrtgla brief
look, in Chapter Eleven, at how some of the more complex flow
features such as compressibility and heat transfercaoeiated for
in a simulation, and then by considering, in Chapter Twehee
problem of how to acquire CFD software and hardware ising
and how to implement the technology within the design process.



Chapter 2. Fluids in Motion
2FLUIDSIN MOTION

2.1 Some Common Flow Features

When people use computers they can become so engrosised in
computational aspects of their work that everything else is
excluded. For people who use CFD in an industrial environment
this can be a disastrous mistake, as the computer hardwdr
software are merely tools to assist our understandingeaf/dys in
which fluids flow and of the interaction between this aoche
object that is being or has been designed. Consequienglyery
important that everyone concerned with CFD has some
understanding of the physical phenomena that occur when fluids
flow, as it is these phenomena that CFD must analyseedich As
this is a book that has been designed to help explain sotie of
mysteries of how we can predict the motion of fluids using
computer-based tools, we must start by looking at the basic
processes of fluid flow. These can be extremely compldxtan
computer simulation has to be capable of reproducing this
complexity. If analysts are aware of these physicdities they

can modify their modelling technique to ensure that the best
possible results for a given situation can be produced.

Whilst many engineers will have studied fluid mechanigsaasof
their formal education, some readers may not have madesuch
study, and so this chapter attempts to provide some infimfar
those who have no formal background in the subject anddse th
who may wish simply to be reminded. The presentation of the
material is based initially around the features that oatwan fluids
are flowing, that is, it considers what happens to a fturdotion,
and thereby develops an intuitive feeling for the subjegmnisome
of the mathematical aspects of the analysis of fluideation are
discussed. This is not intended to be a comprehensive vt
should highlight some of the more important featuresngiai base
for further study.

10
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2.1.1 Fluids All Around Us

When starting to think about the way fluids flow, many peapée
put off by the complexity of the subject. Even the titlethef
categories by which flows are classified require some krdgelef
fluid flow if they are to be understood. If you look at soméhef
many textbooks concerned with fluid mechanics it is cleatr there
are many such categories and these include:

« viscous or inviscid flows

« incompressible or compressible flows
« flows in pipes or open channels

« flows in pumps and turbines

« water waves.

The relevance of some of these classifications wilbberclearer
as we progress, but it is sufficient to note here thaetde serve a
useful purpose in identifying the types of flow that camdod. It
is, however, just as important for someone involved with @~D
recognise the phenomena that occur for each flow type, hasvel
the classifications themselves.

We are going to be concerned predominantly with the use of
computers to simulate flows that are found in industrtabsions,
outside the main stream of aeronautical applications. hy g
these industrial flows the fluid moves at a low speed ardeso
stickyness, or viscosity, of the fluid produces forces tvhic
dominate the flow. This is especially true when the fldwesaplace
within fixed solid boundaries. In an attempt to give a goadtive
feel for this class of flows let us consider some of tiraroon flow
features of low speed, viscous flows.

Everyone has seen many examples of the flow features teatrexi
industrial fluid dynamics problems. We see water coming oat o
tap, litter or leaves being blown about by the wind and water
flowing in rivers. By making a careful study of such things it
possible to understand a great deal about the ways i fiids

11



Chapter 2. Fluids in Motion

behave when they are flowing without reading a single fluid
mechanics text book. In fact, some of the classical exgeais of
fluid dynamics can be recreated in the home or even expede
during a short walk.

Take, for example, the common tap by a domestic sink. Slowhy t
the tap on and see that water drips out of the tap. Gedap
further to increase the flow rate until a steady colafimwater
comes out of the tap. Notice how smooth the water column is,
appearing crystal clear like glass. Increase the flowfuateer and
the water column surface begins to move slowly beforevhizde
column becomes opaque. At this final stage the watesfiowa
direction which is generally downwards, but if we look at onetpoi
in space in the water column the fluid seems to moveaamdom
fashion, a so-called turbulent motion, which is superinghosethe
general flow. This simple experiment with the flow out ¢&p
demonstrates that two main types of flow can be seénweitous
fluids; first a smooth laminar flow, for example whehne wvater
moves layer over layer giving a clear column of liquid, and
randomly fluctuating turbulent flow.

—

‘ow relative to cylinder Fluid swirls i rear ol cylinder

—
F o

Fluid maves smoothly i ) _
over front of cylinder Cylinder moving from night to e

Figure 2.1. A cylinder maving in water
A second set of flow examples can be created with adbathter.
Run several inches of water into a bath and let thaalahotion of

the water decay away. Then make sure that the surfdice ofater
is illuminated, as, when the water is in motion, shadeilde cast

12
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onto the base of the bath and these will give us some duedlze
motion of the water and so help our understanding of the flow.
Now, drag various objects through the water and wateat wh
happens. For example, put a circular cylinder such as aschean
into the water with its longitudinal axis in the vertipaisition and
then move the cylinder along. Notice that the water moves $o
flow smoothly around the front of the cylinder, but that it doets
move in a similar way at the back of the cylinder. There water
forms into tight swirls of fluid as shown in Fig. 2.lepeat the
same experiment with a hand. First of all straightarr yiogers

and place them vertically in the water with the fingeraraged

from left to right. Now move your hand to the left and seatwh
happens. Things are much the same as for the cylinderand a
shown in Fig. 2.2a. Now place your hand at a slight angte to
previous position and then move it slowly to the left. Natiee

new flow pattern as shown in Figure 2.2b. First, the wsgems to
approach your hand from below before splitting into tweastrs,
one of which moves along the lower side of the hand and the other
moves around the forward edge and then down the upper side of
your hand. A swirl of fluid is left behind at the originadsition of
the right hand end of the your hand. Stop moving your hand and
watch a swirl of water form which rotates in the oppodirection

to the first swirl. If you perform a quick start-stogtian, Fig. 2.2c,
the two swirling areas of fluid move down together, as eanrem
under the influence of the other.

13
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Figure 2.2, Flow aroood a hand o warer

As a final experiment with the bath of water sprinkle spmeder
such as talc on to the water surface, and then plaweeh af card
or paper in the water and drag it along so that the distaeba a
minimum. Note that the fluid nearest the card moves alatigtie
card and appears to leave the rest of the fluid behind.

A common place where fluids flow is a river or streand a
particularly interesting effects can be seen at thetpdiere the
water flows under a bridge or around a bend. This flow willese
as our final demonstration. For example, stand on a baiddéook

14
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down into the flow. Figure 2.3 shows some of the featurecémat
be seen. Observe that, near the bank of the river, aagtsisjuch
as small insects or leaves move much more slowly inakethan
do those in the centre of the river. Looking at the figueay the
centre of the flow an object might move from position A teifian
B in a given time, but near the bank an object will antyve from
position C to position D in the same time. Also note tiear the
bank objects tend to spin around, in a clockwise directidhe
case shown in Fig. 2.3, but that they do not spin if dreynear the
centre of the flow. Where there is a pillar in the wagay,
supporting the bridge, look at the swirling areas of fluid
downstream of the pillar.

- Bridge pilter
@) 2
— faster
e Objects move fa
Flow direction ? ? and do not rotate

Omects move slower

c D
® @ od

River bank

Figure 2.3. Flow in a river

2.1.2 The Ways Fluids Flow

These simple demonstrations, described above, show some of the
major features that are found to occur when fluids flogl@aw
speeds. In particular it is important to recognise that:
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« viscous flows can be laminar where the fluid is ordered an
flows as if it was a series of sheets moving over each.othe

« viscous flows can be turbulent where the flow at one point
is generally in one direction but that this mean flow has a
seemingly random, fluctuating component superimposed on
it.

« normally a fluid flows cleanly around the front of an objec
but, around the back of an object, the direction of motion of
the fluid does not stay parallel to the surface and the fl
swirls around. The fluid is said to separate from théasar
and the swirls are called vortices.

« when a fluid flows over a solid surface, it is slowed down
by the solid surface. This is due to fluids being sticky or
viscous. The area of fluid near the surface that is slowed
down is called a boundary layer. Inside a boundary layer
the flow velocity changes with distance away from the solid
surface and so the fluid motion causes objects toerotat
Outside the boundary layer this does not happen. Once the
fluid has moved past a solid surface the effects of the
surface can still be seen and this region is known as a wake.

All these features can be found in industrial flow probleamds our
modelling techniques must be capable of reproducing them if they
exist physically. As a computer can only perform numerical
operations, it is necessary to describe the motiorflafdain
mathematical terms. Then numerical solutions to the enadhcal
problem can be found and so a prediction of the physmal fl
problem can be determined. To help with this mathematical
formulation, various properties of the fluid must be dafiand the
equations governing their variation in both time and space
developed.

2.1.3 Some Properties of Fluids
Fluids in motion can be described in many ways, but we teee

find some way of completely describing the state of a flOwe
obvious way is to have a description of the velocity of tiel @t
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all points in space and time. Note that velocity i®etor quantity
and so it describes both a size and a direction.viyeof
specifying a velocity vector is to give the components of tkheve
in the three Cartesian coordinate directions. This degmniof the
velocity field does not, however, contain enough information to
define the state of the fluid in full, as other propertiethe fluid
must be known together with the velocity. The question is now:
"Which properties do we need to describe ?"

It is common knowledge that fluids can exert forces onotdjé&or
example, in a strong wind, people and trees are blown oder an
slates are removed from roofs; and so the air must exae sort
of force on these objects. Forces applied by fluidsaseused by a
variety of means of transportation. Ships float on wasethe water
provides a lifting force and aircraft fly quite succedgfak the air
moving over the wings also provides a lifting force. Thelmasm
that creates these forces is that a fluid exertssspre on the
surface of an object, and this pressure acts in suayahat when
the sum of the pressure on each small section of the swffdlce
object is calculated a net force exists. Pressuteiforce per unit
area (or stress) normal to a surface and can ocautuid is
stationary or moving. For example, a ship floats regasdbé its
speed through the water, but a conventional aircraft musblbeng
for there to be a lifting force on its wings.

As well as this normal stress, or pressure, theaesisess derived
from the action of a fluid that can act tangential tolad surface.
This stress is caused by the fact that the bulk of tie &nd the
object are moving relative to each other and so the fusthéared.
Fluids resist this shearing, such that a tangentialssa@s in a
direction parallel to the direction of motion of the fluéken
relative to the object. This provides a source of drag surface
which is proportional to the viscosity, or stickiness,hef luid. If
the viscosity of the fluid is so small that it can ¢pedred then the
flow is said to be inviscid. This never happens in prachogeit can
be a useful approximation to make when performing calculations
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For the majority of the flows considered here the flow el taken
to be viscous.

The other major property of a fluid is its density, whighhie mass
of a unit volume of fluid. When we pump up a tyre the athe
tyre is compressed. This is because we force air igpgca volume
which is effectively constant and already contains saimeis
there is now more mass in the same volume, the density airthe
increases. For most of the situations that we wiltdresidering we
will assume that the density of the fluid does not chanbihnis
true for low speed flows where there are no heating efféften
the density remains constant, the flow is said to bempressible,
but if the flow speed is increased to a value neardiie speed of
sound in the fluid, compressibility effects become appaiiéns

will be dealt with in Chapter Eleven as it is an addal feature
that can be modelled if we make some modifications to the bas
procedure that we will develop.

We have now reviewed the important properties that canduk us
together with the fluid velocity, to describe the fluidvil situations
that we want to model. These properties are:

« normal shear stress or pressure

« viscosity, which enables us to find the tangential shear
stress (the viscous shear stress)

« density.

If we are to calculate these properties, we must deterthe

mathematical relationships that govern the interaction dsstw
them. This can be done by considering some basic mechamies as
shall now see.

2.2 Equations Describing Fluidsin Motion

Each CFD software package has to produce a prediction oiathe
in which a fluid will flow for a given situation. To dais the
package must calculate numerical solutions to the equdktians
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govern the flow of fluids. For the CFD analyst, therefares
important to have an understanding of both the basic flowresat
that can occur, and so must be modelled, and the equttains
govern fluid flow. These equations can be found from the
knowledge that the mass of fluid must be conserved, as haust t
momentum of the fluid. Whilst the equations will not betfially
derived the underlying philosophy behind their derivation will be
explained. Once these equations are known it should be a
straightforward process to produce numerical predictibad o
flows. This is not the case, however, as various probleises iar
translating the mathematics into a numerical solution. olelem
concerns the physics of the flow and how to model turbulersce,
this complicates matters by having a seemingly randomt effec
each point in a flow. An attempt will therefore be madéhis
section to explain to the ways in which turbulence affedtsw
and how this turbulence can be modelled. Chapter Thretokl
at some of the other problems concerned with the translation
process.

2.2.1 Developing the Governing Equations

Whenever fluids flow the motion occurs in all three spatial
dimensions, but, in an attempt to reduce the complexitiyeof t
problem, we often assume that a flow is two-dimensionas Th
assumption is useful as it reduces the number of varidisles¢ed
to be considered, and so in this section we will alsoidensnly
two-dimensional problems. Such flows contain all the festtinat
are necessary to show the processes used to carry oatitraion
of the mathematical equations, and the switch to the-thre
dimensional form of the equations is a straightforwardreston of
the processes described here.

To develop the governing equations of a flow, we consider d smal
part of the fluid as shown in Fig. 2.4a. Here, a recikangtwo-
dimensional patch of fluid ABCD is shown together with an
assumed velocity distribution in terms of the velocity compongnts
and v in the x - and y -directions respectively. Therkign 2.4b,
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Chapter 2. Fluids in Motion

we can see the forces acting in the horizontal directich@patch
of fluid caused by a normal stress sigma and a sheassdau .
Note it can be assumed that the velocity, normalstaed shear
stress vary linearly across the patch of fluid, aad their values
are assumed to be constant over a given edge, or fabe, ditch.

V+—a—;'5)"
0 4 ¢
I du
By N Y _—p-u+?;wﬁ-x
+\I’
Y 1 B
ax
"‘_"—‘_—-_h-

{a) Geometry and velocities

b+ %{ﬁy-sx

E——

do -
o-by —f- -] — cs+—a,7-5x -dy

-_—
t-bx

{b} Forces in x-directicn

Figure 2.4. Flow into 2 paich of fluid

First of all, for an incompressible flow, fluid cannacamulate in
the patch. This is because the fluid can not be comprassesi
density is assumed to be a constant. As a result of this
incompressibility of the fluid, the total mass of fldidwing into
the patch must be zero. Across each face the massdflfiuing
into the patch is the product of the fluid density, the afethe face
and the fluid velocity normal to the face. As the density
constant it is the same for all faces and so carfbeut of the
relationships for mass flow. The net mass flow is giverhkysum
of the masses flowing across each face AB, BC, CDsxdnd
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this is made equal to zero. Considering a positive nhawstd
occur when the flow is out of the patch, this gives

—vix +[u+-g;ﬁ.t]ﬁy+ [r+-g;—lﬁy]ﬁx—uﬁy =i (211

which can be rearranged to give

[%:—+ %;;] fxdy =10

or just

(2-2|

7
-

This is known as the continuity of mass equation, or sirnfay
continuity equation and can be seen to be a function oklbeity
components alone for an incompressible flow. If the flow is
compressible the density can change and this has to be tsttoun
for by a small modification, as we shall see in Chalpteven.

A second set of equations can be derived by applying Newton's
Second Law of Mation to find the relationship between thec®
on the patch of fluid and the acceleration of the fl&idst of all, it

is necessary to determine an expression for the acoetechthe
fluid that takes account of the fact that the velocgynponents
vary in both time and space. To do this we must consitlat the
total change of the velocity components u or v will be dubeo
changes of u or v with each of the spatial directions xyarahd
thetimet.
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Let us consider changes of the component u alone, which can be
found by applying the chain rule for partial derivatives. TNgs

_ du du du )
ﬁu—-a;ﬁ.t+-a?ﬁy+ il [2-3]

which becomes, on dividing by delta t

ﬁu_auﬁ.t_'_auﬁy_'_au
o dxoar C dy ar A

Now, {delta x} over {delta t} is the velocity component u ifsand
similarly, {delta y} over {delta t} is the component v ,dro the
relationship becomes

—EJ—=HEI—+'PEJ—I+?J— [ X-d |

The expression shown in equation 2.4 is the total accelermatithe
fluid in the x -direction and is known as the substantive deve

of the velocity component u . It is made up of two partsfitse

part consists of two terms which describe the chandeeofelocity
component u due to the fluid being being carried along, or
convected, with the flow and the second part, the third term,
describes the temporal change of the velocity component. When
this total acceleration is multiplied by the massheffiuid in the
patch, it can be set equal to the total force in thereetion acting
on the patch of fluid. This is Newton's Second Law.

The force on the patch of fluid in the x -direction isoabination
of the forces due to the normal stresses and the taagamear
stresses acting on each of the four faces of the patelseT
combine to give
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du  du

[“g:—”a— _a_]ﬁ.tﬁ_-p —-a_t—ﬁ.tﬁy+-a—ﬁ.tﬁy {251

Relations relating the normal stress sigma to the preasdre
velocity gradients and the shear stress tau to the wigeosl
velocity gradients can be derived [3] to give

o= —p+2|.1.g_:_ (3-8

and
:=|.1[%:—+ g:—] 12-7]

and when these are combined with equation 2.5 the equiadibis t
produced in the x -direction is

p%—+pug_t—+pva— _33(1"' g_t—[ ] aa;[l-l%:—,] [ 2-%]

and in the y -direction is

P%L+ pu-g;+pv_3_ %“l+ -aa;[p—g:—] +—an7|-1-3;;] 1 2-9]

where mu is the viscosity of the fluid and rho is its dgnblote
that the effects of external forces such as grawtyetbeen ignored
here, but that they can be included as an additiona fere in
equations 2.5, 2.8 or 2.9 as appropriate. We will do thizhepter
Eleven when we look at the effect of buoyancy on hot fluidso Al
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note that the viscosity mu given above is known as the dynamic
viscosity, and that there is a another common form ofideosity,
the kinematic viscosity nu , which is the dynamic viscosity mu
divided by the density rho .

These two equations 2.8 and 2.9, derived from Newton's Second
Law, describe the conservation of momentum in the flow amd a
often known as the momentum equations or the Navier-Stokes
equations. They can be seen to be very similar toahehn. The
terms on the left hand side of each of these equations fcoméehe
acceleration term like that in equation 2.4, the secondrarrt

terms being the convection terms; whereas the right hantesids
come from the pressure gradient in the flow and the eféécts
viscosity.

An equation similar to the momentum equations can be detive
describe the conservation of energy within the patch, asdhis
equation that is used to account for the flow of heatuin a fluid,
as will be described in Chapter Eleven.

For low speed flows without heat transfer, the equations gongern
the conservation of mass and momentum can be used tddescr
the flow exactly. That is, it should be possible to déscaill
incompressible flows using these equations. Turbulence, however
can make this a difficult task as, when a flow is turbildre
velocity components vary very rapidly in both space and time.
Consequently, the above equations are used for lamiaves But
can be used, at present, only for turbulent flows in vienple
geometries such a rectangular channels. In the lattertbase,
amount of calculation effort required to capture bothiémeporal
and spatial variation of the variables is extremely laagds the
amount of computer storage required to store all thessacy data
for the calculation. The reasons for this will becomeeralyvious
when we look at the numerical solution of these equatiotisin
next chapter. Most flows of interest to engineers occur in
geometries which are far from simple and so, to redue@inount
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of calculation effort, the turbulence has to be modeliezbime
simple way.

2.2.2 Concepts of Turbulence

For those of you who carried out the experiment with themtap
that was discussed at the beginning of this chapter, weeddtiat
at one point in space, within the turbulent jet of watergtreeral
fluid motion was in one direction, but that at any one paitime
the flow direction was a random variation of this. Effectiyale
saw a mean flow with some randomness superimposed uporsit. Th
splitting of a flow into a mean flow and some random fluttue
gives us a guide as to how to we can model a turbulent flast M
engineering models of turbulent flow assume that the velocay a
given point in space and a given time can be made up of the
superposition of some mean velocity, which may vary slovily w
time, and a random component which varies rapidly.
Mathematically, the instantaneous velocity component tbean
described as

a=0+a 42-101

where U bar is the mean velocity and u prime is the random
fluctuating component. Substituting this, and the equivalent
expression for the second velocity component v , into theraotyti
equation 2.2, and then integrating with time gives

%i"_+%:_=u {211

which is a time-averaged form of the continuity equation 2.2.
This simplification arises because the fluctuating compisrere

random and so do not show any preferential direction, hence the
integrals of these fluctuating components over time musétme
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Making a similar substitution into the momentum equatio8safd

2.9 does not produce such a convenient result. The convection
terms are non-linear terms, that is they are the prodweiacity
components and the derivatives of velocity components. When we
substitute expressions like the one given in equation 2.10 into the
momentum equations, the convection terms generate terms for
some of the the products of the fluctuating components and the
integral over time of these products is not zero. kample the
momentum equation in the x -direction, equation 2.8, becomes

(2.12)

where the additional terms can be seen. These additional term
which are the last two terms on the right hand side of egu2atl?2
and the corresponding terms derived from substitutions into the
other momentum equations, are known as Reynolds stresses. If
ignore these Reynolds stress terms, the time-averaged moment
equations such as equation 2.12 are the same as the original
momentum equations (2.8 and 2.9) with the mean flow quantitie
now being substituted for the instantaneous quantities in the
original equations. It is these additional terms thanavdelled to
account for the effects of turbulence.

2.2.3 Moddling Turbulence

From our observations of turbulent flows it is clear thase flows
are extremely complex. This is reflected in the inczdas
complexity of the turbulent flow equations such as equatib? 2.
where the additional terms, the Reynolds stresses, appban W
modelling these terms we try to produce simple relationshigs s
that the final form of the equations that we solve usingerical
methods is a simplification of the full equations. Thisanwethat

the simplifications that are made can be so large thatduce the
accuracy of the mathematical models which provide a description
of the flow. Several books describe the ways that these
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approximations can be made when solving engineering flow
problems [4,5], and Abbott and Basco [11] give a comprehensive
review of turbulence modeling and CFD. As a starting pbiege
books are excellent texts.

One way of simplifying the equations is to treat the aolditi terms
as additional viscous stresses produced by the turbulence in the
flow. To do this, the Reynolds stresses are assumed¢oahimrm
similar to the viscous stresses in the momentum equakiensg

the name Reynolds stress. If we consider equation 2.12, the
Reynolds stress terms can be described as

Reymolds siress = a'-at—[p-r%-[t'l—] + ai—[p-r%;'l;] 4Z2-13)

where mu sub T is an additional viscosity due to turbulenge. B
substituting this expression into equation 2.12 the momentum
eguation becomes

pIL pﬁ%f:—+m7%;:—= -, g;[ [IJ-'HJ-'r] %f:—] + %[ [IJ-'HJ-'r] %%-:]Z-Hl

This equation is effectively identical to the original nesrtum
equation 2.8, except that the mean velocity components repkace
instantaneous components and the viscosity is now enhanced by a
additional viscosity mu sub T due to the turbulence of the.flf

this approach is followed, we can complete the modelling psaote
the turbulent viscosity mu sub T can be found from the other flow
variables. There are various ways of doing this and thekele:

¢ mixing length arguments. An analysis of the dimensions of
the variables shows that the effective turbulent viscosity mu
sub T divided by the density rho has the same dimensions
as a length multiplied by a velocity. Hence momentum
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arguments can be used to show that mu sub T is a function
of the flow density, a length scale in the flow and the local
mean flow velocity. Looking at equation 2.7, we see an
expression for the shear stress tau which can be used to
obtain the form of an expression for the turbulent viscosity.
Typically this relationship is given as

urzpzpj'z[%;'l_+%:_] (215

where {c sub {mu}} is some constant that needs to be
determined together with the length scale | . A numerical
value for {c sub {mu}} and the variation of the lengtrate

| can be found be carrying out experiments for various
simple turbulent flows such as the flow between parallel
plates and the flow in pipes. These experiments involve
measuring the velocity components, pressure, laminar
viscosity and density throughout the flow and then using
the momentum equations such as equation 2.14 to find the
effective turbulent viscosity as a function of position. The
equation 2.15 can be used to produce values of {c sub
{mu}} and | by considering numerous positions in the flow.

« simple partial differential equation models. Equations
similar to the momentum equations can be derived that
describe the distribution of the turbulent kinetic energy k
which is defined for two-dimensional flows as

x=E]_[u'J+p'2:| (2-18

and of the dissipation rate of k , k dot , denoted comynonl

by epsilon . As these equations describe how the variables
vary throughout the field due to diffusion and convection
they are known as transport equations. These equations are
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complex partial differential equations, but some of the
terms in the equations are often replaced by constants
which have to be found from experiments. By doing this
the equations can be simplified considerably. If the
turbulent kinetic energy k is found by solving the simplified
transport equation, the additional turbulent viscosity can be
found from [11]

1
My = ke T (2-114

which assumes that the mixing length | is known. The value
of I might be known from experiments and, if it is known,
then only the equation for k needs to be solved. This
method is, therefore, known as a one-equation turbulence
model. If a value for | is not known for the flow being
considered then the approximate equation for the
dissipation rate epsilon can be solved and the additional
turbulent viscosity found from [11]

2

e = pop -SET

If both partial differential equations for the turbulepegameters k
and epsilon are solved then we have used what is knowtwas a
equation turbulence model. It is the so-called k-epsilon mbdel t
is commonly used for most CFD calculations even though it is
known to be deficient for some flow types. Some five emgalisic
derived constants are used with this model.

Another modelling approach is to try and find values for the
Reynolds stresses themselves. Again, complex transpotiatua
for these stresses have to be derived and solved. The agivant
doing this over the methods mentioned previously is that those
methods give a single additional viscosity, whereas the direct

29



Chapter 2. Fluids in Motion

modelling of the stress terms allows the effects of turnma@do

vary in the three coordinate directions. It is this éhd@nensional
variation that is found when the stresses are measured
experimentally. One- and two-equation turbulence models are said
to give isotropic turbulence, which is turbulence which isstamt

in all directions, whereas in the real situation the turb@émnsaid

to be anisotropic.

The two commonest ways of modelling the stresses diraity

« algebraic stress models. These use a much simplified,
algebraic form of the transport equations to describe the
Reynolds stresses.

¢ Reynolds stress models. These use the complete form of the
transport equations for the Reynolds stresses.

For the sake of completeness, we mention here the otherlimgdel
techniques that are used to model turbulent flow. Thesé are a
present only used for flows in simple geometries, and the
techniques include:

« direct simulation. This involves the solution of the
continuity equation and the momentum equations in their
simplest form, that is equations 2.2, 2.8 and 2.9. When th
is done such that the rapid variation in the variables can be
determined then there is no need for a turbulence model.

+ large eddy simulation. This is very similar to direct
simulation, but a simple turbulence model is used to
account for the very small vortices and eddies that cannot
be modelled due to a lack of spatial resolution in the
numerical model.

2.3 Obtaining Greater Under standing of Fluid Flow

This chapter has provided some background to the motikunics
and the ways in which the motion can be described matiuathat
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For some readers the description here will be sufficientotinets
will, hopefully, want to continue their study.

One of the best ways of increasing your insight into tbean of
fluids is to watch fluids in motion and to observe whetually
happens when fluids flow. We have seen some examplesof thi
already and there are many more examples easily to Adadge
collection of photographs of fluids in motion has beerectéld and
produced in one volume [6]. This is an excellent source of
information as many flow features can be seen cleaftgr A
reading this chapter browsing through the photographs idiihena
should reinforce the discussion of flow phenomena that we have
already made. The photographs are also very enlightening and
aesthetically pleasing in their own right.

Another way of gathering information is to explore some of the
many textbooks that cover the subject area of fluid mechanics
These tend to be academic texts and they lead the rtbaciegh

the mathematics that describe the flow of fluids by spijtthe
subject into application areas. When reading the simplesriakt
the concepts behind fluid motion and the phenomena that occur
should, by now, be more digestible. Amongst the more readable
texts are those by Duncan, Thom and Young [7], Gold§¢isnd
Douglas, Gasiorek and Swatffield [9], but excellent tek&s more
detailed nature are those by:

¢ Schlichting [3], which deals with boundary layers and
viscous flows in general

« Bradshaw [10], which gives a good introduction to the
physics of turbulence

« Abbott and Basco [11], which gives a good survey of
turbulence modelling

« Hinze [12], which gives a detailed account of the
mathematics of turbulence.

For those who prefer to participate whilst learning, metrort
courses of instruction in fluid dynamics, aerodynamicseaah
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computational fluid dynamics are given by higher education
establishments. Many of these courses are designed splciiic
people in industry and should include not only lectures but also
practical sessions, where the motion of fluids can be iigegst],
either computationally or experimentally. Your local univegrsit
polytechnic should know the location of the centres of exjgertis
that are close to you. Whatever you decide to do, keep your eyes
and minds open, as you never know what there is of infemstst
around the corner.
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3NUMERICAL SOLUTIONSTO PARTIAL
DIFFERENTIAL EQUATIONS

We have seen in Chapter Two that the equations goveireng t
motion of fluids are partial differential equationd€Ee equations
are made up of combinations of the flow variables, such as the
velocity components and the fluid pressure, and the dermsadif
these variables. Digital computers cannot be used dirtectly
produce a solution to these partial differential equatiohis is due
to the fact that computers can only recognise and manilataan
the form of zeros and ones, i.e. binary data. They cargvewbe
programmed to store numbers, to perform simple ariticaiet
operations, such as adding, subtracting, dividing and myitgp!
and to repeat whole sequences of these operations stotbad
numbers. Consequently, the partial differential equathave to be
transformed into equations that contain only numbers, the
combination of these numbers being described by the simple
operations.

Producing the transformation of a partial different@hation to
what is known as a numerical analogue of the equaticenled
numerical discretisation. In this discretisation pro@sssh term
within a partial differential equation must be translared a
numerical analogue that the computer can be programmed to
calculate. A variety of techniques can be used to parthis
numerical discretisation and, whilst each techniqumged on a
different set of principles, there are many common feaiorése
methods that are used.

In this chapter we will discuss the background to threbeomajor
numerical discretisation techniques; the finite diffeeemethod,

the finite element method and the finite volume method. Each of
these methods will then be used to transform a simptaba
differential equation into its numerical analogue. Ftbia simple
example some of the common features of the three methodseand
differences between the methods can be illustrated.
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Having produced a numerical analogue of a partia¢ifitial
eqguation, the numerical equations must be processed by the
computer to give a solution. This solution is a descriptfdhe
magnitude of the flow variables throughout the flow field. The
means of obtaining a solution to a general numerical anahdu
therefore be discussed, followed by a look at the spe@hlgms
that occur when we solve the numerical equations derioed tine
partial differential equations that govern fluid flowidtthese
problems that have prevented CFD techniques from being adopte
as widely as the computational techniques used to caddhlat
stresses and strains within structures.

As complete textbooks have been written about numerical
discretisation techniques and the solution of the numerical
equations, it is impossible to cover all the subtle pomtmie
chapter. This chapter should, therefore, be used asraayrof the
main ideas that are used in numerical discretisatiarjrigein mind
that the aim of this chapter is to impart some understgrafithe
techniques that are used to enable a computer to produce a
prediction of the behaviour of a fluid. There are many cEsithat
can be consulted if you want to study any particular agpebts
subject in more depth and several of these are cité itext.

3.1 Techniques of Numerical Discretisation

3.1.1 The Finite Difference Method

The first technigue that we will study is known as thedini
difference method. This method is based upon the use of so-call
Taylor series to build a library or toolkit of equatidhat describe
the derivatives of a variable as the differences betweleres of the
variable at various points in space or time. A comprefiensi
reference to the finite difference method is Smith [13].
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Figure 3.1. Location of points for Taylor series

When dealing with flow problems the partial differential&tons
discussed in Chapter Two show us that the dependent variables a
variables such as the velocity components or the fluid ypmesand
that the independent variables are the spatial coordinadesyan
Imagine that we know the value of some dependent varialdelian
of its derivatives with respect to one independent varialbleome
given value of this independent variable, a reference vakgor
series expansions can then be used to determine the ¥éhee o
dependent variable at a value of the independent variabtala s
distance from the reference value. For example, lookinggaB8H,
the dependent variable U varies with the independent variable,
distance x. We can now consider the two points a smalhdista
away from the central point. These points are situated &tl{ )

and ( x - h) along the x-axis and the Taylor series expasnisor

the variable U at the two points are

_ du . 1,ad% | 1,9d%
Ubrth)=Ul)+hi+ 2p2E 0+ 21l 4
(3.2)
and
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P _adU 1. .d%W 1 gdiv
Uix=h)=L{x) hE"'T" P Fh E_+

(3.2)

where h is the small displacement in the x-direction, hed t
derivatives of U are taken at the point x.

By adding or subtracting these two equations, new equaitsnbe
found for the first and second derivatives respectivetii@central
position x. These derivatives are

2
f;_g_:?lf[ Uix+h)-2U(x)+ U{x—h}] + 0 (%)
X
(3.3)
and
ditf _ 1 — - 2
E_ﬁ[ Uix+h)=4Uix .h}] + 2 {&-)
(3.4)
EQ (3.4)

where O({h sup n}) denotes that terms of order n or higihder
terms exist. In practice, as the distance h should bé#,ghese
terms should be very small and so they will be ignaxexe that
ignoring these terms leads to a source of error inuhgerical
calculations as the equation for the derivatives is tredcat

Further derivatives can also be formed by considering emsasi. 1

and 3.2 in isolation. Looking at equation 3.1, the first-order
derivative can be formed as
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du _ 1

[U{x+h}—U{x}] + 2 (h)

(3.5)

and similarly, from equation 3.2 another first-order denreacan
be formed, i.e.

dii _

rlT[ Uix) - U{x—.ﬁ}] +0h)

(3.6)

These four expressions describe some of the derivatives of t
variable U at some point x by the values of the variabikegpoint
itself, a point just behind it and a point just ahead, @d shown in
Fig. 3.1. These expressions are known as difference fornadae
they involve calculating derivatives using the simple differences
between the values of the variable taken at various points.
Difference formulae are classified in two ways. Eiby the
geometrical relationship of the points and, second, by theascur
of the expressions. Using these classifications equatiorss8.3.4
are central difference formulae and are second-orderatec(i.e.
the neglected terms are of order h sup 2 or higher). Equally,
equation 3.5 is a forward difference formula and equatiéms3
backward difference formula. Both of these two equatawedirst-
order accurate as the neglected terms are of ordenigtaer.

Taken together, these difference formulae form a tofokithe
numerical analyst and, with this toolkit, it is possitdgroduce a
numerical analogue of each of the terms in a paiitferdntial
equation. This is done by placing points within the domain under
consideration. At each of these points, the derivativebean
replaced by the appropriate difference formula, giving antegua
that consists solely of the values of variables aikien point and
its neighbours. If this process is repeated at all thega set of
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equations for the variables at all the points is formedtlaesk are
solved to give the numerical solution.

It is useful to note two things. First, that the domain malude a
time direction as well as the spatial directions anchrsg, that a
partial differential equation that was valid for the whof the
domain, i.e. at an infinite number of points, canrbedlated into a
finite number of equations that give the relationships betvilee
variables at a finite set of points in the domain.

3.1.2 The Finite Element Method

The second technique to be discussed is the finite elenmethbd.
In this method the domain over which the partial differential
equation applies is split into a finite number of sub-dom&imown
as elements. Over each element a simple variation adfejhendent
variables is assumed and this piecewise description dstadmriild
up a picture of how the variables vary over the whole domain.
Intuitively the discretisation process is more compédahan that
of the finite difference method, but simple examples can ée tas
point out the main features of the process. A good introdutest
to the finite element method is Reddy [14], but the standard
reference used by finite element practitioners is Zienkiewnd
Taylor [15].

As a historical note, the reader should be aware thajetheral
finite element method that we will discuss emerged from
computational techniques used to predict the stress amlistrai
solid structures. In this area of structural engineetiedihite
element method is now the standard computational technique used
by nearly all the commercial software packages, and so many
people assume that the method is only used for the soldtgucio
problems. Now that the method has been developed intoea mor
general computational technique, it can be used to solve a wide
variety of partial differential equations and so isistable for the
solution of many other physical problems. This confusiorido
many books being written which have the words Finite Element
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Method in their title but which deal solely with structysabblems,
and so these books may have little relevance to the@oloftimore
general problems such as those derived from the equations
governing fluid flow.

Let us now consider how the finite element method is used to
transform a partial differential equation into its rerroal analogue.
First of all let us consider the element shown in Fig. Gr2this
element the variable U is assumed to vary in a singgeién over
the length of the element. In the figure the variatiomisdr, but it
could equally be a quadratic or cubic variation or r@atian of
even higher order. If the variation is linear we can desche
value of U at any point along the element as a functioheolength
along the element x and the values of U that are known anthe
points of the element. These positions, which are usedezsee
positions on the element, are known as the nodes of the elément
the variation of the variable was assumed to be quadnaicwe
would need to know the value of U at three nodes placedrat, f
example, the end-points of the element and the middle of the
element.
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Figure 3.2. A two-noded linear element

With the linear variation shown, the first derivativebfvith

respect to x is simply a constant and the second deevedinnot

be defined. This can be a problem as many partial difiatent
equations have terms which include second derivatives. To
overcome such problems high-order derivatives can be transforme
into lower-order derivatives using the following techniquesttir

the partial differential equation is multiplied by an uokm

function, then the whole equation can be integrated over theilloma
in which it applies. Finally the terms that need to hi#eeorder of

their derivatives reduced are integrated by parts. i$thisown as
producing a variational formulation.

As an example, let us consider Laplace's Equation in two

dimensions, where some variable PHI is described as adout
the spatial coordinates x and y. This equation is writsen a
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Po  Po _,
TR
(3.7)

To start the production of a variational formulationwealtiply this
by some function v and integrate it over the domain of éste
denoted by OMEGA to give

P

I ot B‘?} dQ =0

(3.8)

Looking at equation 3.8, each term can be seen to inchoded
derivatives of the variable PHI and so both terms musitbgrated
by parts to give

(-2 %] ane gy 30 ar-o

(3.9)

where GAMMA denotes the boundary of the domain OMEGA and
n sub x and n sub y are the components of the unit outwardhorm
vector to the boundary GAMMA. Note that the terms whuohtain
the second-order derivatives in PHI have now been transfiorme
into terms which are the products of first-order denestin both

PHI and v. This reduction in the order of the derivatigeshat we
want to achieve so that a lower-order variation of th&albées can

be used on a element, but we can see that there is &ypertding
this as terms on the boundary on the domain have appeared in
equation 3.9, and so these must also be accounted for.
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Equation 3.9 is known as the variational form of the plartia
differential equation 3.7 and it is this that is used tapce a
discrete form of the partial differential equation focle@lement of
the domain. The discrete form is produced by considering the
variation of the variable over the element which, as we bagn, is
a function of position within the element and the nodal wlWée
assume that the variation can be written as

&= z Nidy

(3.10)

where nn is the number of nodes on the element. The N eths t
are known as the shape functions and are a function pb#igon
within the element, and the phi sub i terms are the noda¢vaif
PHI. For example, for the two-noded linear element shoviaign
3.2, the shape functions can be found from the formwhlgh is

Uix) =g+ S0

m(u A=l 1)

(3.11)

This can be rewritten in the form of equation 3.10 to give

v B X=X X=Xy
x)=u, prym, t iy pryw—

(3.12)

Hence, by comparing equation 3.12 to equation 3.10, the shape
functions can be seen to be
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Xa=X
MNy= 2
X=Xy
(3.13)
and
X=X
ro— 1
N 2 Yo
(3.14)

Looking at these two expressions we can see that if the vax is
set to be x sub 1 then N sub 1 is unity and N sub 2 is zero.
Similarly, if the value of x is set to x sub 2 then N 4ub zero and
N sub 2 is unity. This property is an obvious consequentfesof
form of equation 3.10 and can be used as a check on thezadgebr
expressions for a shape function regardless of whetheletine

is in one, two or three dimensions.

Now that we know the variation of a variable over an elenbat
derivatives of the variable at a point can be found. Fampig to
approximate the first derivatives of the variable PHI, &qn&8.10
can be differentiated to give

dd _ gy dN;
dx _‘.21 dx ¢FI

(3.15)

It should be noted here that the phi sub i terms are neteiiffiated
as they are constants, being the values of PHI at the nodes.

At this stage we need to know how to describe the functiti v.
there are two nodes on an element we need to know two functions
for v. This allows us to generate the same number of iegg&ds

there are unknown values on the element. In practice theereaary
suitable forms for v and the standard way of specifyirgto let it

be the same functions as the shape functions for eachlhtide
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definition of v is used the method is known as a Galerkin method
but other methods of specification for v can also be used.

Finally the discretisation is completed by substitutingagipn 3.10
for the variables, equations similar to equation 3.15Mer t
derivatives and equations similar to equations 3.13 and 3.14 for
into the variational form and then integrating to givsedes of
equations for the values of the variables at the nodése @lément.
For every sub-domain or element in the problem, severaliegsat
will be generated, and these equations can be collagether and
then solved to find a solution.

3.1.3 The Finite Volume Method

The third, and probably the most popular, numerical diseteon
method used in CFD is the finite volume method. This neeifo
similar in some ways to the finite difference method, bateso
implementations of it also draw on features taken frioerfinite
element method. The finite volume method was developed
specifically to solve the equations of heat transfer kuidl flow
and is described in detail by Patankar [16].

Essentially the governing partial differential equations are
converted into numerical form by a physically-based foansation

of the equations. For example, the momentum equations 28%nd
can be considered as a series of fluxes into a volurihgiaf
together with a source term which is the pressure gradibat.

most informative way of seeing how the process works is t
consider the transformation of a typical equation and Welwithis

in the next section.

3.2 Numerical Discretisation of a Simple Equation

To see how these three discretisation techniques arewsedi|
consider the discretisation of the time dependent diffusjoateon:
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gu _ d?u
bt Ot

(3.16)

which consists of a first derivative in the time direntt and a
second derivative in the space direction x. This is a pacgtmitial
differential equation that can be used to model the terhpora
changes in the diffusion of some quantity through a medisnan
aside, there are three classifications of partial iffeal equations
[13]; elliptic, parabolic and hyperbolic. Equations belonging tthea
of these classifications behave in different ways potysically and
numerically. In particular, the direction along which @hgnges
are transmitted is different for the three types. éejing on the
flow, the governing equations of fluid motion can exhibitlaee
classifications. For example, the incompressible Naviekest
eguations, equations 2.8 and 2.9, are parabolic when time-
dependent as information on changes to the flow is signaled
everywhere in space but only forward in time; they arptalli
when the flow speed in low and steady as the changegaedesi
everywhere; but the equations become hyperbolic if the fleedp
is above the speed of sound in the fluid and the changes are
signaled along specific directions in space.

Having said this we can see that the equation 3.16 could be
regarded as a model of the momentum equations that govern an
incompressible, viscous flow.

3.2.1 Using Finite Differences

To solve the above equation using finite differences we rmasbf
all decide what the domain of the problem is. For exampleateon
3.16 could be a description of the diffusion of a gas into & sem
conductor of a given length and this length would then bextent
of the domain in the x-direction. In the time direction, howgeNés
usual to have positive time, that is we start the time@tbut the

extent of the domain in the positive time direction is not knas/n
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the calculation could proceed for an infinite periodimie. Such a
domain is said to be semi-infinite. Once we know the domain w
can place points within it, and it is at these points\treperform
the discretisation of equation 3.16. The simplest way @inathe
points within the domain is shown in Fig. 3.3, where we e&n s
part of the grid of points in the x-t plane. Note ttigre is a
constant spacing delta x or delta t between each of this poin
both the x-direction and in the t-direction. Each of the tsam
labelled using an i,j indexing system and this denotes thiggmos
of the points in the x- and t-directions.

B 21 §x Bx
-

x -2 -1 i i+1 i+2

Figure 3.3. An x—1 grd

Having produced the grid we can now choose the difference
formulae that we wish to use to produce the discrete &rm
equation 3.16. There are various combinations of formulaedma
be used for this equation, but the simplest form of theenical
analogue is generated if we use the forward differenceuiar
(equation 3.5) for the time derivative that appears oreth@and
side, and the central difference formula (equation 3.3hfspatial
derivative on the right hand side. Taking the spatial dévie to be
formed at the j'th time level and to be centered orittheoint in x,
and taking the time derivative to be at the i'th x-pasiand the j'th
time level looking forward to the j+1'th time level, thectete
equation can be written

up el =8 o i = 2wy i

= o

(3.17)
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which can be rearranged to give

(3.18)

This equation may be considered to be a molecule, sitoilliose
found in chemistry, where the four points are like atontsaae
linked as shown in Fig. 3.4a. It can be clearly seen thosithat the
value at position i,j+1 depends only on the three valudsedime
level j. Consequently, if we know the values of U at tienel j, the
values of U at time level j+1 are easy to calculatestad the
calculation we must, therefore, know the values of Ul dlhe
positions in x at time t=0. These are known as the irngatitions.
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i} Explicit

) ImpAicit

Figuee 3.4, Finive difference mutlecnles

Another formulation for equation 3.16 can be obtained by taking
the same expression for the time derivative together with a
weighted average of the spatial derivatives at the twolauaeds |
and j+1. This gives
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(3.19)

where theta and ( 1 - theta ) are used to weight theatieeg and
theta must be in the range O<=theta<=1.0.

Equation 3.19 shows that there is a relationship betweehrde
values of U at time level j+1 and the three values at time level

j and so the computational molecule has changed fordbésto

that shown in Fig. 3.4b. Note that when theta is zerotmgua.19

is reduced to equation 3.17. When one unknown value of a variable
can be found directly from known values of the variable, the
computation is known as an explicit scheme (for example, equati
3.18 and Fig. 3.4a). However, if the discretisation produces an
equation where several unknown values are related to several
known values, for example in Fig. 3.4b and equation 3.19 i t
not zero, then the computation is known as an implicit schéme.
produce a solution with an explicit scheme each unknowre\alu

U can be easily calculated, but to produce a solutidm avit

implicit scheme a set of simultaneous equations musthbedsto

find the unknown values of U.

At first sight it appears that the implicit schemes negmore
computational effort to produce a solution, and so we naigkt
ourselves the question 'Why use an implicit scheme when it
involves more computational effort than an explicit schemehe
answer to this lies in the difference in the stabdityhe two
schemes. A stable solution is taken to be, in this caseyluoh
progresses from time level to time level in a realisty. An
analysis of the stability [13] shows that for this problémreguation
3.18 is used as the numerical analogue of the partialeiffial
equation 3.16, then the value of the parameter delta &/xislip 2
must be less than or equal to one half for the computaschaime
to be stable. This means that where the values of xalta small
the time step delta t must be considerably smaller, andis@n
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explicit scheme these is a restriction on the size direestep.
This can mean that the time step must be very smallitren
changes in the variables from one time level to the nexteaye
small. Implicit schemes overcome this restriction for smalues
of theta, and a commonly used implicit scheme uses a ohtheta
equal to one half. This is known as the Crank-Nicholsonnsehe
and is stable for all sizes of time step. Using suchmgplicit
scheme allows a larger time step to be used than beulded with
an explicit scheme, and so the computational effort famaticit
scheme can be less than that for an explicit scheme.

If we now consider the computational molecules and the grid
together, it is possible to see that we still cannot dbkwevhole
problem as we do not, as yet, have enough information. Loalking
Fig. 3.5 we can see an x-t grid of a domain. Thersiangoints in
the x-direction and two time levels are shown. Now leaigsime
that we shall use an explicit formulation, and so fraemknown
initial conditions we can use our computational molecule to
calculate the values of the variable at some pointseatéxt time
level. Given the way in which information flows from letellevel,
the values at the points (2,2) to (5,2) inclusive can luelleded, but
we cannot use the computational molecule to find the valuie of
variable at the boundary points (1,2) and (6,2). To find tiiekees
we must have a knowledge of the boundary conditions of the
problem.
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Figure 3.5, Informarian flow for explicit scheme

For many physical problems, boundary conditions are usualln give
in one of two forms:

« Dirichlet Boundary conditions. Here the values of the
variable on the boundary are known constants. This allows
a simple substitution to be made to fix the boundary value.
For example, if U is a measure of gas concentration, we
might want to assume that it is fixed at the left hand of
the domain shown in Fig. 3.5, and will have a value of 10.0,
say. It is easy to apply this boundary condition as we just
set the value of U at the point (1,2) to 10.0.

« Neumann boundary conditions. Here the derivatives of the
variable on the boundary are known, and this gives an extra
equation which can be used to find the value at the
boundary. For example, we might assume that the
derivative of U is zero at the right hand end. Then iuse
a first order difference for the derivative the valué&adt
point (6,2) will equal the value of U at point (5,2) to ggtis
this boundary condition.

Once we know both the initial conditions and the boundary
conditions, we can proceed with the calculation. Using the know
values at the first row of points the values of thealdes at the
internal points at the next row are found using an explibgse.
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Then the boundary conditions are applied to get the valubs at
boundary points. This gives us a second complete row of points
where we know all the values of the variable. These carséd as
a new set of initial conditions and so the process cargsated to
give the next row and so on.

With implicit schemes the handling of both fixed-valueifdary
conditions and derivative boundary conditions involves adding the
extra equations to those already generated from the partial
differential equation. With these extra equations the numibe
equations should match the number of unknowns and so ttsefull
of simultaneous equations can be solved.

3.2.2 Using Finite Elements

Finite element methods were originally developed to déhl
steady state problems, but they can also be used to dedinae
dependent problems. We need to do this for the problem under
consideration as equation 3.16 has a term which is a dunoti
time on the left hand side. This term is dealt witht g using the
forward difference formula, equation 3.5, to producefdliewing
equation

pra-l ooy _ 2
8% e
(3.20)

Here, the superscripts n and n+1 refer to the valuesadfthe n'th
and n+1'th time level respectively.

Now, a variational form of equation 3.20 can be produced i§hi
done as was shown in Section 3.1.2, by multiplying by a function v
integrating over the domain and then integrating some tgyms
parts, where necessary, to remove any second derivatives. Thi
procedure gives:

52



C.T. Shaw, Using Computational Fluid Dynamics, Prertiat, 1992

Iv

CEXT S 2y

(3.21)

which becomes, on integrating the second derivative onghe ri
hand side by parts

ﬂ&ﬂJ d!.lz-[{-%%] d“*f["%%""} df

[v
(3.22)

This is the variational form of the equation and is also knasvthe
weak form of the equation. In the original equation 3.20 the
variable U had to be capable of being differentiated tagthere is
a second derivative of U in the equation. Now only first ddires
of U are required, and so we say that the contineifpirement for
U has been reduced from second- to first-order and is tineref
weakened. This variational form must now be transforimieda
numerical analogue, and this is done for a typical eleofehe
domain. In this case the domain can be taken to bees séilines
from x=0 to x=L at various time levels. Hence each elensent
effectively a one-dimensional line element similar todhe we
looked at in Section 3.1.2.

Now equation 3.22 can be transformed into the numerical for
using the Galerkin approach, where the multiplier v isseido be
the same as the shape functions of an element. Orelsagént the
variation of U is described by:

&= Nz,
:21 ’
(3.23)
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where nn is the number of nodes on the element and the N sub i
terms are the shape functions, and so we can substitutesf
multiplier v, for the values of U at the two time levalsd for the
spatial derivatives of U at the n'th time level to prodacexplicit
form of equation 3.22. This is

I,\r,-[“’f“j"":ﬁuﬂj“] I[ %_5_'3“ i ] 0+

\'—Eﬂ J

(3.24)

Here the i,j suffices refer to the summation in equadi@3, and
not to some position within a mesh of points as wasadke with
the finite difference method example. Note that the boyrigam
has not been discretised, as this so-called flux caakiem to be a
known value that needs to be added later. On the facrestf
elements the flux term is ignored, as we assume thaluttesf
cancel out across those faces that are internbétddmain. This is
an equilibrium condition. It is only on the boundaries ofdbmain
that the flux terms need to be added. If the fluxes aradubd,
they will be calculated by the method as being zero, andibead
this they are known as natural boundary conditions. If weifspe
the value of U at a boundary then the flux term is notiredujust
as with the finite difference method, and this is known as an
essential boundary condition.

For simple elements the shape functions N sub i are simple
functions of the coordinates, say x, and so equation 3.2decan
integrated exactly over each element, but for more complex
elements this integration has to be performed numbridbive use
simple one-dimensional elements that have two nodes, dilwe
Section 3.1.2, then the above equation can be integrayezido

two separate equations for each element in terms ofatial

values of U at the n+1'th time level, if the valuetrae level n are
known. This equation can be expressed as a matrix equation as
shown in Fig. 3.6a, where the terms a sub {ij} are functidns o
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position derived from the integration of the first term loa lieft

hand side of equation 3.24, and the terms f sub i come fraheall
other terms in equation 3.24. This matrix equation is, i fact of

a larger matrix equation for all the unknown values of U.eCait

the equations for each element, the so-called elementi@tgjaare
known then the full set of equations for the whole problentdas
produced. This is shown in Fig. 3.6b where two elemesetsizown
together with an expanded version of the element equations. These
expanded equations are formed by relating the local node on an
element to its global node number. For example, on elentéet 2

local node numbered 1 is global node number 2. Combining the tw
expanded equations produces a global matrix equation, and the
process of combination is known as assembling the equatibiss.

is done by adding all the element equations together as shown. The
structural origins of the finite element method are appas the
names of the matrices are taken from those that vmifdrmed if

a force acts on a set of springs. These names atégfanatrix on

the left hand side, the stiffness matrix and, for theimatr the

right hand side, the load vector.
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Figure 3.6. Assembling clement equations

Once these global matrices have been created, thevivheel
boundary conditions are imposed on the matrices and thaawuat
can be solved. Again the solution of the original partiakdétial
equation 3.16 has been reduced to the solution of a set of
simultaneous equations. This may seem strange as thesolut
scheme is an explicit one and so should not require sunhtas.
For this case the left hand side of the global equatianbea
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diagonalised using a technique known as mass lumping [15], and so
the solution can then be found without solving the simultaneous
equations.

3.2.3 Using Finite Volumes

Now that we have looked at the use of both finite diffeesrand
finite elements, we can turn our attention to the findkime
method. In practice this can be seen as a combinatidre ¢ivd
other methods. As a first step in the transformation gsydae
forward difference in time is used to transform e thand side of
equation 3.16, just as we did with the finite element mefhioen
we form a finite volume in the x-direction. For simphgitve will
only look at the values at the n'th time level. A typfoate
volume, or cell, is shown in Fig. 3.7. In this figure tleatroid of
the volume, point P, is the reference point at whiclwigh to find
a numerical analogue of the partial differential equation.

Volume face w olume face e

Cen\ﬁmd P

3.7. A finite volume in one dimension

Figure

Directions in the domain about the reference point are debgted

the points of the compass and so the neighbouring volumesicdre sa
to have their centroids at W and E, i.e. to the WedtEast of P if

we consider the top of the figure to be North. As the one-
dimensional finite volume is centered on P, it will hane

boundary face placed mid-way between the points W ande a
points labelled w, and another boundary face between E @

the point e.
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The spatial derivative is dealt with by noting that theose
derivative of a variable at P can be taken as the differehthe
first derivatives of the variable that are calculatethatvolume
faces, which gives

gy _ oy
a2 s _ Ox e ox w
2 P - Xg =Xy

(3.25)

Here, the subscripts refer to the positions at which quesatie
either calculated or known. Similarly, the first derivat at the
volume faces can be taken to be the differences in the \alties
variable at the neighbouring volume centroids, to give

o Xg=xXp

EU] _ ug=up

(3.26)
and

xpTXY

EU] _ Up-uy
(3.27)

Now that we have these three expressions for the various
derivatives, they can be used to produce the numericagueabf
equation 3.16 at the point P. This analogue can be fousiad any
suitable version of the weighted average technique that wle use
with the finite difference transformation, giving eitherexplicit or
an implicit scheme. Then the same techniques can bdased
proceed once the initial and boundary conditions are knovenW
using finite volumes, all that is different is the phdphy behind
the discretisation procedure.
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3.3 Comparison of the Discretisation Techniques

From our short study of the application of these three noafte
discretisation methods to a simple partial differentiplagion, we
can see that there are several common features. Th#seefeare
that each method:

e produces equations for the values of the variable atta fini
number of points in the domain under consideration.

¢ requires that we know at set of initial conditions totdtae
calculation for this time dependent problem.

e requires that we know the boundary conditions of the
problem so that we can find the values of the varialiles a
the boundaries.

« can produce explicit or implicit forms and, if an ingti
form is produced, then a set of simultaneous equations must
be solved.

There are, however, several differences between thertetmds
and these include:

 the finite difference method and the finite volume method
both produce the numerical equations at a given point based
on the values at neighbouring points, whereas the finite
element method produces equations for each element
independently of all the other elements. It is only when the
finite element equations are collected together and
assembled into the global matrices that the interaction
between elements is taken into account.

« the finite element method takes care of derivative boundary
conditions when the element equations are formed and then
the fixed values of variables must be applied to the global
matrices. This contrasts with the other two methods which
can easily apply the fixed-value boundary conditions by
inserting the values into the solution, but must modify the
eqguations to take account of any derivative boundary
conditions.
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When looking at the simple example of a time varying prabfe
one spatial dimension the domain in space has been extremely
simple. Consequently, one problem that we have not address
how each of these discretisation techniques is used tageod
numerical equations for two- and three-dimensional dpatia
domains. Fortunately, our discussion of this simple exanauie c
shed some light on this.

Finite difference methods are based on the substitution efehite
equations for the partial derivatives in partial différ@requations.
These difference equations link the values of varialilassat of
points to the derivatives and so a grid of points is useddmout
the spatial domain. In the example we have just discusseplithe
was a line of points evenly spaced throughout the domainiatisar
time levels. The difference formulae can be easily extbtmleater
for a spacing that is not even throughout the domain, arphttiel
differential equations can be transformed to cateotioer
coordinate systems that are not Cartesian. The fiiffirence
method requires, however, that the grid of points isltagpcally
regular. This means that the grid must look cuboidtopalogical
sense. This will be explained in greater detail whenliseuss
mesh and grid generation in Chapter Six.

If distributions of points with a regular topology are uskdntthe
calculation procedure carried out by a computer prograrkely lio
be extremely efficient and hence very fast. This is becthes
programmer can take advantage of the fact that thedgpaoff the
grid is always the same. The grid indexing system iemsly
simple, say i,j,k in three dimensions, and is based set of local
axes through the grid. Hence, when it is required toymed
eguations at some reference point, the program can deteiraine
location of data at the neighbouring points simply from the
maximum values of i,j,k. For example, if the gridvis-
dimensional and has five points in the x-direction and tém®in
the y-direction it will be as shown in Fig. 3.8. There dgine is
labelled both with the values of the indices i and j andtbeage
position of the variables in a one-dimensional array. kample,
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the value of the variable at position i=2 and j=4 willsbered in
array location number 14. This assumes that the compuder a
stores points in the vertical direction first. From this ieasy to see
that the neighbouring points to a reference point iryttigection
will be one array location either forward or back fromriference
position, and in the x-direction they will be ten pointsvard or
back. An example of this is that from the value stoneakiay
location 14 the value at the neighbouring point in the positive
direction is stored at location 24. From this we seedimaple
arithmetic based on the topology of the grid is all tha¢dgiired to
find the location of the necessary values.

¢ a0 0 T Y

3 e ) EEN Eo

sf ([} 75 38 i

s 77 7 a7 T

8 % 6 | ® w9y

§ =] = % By ¥

4T 141 24 H Fr]

3 13 P2 3] ro)

et 77 Zl =T 7Y X
1 1 1 Pal 3 41

i=1 i=2 f=3 i=4 i=5

Numbess indicate array storage location

Figure 3.8. Data storage for rectangular gnd

Finite elements, on the other hand, produce the numedcaltions
for each element from data at known at points on threezieand
nowhere else. Consequently, there is no restriction on m@w t
elements are connected so long as the faces of neighbouring
elements are aligned correctly. By this we mean tleataibes
between elements should have the same nodes for each of the
adjoining elements. This flexibility of element placemalidws a
group of elements to model very complex geometry as we geall s
later in Chapter Six.

Algorithms that have been developed using the finite volume
method have tended to use a regular grid to take advaoftége
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efficiency of computation, just like the grids used witlité
difference methods. Recently, however, to enable calontato be
carried out in complex geometries, algorithms have been gmcklo
with the finite volume method that can utilise irregulanité
element-like meshes. It is the concept of the inter-volume fl
across a face that enables this to be done. Both éieiteent and
irregular-mesh finite volume programs pay a computational
overhead for this geometrical flexibility, as look-up talflase to
be used to find the geometrical relationships between theetem
or volume faces, and this often involves finding data frondisie
store of the computer. This overhead slows the programs down
considerably.

One final advantage that the finite element method hhsiighe
programs are written to create matrices for eaahei¢, which are
then assembled to form the global equations before theewhol
problem is solved. Finite volume and finite difference paags, on
the other hand, are written to combine the setting up of the
equations and their solution. The decoupling of these two phase
finite element programs, allows the programmer to keep the
organisation of the program very clear and the addition of new
element types is not a major problem. Adding new cellsypa
finite volume program can, however, be a major task involving a
rewrite of the program and so some finite volume programs ¢
exhibit problems if they have multiple cell types.

3.4 Producing A Solution From T he Discrete Equations

Now that we have seen that discrete numerical equatambe
formed from a partial differential equation using theéhr
discretisation methods that we have discussed, the nextdtep i
solve these discrete equations to obtain a set of vedudse
variables at points in the domain. The ways that weade this
must produce results that are both realistic and acciég¢alk of
the methods converging and being stable. Also, if we use an
implicit scheme, we must be able to solve sets of simudtene
equations. These subject areas are in the realm of thedappl
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mathematician, and the discussion of them can be difficul
follow. However, the following texts do contain readable aot®
of the techniques that are used, and these are Smith [13]
Zienkiewicz and Taylor [15] and Hirsch [17]. The last ofsthe
three books contains much useful information about numerical
discretisation methods that is relevant to CFD.

When using CFD tools that have been written by someonevadse
must hope that the software has been programmed to melatde
means of producing a solution. However, CFD programs are so
general that the user must intervene in the solution precesso
some knowledge of the techniques that are used is necessing. |
following sections, some of the terminology and the techniques
associated with a solution are discussed.

3.4.1 Convergence and Sability

Convergence and stability are two concepts that are ofigused.

In the strict mathematical sense convergence is the affil&tyset

of numerical equations to represent the analytical isolud a
problem, if such a solution exists. The equations aretgaid
converge if the numerical solution tends to the analytatisn as
the grid spacing or element size reduces to zero. Eqaatisocess

is stable if the equations move towards a converged solution such
that any errors in the discrete solution do not swampethdts by
growing as the numerical process proceeds.

In practice, however, these terms are used in less ispeays. For
example, a numerical process is often said to converfge Wfalues
of the variables at the points in the domain tend to mowards
some fixed value as the solution progresses. This use tértim
convergence arises because in most physical problems thaskve
to solve with CFD there is no analytical solution to corapaur
numerical solution with. A process is said to be stdlitag
happens in such a way that the intermediate resulteqirocess
are reasonable. As was mentioned when we produced a naineri
analogue of a partial differential equation using fidiféerences in
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Section 3.2.1, the explicit solution scheme is only vélite time
step is sufficiently small. If the time step is too lardpe values of
the variables oscillate violently and become extremebelarhis is
an unstable process and it does not converge.

3.4.2 Solving The Smultaneous Equations

In most cases the discrete equations produced from partial
differential equations are given in an implicit fornheBEe implicit
schemes are used because explicit schemes are less stabl
numerically, as we have discussed, and explicit scheares ¢
produce results which diverge from physically realisticgalas
the solution progresses.

When implicit schemes are used a set of simultaneousi@ugizs
generated, consisting of many individual equations and these must
be solved in some way. There are many ways of doing thds, an
each software package will have its own way of produaing
solution. In terms of computational effort the setting uthef
eguations might typically take half of the total computaetand

the solution of the equations might take the other halfhAs t

solving of the equations consumes a large amount of compuatiation
effort, there are great benefits to be gained from ussighathods

of solving the simultaneous equations.

The solution of any set of simultaneous equations can beasdée
process of finding a vector x that satisfies the matrix &gua

Ax =4h
(3.28)

where bold A is an operator on the vector of variablesd,b is a
vector of known values. The solution can be found by findieg t
inverse of the matrix bold A and then premultiplying both safes
equation 3.28 by the inverse. This gives
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x=A"l&
(3.29)

If there are only a few equations in the set of simutiase

equations then the inverse of the matrix bold A can be feasdy

and exactly. The methods used to do this are known as direct
methods and, usually, they are versions of a method calldd_bol
bold U decomposition as described by Zienkiewicz and Taylor [15].
In this method the matrix bold A is described by two othatrices

in the following way

A=LU
(3.30)

where bold L is a lower triangular matrix and bold U andupper
triangular matrix. Once the matrix bold A has been decsegbo
into bold L and bold U the solution is easy to findhi# matrix is
large these direct methods require a lot of computer étfort
produce a solution. This is the traditional way thatdiglement
programs have produced their results. One way of redtiveng
computational effort is to use iterative methods of solutborarge
systems of equations. These take some guess for the whline
solution vector x and then produce a more accurate gugsgiie
vector x and the coefficients of the matrix bold A and veleto

A variety of iterative schemes are commonly used and sbme o
these are discussed by Smith [13] and Hirsch [17]. It hvelzn
considering the solution of equation systems to think of pleim
case. For example, if equation 3.28 is a system of dqeations it
could be rewritten as:
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21%] taXa+aigxyg=5by
2% tayxatanxy=>ba

@31%) + @3axgt@gyxg = by
(3.31)

if the individual equations are listed separately. Usirgld can
start to identify some of the common iterative schemes asich

« Jacobi and Gauss-Seidel methods. In these two methods the
eguations are rewritten as

1 r R
X1 = by =—oiaxy—a213x3
211 | J
1 " ~
Xa= Da=@aiX] = @agX
27 ggp |02 7 @1 T A%y
1 r R
X3 = by=—a31x) —a@3x2
233 | J

(3.32)

from which we can see that the diagonal terms of mhauid A, i.e.
the terms a sub {ii} , cannot be zero if these methodsoanerk.
The Jacobi method takes the right hand side of equationBI82 t
the known values at the n'th iteration and the left handtside the
new values at the n+1'th iteration, giving
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r b

xynl= ﬂl“ (B1m et —agang
- \
xyt 7l = ﬂiz | D2-aenxi” —azxg” |
- \
xgtl= ﬂ; (Pa=eaey” maggns

(3.33)

and the Gauss-Seidel method takes advantage of the factchea
new value is known at the n+1'th iteration it can be wseithe
right hand side of the equations giving

- 1
x L= [b -a L x"]
1 a1 1 12% 2 13*3

1

xatl =
2 223

[1’2 —ayx 7l - ﬂzaxa"]

xq" 7l = 1 [53 —agx it - ﬂazxz"'l]

(3.34)

Both of these methods require that an initial guessg®olution is
made which can then be used during the first iteration.

« point relaxation methods. At any stage in the iteration
procedure there will be a finite error in the solution vecto
x. One way of classifying this error is to use equation 3.28
to find what is known as the residual error which is defined
as

r=b —-Ax
(3.35)
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This residual should become ever smaller as the itesgpimteed

and it can also be used in the iteration procedureoTbisl we take

the equations of the Gauss-Seidel method (equation 3.34) and both
add and then subtract the terms {x sub i} sup n to the hagh¢

side. This gives

—_

xfl=xm 4
1 1 |:ﬂ11

[5'1 =z —agxa” = ﬂlaxa“]]

1
222

xz""l = x99 + [ [52‘ ‘121-"‘51"21'1 = agxs" = ﬂ23x3“]

1
233

xg“'1=x3" + |: [17'3_ﬂﬁlxln-d_ﬂﬁzxznvl_ﬂ33x3rz]]

(3.36)

In these equations the expressions in square brackets aeentise
of the residual r. As we know that these should tend ma®the
iteration progresses there is no reason why we shouldyrend
accelerate the process by multiplying the residual by socher fa
omega, which is known as a relaxation factor. This gives

4]
211

[51 -aq1x)" =ayaxq” - ﬂ13x3“]]

w -1
[1’2 —anxy" T —agaxy” = ﬂzaxa"]}

xg" =xg" 4+ [ ® [53 —agx1" 7 = agaxgt ] -ﬂaaxzi“]]

(3.37)
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and for most systems of equations the value of omegheaat to
somewhere between the values of one and two. Hence thednet
is known as a successive overrelaxation method. If omegays unit
the method becomes the original Gauss-Seidel method.

« line relaxation methods. The methods above generate a new
estimate for the solution vector x one term at a time, lwhic
is very similar to the explicit methods we have already
discussed. Sometimes it is possible to speed up the process
if a small sub-set of the terms are found simultaneously.
This is an implicit way of proceeding and involves the
direct solution of a smaller set of equations. The
commonest way of doing this is to take the solution at a
whole line of points in a regular grid describing a spatial
domain and solve line by line rather than point by point.
Equally, if a regular three-dimensional grid is used, a
rectangular slab of points could be calculated directly in
one step of the iteration process.

« more advanced methods. As further research into the
iterative solution of simultaneous equations takes place
more methods of solution emerge. This is driven by the
need to reduce the computational effort required to solve
the large systems of equations on supercomputers where the
effort is still excessive for many engineering problems.
These advanced methods include Stone's strongly i1/
mplicit procedure and preconditioning methods which can
be seen as matrix manipulation procedures, and multigrid
methods which calculate the solution on a series okseoar
and fine grids in space, swapping between the grids m suc
a way that any errors are smoothed out.

As users of CFD software our concern with the solutiohef t
simultaneous equations that are generated will usuallyshécted
to providing some of the controlling parameters for the smiuti
methods built-in to the software. It should be noted Hexeit the
solution method is an iterative one the exact values of ttierve
may never be found, but that after a few iterations tie ar x
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should be very small. Also, as we shall discuss Iaterfltid flow
equations are non-linear and possibly time dependent, amd so
will require the solution procedure to find successive
approximations to the flow variables regardless of whetleesolve
the equations themselves in a direct or iterative way f@ans
that the solution to the simultaneous equations generatesnied
be approximate, giving some improvement in the values of the
variables.

3.5 Solving The Coupled Set of Fluid Flow Equations

In this Chapter we have considered the discretisationrarge
partial differential equations and the solution of the nicaér
analogue. Now it is time to look at the numerical soluabthe
partial differential equations that govern fluid flow. §heequations
were presented in Chapter Two and they can be disct etsseg

any of the three discretisation techniques that we aieady
discussed. The numerical analogues of the originalgparti
differential equations then have to be solved. For regbansve

will now discuss the equations governing fluid flow are partitplar
difficult to discretise and solve using numerical techniques.

3.5.1 Non-Linearity and Time Dependence

For a two-dimensional flow problem we have to solve two
momentum equations and the continuity equation. Tha¢ isawve
three equations which we can use to find the three floiabhlas

which are the velocity components u and v of the fluid and i
pressure p. The two momentum equations are time dependent and
they are also non-linear. The non-linearity comes from the
convection terms for the velocity components that are defived

the acceleration of a patch of fluid. These two factdrtsme
dependence and non-linearity increase the complexity of the
solution.

Dealing with time dependence is handled in the same veaytth
was handled for the simple parabolic partial differemglation
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discussed earlier in Section 3.2. We must know the initial
conditions of the problem to enable our solution to beginfrand
these the solution at the next time level is found. This m#at
are solution procedure proceeds via a series of iteratidirae.

At each time step the equations are non-linear and souse m
linearise them so that a solution can be found to af set o
simultaneous equations which look like the form we have just
discussed, i.e.

(3.38)

but where the matrix bold A and the vector b are functions of the
flow variables. The linearisation is carried out by dissiieg the
derivative that appears in the convection terms as norrdahéimg
the current value of velocity at a point or in a volumelement as
the velocity multiplier. For example

u Y becomes u 7

s | T “f—u]
T I
(3.39)

if the central difference equation 3.4 is used for the dévie and u
bar is found from the current solution for U. For example,ru ba
would be u sub {i,j} if we were using a finite differencetinod.
Once this linearisation is carried out the set of siamdbus
equations can be produced and then solved to update the afalues
the flow variables. The linearisation and solution procedutieen
repeated until the values of the flow variables have congeeyel
only then can the whole solution be progressed to the next time
level.

71



Chapter 3. Numerical solutions to partial differenéiqliations

From this we can see that there are several levelerative
process taking place within the solution algorithm. Fidlige
shows these levels schematically. There we can sethénatis an
outer time iteration loop that moves the solution from one time
level to the next. Then there is an inner loop that resdiveson-
linearity in the equations by repeatedly forming setgehr
simultaneous equations. This loop might itself contairrthadu
loop where iterative methods are used to solve the simuitaneo
eguations that are generated.
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Figure 3.9. An itzrative solurion

When running steady state fluid flow examples the time iterat
loop can be left out of the process. However, the absenhe of t
time terms in the momentum equations can cause numerical
problems as the fluid acceleration is not modelled indingesway
as it would occur for a physical flow. This can lea@ ttcommon
problem where the numerical solution will not be stablesanitl
will diverge from reality. As the non-linearity of the prebi forces
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us to use an iterative solution scheme, there is no reahttye to
be gained by leaving the time terms out. Consequentlyy i8&D
programs use a time-dependent algorithm even for steagy-stat
cases and this enhances the stability of the method.

3.5.2 Obtaining the Pressure Solution

Having looked at the overall solution process that must takepl
to solve the governing equations, we must now look in more detall
at how to obtain the solution. If we look at the three &qos that
govern two-dimensional incompressible fluid flow, we cantkae
the two momentum equations contain all three flow variablgs
that the continuity equation contains only the velocity coments.
As most of the terms in the momentum equations are fuisction
the velocity components it is natural to use these equations t
produce the solutions for the velocity components. This ldeares
a problem in that the continuity equation does not cotéams that
include the fluid pressure.

One way of overcoming this problem is to discretise the three
equations in such a way that they can be solved togethisrleds
to a solution vector that contains all three variables so is three
times longer than it need be, but it does allow the pressie to
calculated. Finite element programs have been develogbisin
way for some time, but as this approach produces largeices
than would be generated if each variable was solvei forn a
larger amount of computer effort is required to produee th
solution.

An alternative approach is to discretise the momentuntiequa
the x-direction so that the u-velocity component can bed@and
similarly find the v-velocity component from the momentum
equation in the y-direction. Then a modified form of tbatmuity
equation has to be developed so that the pressure carcbletesl.
This is done by noting that the velocity components thafioare
from the momentum equations do not satisfy the continuity
equation and that they should satisfy this equation wien t
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solution is converged. If the variables are split into twdspéhe
values that satisfy the momentum equations (starredhand t
corrections that would ensure that continuity is fiatigdashed),
we can write:

4 .
u=u +u

W =v* + v’
p=p'+p
(3.40)

As during the solution procedure we have to ensure that the
continuity equation, equation 2.2, is satisfied, we canttze
equation

du a _
(3.41)

and then substitute into it the expressions in equation 3gi0do

Bu' L By __ ' _ B
R T
(3.42)

In this equation the derivatives of the correction velocity
components depend on the derivatives of the velocity components
that satisfy the momentum equations. Now when the momentum
equations 2.8 and 2.9 are discretised they can also thenamn

matrix form as

.ﬁ.ﬂj = Bp_f
(3.43)
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and

C‘l"_r' = Dp_i:

(3.44)

where bold A, ~bold B, ~bold C and bold D are matriced,uagub
j, vsub jand p sub j are vectors of the variables dtpgints or
nodes. These equations can be rewritten if the variabéesplit
using equation 3.40, to give

i'l.ﬂj* +.|!‘.I.!_r' :Hpj* +Bp_f

(3.45)
and

Cv_r'* + Cv_r" = [,'!_p'_r'aI + Dpj—
(3.46)

When we solve the momentum equations we are in effechgolvi
the following two equations

'

Auja = Hp_r'
(3.47)
and

Cv_r'a = Dpja
(3.48)

and so these can be subtracted from the matrix equationarl45
3.46 giving

and
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It is these two equations that are the expressionsribatesthe
correction quantities for the velocity components to b@ado as
they can be rewritten to give

i'.l_r' = .ﬂ'l._lﬂpj

(3.51)
and

‘I-"_r' = C_]'DPJ'

(3.52)

Using these two forms of the equations we can find thespre
from the continuity equation. This is done by substituting them in
the modified continuity equation 3.42, to produce an equation f
the correction pressure {{p sub j} sup '} which has on gé&thand
side the imbalance in the continuity of the flow after tlwrmantum
equations have been solved. Once the correction pressupe p s
has been found, so u sup 'and v sup ' can be formed ugiagoas
3.51 and 3.52. Finally equations 3.40 are used to find thecoedre
velocity components and pressure. At this stage in the colifte
velocity components satisfy the continuity equation and a new
value of pressure has been calculated, but the velocityaenis
do not satisfy the momentum equations. To resolve both the
solution of the momentum equations and the non-linearity, the
momentum equations are used again to produce further
simultaneous equations which are solved, followed by the
calculation of the correction pressure and the correction tieci
It is this process of using the momentum equations then the
continuity equation that forms the inner loop in Fig. 3.9 and
iterative methods are used to solve all three sets ofltsineous
equations within each inner iteration.

Algorithms such as this are known as SIMPLE (Semi-Implici
Pressure Linked Equations) algorithms and there are maiayts
of the algorithm described above where small modifications are
made to the procedure.
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Having found a way of obtaining the pressure solution, therelys
one remaining problem to solve. This concerns the numerical
solution of the equations. Looking at the momentum equations 2.8
and 2.9 we can see that the pressure variable only oocaifg $t-
order spatial derivative. The conversion of these derivatives t
numerical form can lead to problems, as the use afalen
differences can produce values for the pressure vaaablgiven
point which are not related to the pressure variablesighbouring
points. This, in turn, can lead to a pressure solutiomiaigg in

what is known as a chequerboard pattern. There areaays
overcoming this and many programs use a grid which is stedjger
from the grid for the velocity components to find the pressure
Effectively, the pressure is stored at the centroia wbhlume and

the velocity components are stored at the volume facesNtBg
recently several programs have turned to storing allanables at
volume centroids using the transformation of Rhie and Chow [18]
to prevent chequerboarding.

3.5.3 The Convection Operator

One other problem that has had to be addressed by femsaisc
that of producing numerical forms of the convection operato
Problems occur when this operator is discretised usingaten
differences, equation 3.4, for the first derivative ofiblocity. For
example, take the equation

Bu _ P
"o Tl
(3.53)

where u bar denotes the known velocity that is being used to
linearise the equation. Using central differences for taHirst
and second derivatives in this equation gives
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Uit 78y | | 1T g
u Fhx ] =V i
(3.54)
which can be rearranged to give
1 F 1 F
U= EHI'IJ[I_TE} + Euf_ld 1+TE}
(3.55)

where Pe is the Peclet number, or local cell Reynoldsegm
given by

(3.56)

From equation 3.55 we can see that the value of the Pecidier
has an important effect on the numerical equation. e eclet
number is less than two both terms on the right handside
positive coefficients but when the Peclet number is grélada two
the first term on the right hand side becomes negative. This
negative term causes problems in that it can lead t@alistie
solutions. Consequently, there is a restriction on tleteePeumber
if we want to get realistic values.

One way around this is to use a first-order accurate elifte
equation to model the first derivative in equation 3.53 istédahe
second-order accurate difference equation used above. However,
the reduction in accuracy can lead to a poor solutiopicéily the

use of lower-order accuracy schemes gives results whicheare t
results for a flow which has more viscosity than theweeare
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trying to model. Despite this such schemes are in conusen
together with more accurate schemes. Usually commercal CF
packages will have one of the following options for the
discretisation of the convection operator:

« an upwind scheme, where the convection term is formed
using a first-order accurate difference equation equdtmg t
velocity derivative to the values at the reference paidt a
its nearest neighbour taken in the upstream direction. This
can give very inaccurate solutions but they are easy to
obtain as they converge readily.

« a hybrid scheme, where the upwind scheme is used if the
Peclet number is greater than two, and centradrdiffces
are used if the Peclet number is two or less. Thisose
accurate than the upwind scheme but does not converge on
some grids of points.

¢ QUICK, which is a quadratic upwind scheme and is more
accurate than the two schemes described above. For
complex geometries the shape of the volumes can lead to
numerical problems in obtaining the solution.

« power-law schemes, which are derivatives of QUICK but
are more accurate.

A good review of this topic is given by Abbott and Basco [11].
3.5.4 Boundary Conditions For Fluid Flow Problems

When solving any system of partial differential equatibisthe
boundary conditions, together with the initial conditions, that
determine the exact solution. The form of the boundary conditi
that is required by any partial differential equation aelsson the
equation itself and the way that it has been discretiSeche

common boundary conditions are, however, met when solvird flui
flow problems with computers. These can be classifiedrdithe
terms of the numerical values that have to be setterms of the
physical type of the boundary condition.
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Figure 3.10. Velocity variation near a wall

Looking at the variables, we need boundary conditionshfor t
following variables:

« for the velocity components, which will affect the
momentum equations. These conditions are usually given
by specifying the velocity components and if this is not
done then the derivatives of the velocity components
normal to the boundary are usually zero.

« for the pressure and possibly mass flow, which will
influence the continuity equation if a SIMPLE-like
algorithm is being used. Usually, the fluid pressure needs t
be specified at a minimum of one point in the flow.

« for the turbulence variables such as the turbulence kinetic
energy k and the rate of dissipation of k i.e. epsilon.

These conditions have to be applied at a variety of bousdzaueh
as:

+ solid walls. Many boundaries within a fluid flow domain
will be solid walls, and these can be either statiooary
moving walls. If the flow is laminar then the velocity
components can be set to be the velocity of the wall. When
the flow is turbulent, however, the situation is more
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complex. This complexity is due to the velocity of a flow
varying extremely rapidly near a wall if the flow is
turbulent. To capture this rapid variation which occura in
direction away from the wall, many grid points would be
required in this direction near the wall, and this inaesas
the amount of computational effort required to produce a
solution. One way of reducing the effort is to specify the
velocity near a solid wall using experimental data for
boundary layers which shows that the velocity variation
should be logarithmic with the distance from the wall at
points more than a known distance from the wall. This can
be seen in Fig. 3.10 where the velocity in the boundary
layer is plotted against distance away from the wallhBot
the velocity and distance have been transformed to non-
dimensional quantities as shown. Looking at the figure
three regions can be seen. Near the wall thereigcaus
sub-layer where the effects of turbulence are damped out by
the wall itself. Then there is a log-law region where the
velocity is a logarithmic function of the distance frdme t
wall, and finally there is an outer layer which is whire
boundary layer and the external flow merge. If the mesh is
built so that the first point where the velocity is cadtadt

is in the log-law region then the very rapid variation near
the wall will not need to be modelled. Similar methods can
be used to specify the values of both the turbulence
variables k and epsilon.

« inlets. At an inlet fluid enters the domain and so tiiel f
velocity might well be known for the problem being
simulated. In some programs the pressure equation needs to
know the mass flow at an inlet. Also, the fluid carriewit
it other quantities such as k and epsilon and so these mus
be specified as well. We say that variables are convecte
into the domain.

« outlets. Where the fluid leaves the domain is known as an
outlet. Normally, the pressure is set to zero at arbatid
the velocity components and any turbulence variables are
left to find their own values which will have a zepasal
derivative in a direction normal to the boundary. If tloevf
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is swirling through the outlet then a pressure gradient is
required to provide the necessary centripetal force to the
fluid and so a constant pressure boundary condition will be
invalid. To overcome this iterative procedures are used
which start by specifying a constant pressure at the outlet
but then try to find the pressure that matches the velotity
the swirling flow.

¢ symmetry boundaries. When the flow is symmetrical about
some plane there is no flow through the boundary and the
derivatives of the variables normal to the boundary are
zero.

« cyclic or periodic boundaries. These boundaries come in
pairs and are used to specify that the flow has the same
values of the variables at equivalent positions on botheof
boundaries. In Fig. 3.11 two examples of periodic
boundaries are shown. In the first (Fig. 3.11a) a mesh
which is topologically cuboid has been wrapped around
onto itself. On the shaded boundary and the boundary
facing it the fluid variables must be set to be equéiet
corresponding points. The other example concerns the
cascade of aerofoils shown in Fig. 3.11b, where a set of
identical aerofoils are stacked vertically. Rather ttade
the domain as including several aerofoils it is simpler to
take the domain to be that shown in Fig. 3.11c where the
domain is rectangular and includes a single aerofoil. To
make the flow within this domain consistent with the full
domain we must set the flow variables on the boundary AB
to be equal to the flow variables at corresponding points on
boundary DC.
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4 COMPUTER-BASED ANALYSIS
PROCEDURESAND TOOLS

In the last two chapters we have looked at the ways iohafhiid
dynamics problems can be described mathematically and ahleow
governing equations can be transformed to give a numerical
analogue. To produce a solution from the numerical anaioguny
eqguations have to be calculated and this in turn requaiss
numbers of repetitive calculations to be carried Gamputers are
the ideal tool for this numerical processing as theybean
programmed to perform all of these calculations without
intervention. We saw in Chapter Three that the nuraksolution
process is specific to the equations that are solved and tht
actual flow problem being simulated. It is the boundary ¢ondi
and the initial conditions that are applied that deterrtiadlow
problem.

Within a given class of flow problems, say for exampteséthat
have a flow which can be taken to be viscous and incomplessi
general computer software can be written to produce solutons
the governing equations and this software is not problemfgpeci
Many industrial organisations require information on flow
situations and so they either write their own CFD sinmmat
program or they buy one of the software packages written by a
specialist software company. As there is a growing comaierci
market for these programs there are several available.

Not only can the software be general to a flow type, bottals
analysis process that is followed can be general tas.i&ans

that regardless of the software being used there eaal\cdefined
set of stages that make up the analysis process. Theénst
section of this chapter defines this process by looking at the
material that we have already discussed in the lastiapters and
then determining what the key stages of the CFD analysiegsoc
are. Here only an overview of the process is given but in sueseq
chapters we will discuss each stage of the procesgail. deis is
followed by a series of examples that show the proceserat w
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As the analysis process centres on computational procethees,
analyst has to use a wide variety of hardware and satieals and
again these can be classified into sets of stariglped. So the
second section of this chapter looks at the types of haedwa
installation that can be used to run a CFD problem. ishalowed
by a section on the use of the hardware and then the fotairse
discusses the CFD software tools that are availabldl. dhthis
there is a recurring theme of the universality of the amajyrocess
and the tools that are used in carrying it out.

4.1 The Analysis Process

We have seen in Chapter Two that a mathematical asmaly8uid
flow can be made and that this leads to a series tipar
differential equations that govern the flow. In Chaptere€hwe

saw that these partial differential equations can lxzetised to
produce a numerical analogue of the equations. When boundary
conditions and initial conditions that are specific to tbevf
problem being simulated have been applied to these equdkieys,
can be solved using a variety of direct or iterative smiut
technigues producing a numerical simulation of the givam fl
problem. Many of the numerical aspects of the flow simuiasire
handled by the CFD computer programs that have been whtien,
the user of the programs must provide several pieces ofrafmm
to the program in order that a successful simulation canaoke.

From our study of the ways in which it is possible to posd
numerical solutions to the governing partial differential ¢quna
we have found that the following are required if a sotuts to be
produced:

« agrid of points, or a set of volumes or elementsyrath to
store the variables that need to be calculated

« boundary conditions that enable the boundary values of the
variables to be calculated
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initial conditions that define the initial state of thevil for

a transient problem or define the first guess to thabkas

for a steady state problem

fluid properties that appear in the equations such as gensit
and viscosity and perhaps some turbulence quantities
control parameters that affect the numerical solutiahef
eguations

and it is the provision of this information that dictatesdtages of
the analysis process. Given that the analyst has tlessay
hardware and software tools, the stages of the analysiegw that
must be carried out to generate this information and thegupe
the results of the flow simulation are:

initial thinking. As with many analytical or computational
problems it is worth thinking about the physics of the
problem for a while before committing pen to paper or
fingers to keyboard. In this first stage the analystukho
consider the flow problem and try to understand as much as
possible about it. This might involve a considerable amount
of liaison with any other people involved in the projecthsuc
as design engineers and technicians, but it is impofant t
all sources of relevant information are explored.

mesh generation. In this stage the analyst has to dalcula
the grid of points or mesh that sub-divides the flow domain.
A series of coordinates for the points in the mesh hale to
calculated and sometimes these points must be related to
define the volumes, also known as cells, and elemenss. It i
the distribution of the points in the flow domain that

defines the positions where the flow variables are
calculated.

flow specification. Once a mesh exists the boundafi¢ése
computational domain can be found and the necessary
boundary conditions, determined in the initial phase,
applied. These conditions, together with the initial
conditions and some fluid parameters, specify the actual
flow problem that is to be solved.
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« calculation of the numerical solution. Now the CFD
software can be run to calculate the numerical solation
the flow problem, but first the user must provide the
information that will control the numerical solution.

« results analysis. When some results have been obtained
they must be analysed, first to check that the solution is
satisfactory and then to determine the actual flow dhatta t
is required from the simulation.

It is possible to perform an analysis by taking eactesia the
order given above, so that the required results are dedefidis
would only happen in an ideal situation as the simulatidtoof
problems can be extremely difficult. The governing equatoas
complex, as they are non-linear and highly coupled, anbeéme
dependent. This means that the possibilities for some @eeping
into the solution procedure are great, leading to a simual#tat
will not converge or to a set of results that are not gegd. These
problems can be reduced by a combination of user expededce
good practice during the analysis. By good practice we ningdin t
the analysis should be carried out extremely carefulthabthe
analyst makes sure that each stage is completed sutdlyelssfore
proceeding to the next stage.

Working in this way will usually mean that the analystkes a

series of checks during each stage. The necessary ahiédks
described in the subsequent chapters but if they showhthat t
simulation is not progressing well then it may be necgdsa

repeat one or more of the stages. By doing this the compotel
can be modified in an attempt to improve the simulation. As
computers are being used the refinement of the computer model is
not too difficult to perform, as, usually, informatiomEd on
computers can be accessed and changed both quickly and easily
This interaction between the stages of the analysis gsat®uld
enable reliable results to be achieved, given the constiditie
hardware and software. Some of these interactions arenshdte
flowchart of the process given in Fig. 4.1. There the ingnae of
careful analysis of the results can be seen. By lookitigeaesults
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produced it is possible to see if a simulation is a goud If it is
not then the flow specification might be incorrect, orriesh
might not be suitable for the flow being modelled or thendd
have been a conceptual mistake made at the beginning of the
analysis process.
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Figure 4.1, The analysis process
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4.2 Computer Hardware For CFD

4.2.1 Computers

As we have seen, we need computers to perform the repetitive
calculations that produce the solution to the numericalteunsa

As computer technology changes at an alarming rate the
supercomputers of one era becoming the desktop calculators of the
next and, consequently, we need to be wary of reviewingtéte

of the art in computer technology. Even so we can still pmduc
series of classifications that describe the generic lameltypes

that are available.

In the world of engineering computation it is common to clgssif
computers by their performance in terms of some measure of
calculation speed. Speed can be measured in units badesl on t
number of instructions that a processor can executsggend or
the number of floating point operations that a systemheandle per
second. Common units are mips or millions of instructions per
second and MFLOPS or millions of floating point operations pe
second. These measures can give a user some idea of the
throughput of a machine but they say nothing about the ways in
which the systems operate with a particular numeridalvace
package. This is very important when we consider the Gfalysis
process as the execution of calculations is only one pdréof t
process of producing a final solution. Other features sutteas
speed of access of data are equally important to thralbspeed of
the calculation.

If we consider the operational characteristics of thepeders that
are used to perform CFD calculations we can divide the camput
types into the following five categories:

personal computers These are standalone systems containing a

central processor, some random access memory (RANVyaane
disk storage. Usually they have single-user operating systems
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« workstations. These are machines that have a central
processor, local RAM storage, and multi-user operating
systems. These are packaged together with a high
resolution graphics display. They are often part of a
network of machines that can include a central datagto
system such as several disks attached to a file sehyen
is a computer that is dedicated to the task of providing
datafiles to the other machines in the network. The n&twor
can also be used to gain access to high speed compuders a
a variety of peripherals. Some workstations also have thei
own local disk storage.

¢ mini-computers. These are machines with a central
processor, large amounts of RAM storage and a cefatal
storage system. They have multi-user operating sgstem
and are used by several people simultaneously who gain
access to the system by using terminals.

¢ mini-supercomputers. These are effectively super-
workstations, with very good graphics performance and
near-supercomputer numerical performance. Again they are
usually part of a network.

e supercomputers. Designed to handle numerical data in the
fastest possible way, these machines are dedicated to the
task of running numerical simulations. They are largé-hi
technology devices often with multiple processors and
extremely large amounts of RAM storage to reduce the
need for the machine to communicate with slower storage
devices when carrying out calculations. To enable good
graphics facilities to be used, supercomputers are often
networked to workstations.

Figure 4.2 shows the configurations of the machines types in this
list, but this is clearly not a full list as other tygd#amachine are
available. In particular machines that have a large nuwfber
processors such as transputers have a great potermgaiymut
numerical calculations extremely quickly. At the timenoiting
(1991) the CFD calculations that are carried out on theskinasc
use specialist programs adapted to take advantage iotéheal
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architecture of the hardware. Commercial programsaastyr
available on these machines, but no doubt this will change.
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As computer power increases and the technology advances, the
boundaries between the machine types are becoming blurréa and
some cases they are being made invalid. For example,iagain
1991, the distinction between a personal computer and a low
performance workstation is becoming smaller and smaleis the
difference between a mini-supercomputer and a supercomputer.
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Equally, the power of the highest performance workstat®ns
coming close to that of mini-supercomputers or even
supercomputers.

4.2.2 Peripherals

When operating or specifying computer hardware it is not thwaly
computer that has to be considered. In carrying out the thakare
part of a CFD analysis, the availability of variousipleeral devices
is either a necessity or can be of great assistaribe tnalyst,
making the analysis process easier to carry out. Toergeherals
include:

¢ secondary data storage devices. When a program is running
the processor accesses data from the RAM storage 8hich
the primary data storage device. As we shall seeGiér
programs generate large amounts of data and this data
needs to be accessed by the CFD program during the
solution of the numerical equations and by a variety of
other programs both before and after the solution. The data
can only be stored in the RAM storage during program
execution and so it is also stored on secondary storage
devices such as hard disks. Secondary storage is atso use
if the RAM capacity is not sufficient to hold all the data
during the execution of a program and as the access of the
data held on a secondary store is much slower than the
access of data held on a RAM store this can slow the
execution down.

« backup devices. To protect the data that CFD programs
generate from loss due to a failure of a disk drive or a
disaster like a machine-room fire, it is necessary to make
regular copies of the data onto some form of backup data
store. These can be demountable hard disks, magres ta
or other devices which can be removed to a safe storage
area. Often, this is done automatically, or is handlethéy
administrator of the computing system.
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« high resolution graphics displays. CFD analyses generate
so much data that, quite often, the only way of analysing
the data over the whole domain is to use some form of
graphical representation. High resolution graphics display
devices are used to show the necessary pictures and these
devices include the screen of a workstation or a dedicated
graphics terminal. Typically the resolution of these devices
is 1000 x 1000 pixels, where a pixel is a dot on the screen,
although useful work can be done at lower resolutions such
as 600 x 400 pixels. The addition of colour can also be
extremely helpful in clarifying the pictures produced from
large CFD-generated databases.

« hardcopy devices. As with most engineering activities
report writing is a necessary evil and so a means of
obtaining a hardcopy of the pictures generated on a
graphics device is necessary. These copies can comefrom
laser printer which will produce black and white copies or
from a colour plotter which uses ink-jets or heated waxes t
produce a coloured image.

4.3 Using the Hardware

When we simulate fluid flow problems with a computer the
analysis process has three main requirements thatinawngpact

on the computer hardware. We saw in Chapter Three that the
solution process consists of calculations that areechaut at a
large number of points in the domain under consideration ahd tha
these calculations are part of an iterative proces$iohw
individual calculations have to be repeated many timew é¢fe
solution is obtained. Consequently, the numerical caficu phase
of the simulation requires both a large amount of detizage and
considerable computer processing power if real-life engineering
problems are to be solved. Further, the large amountiaftidat is
generated has to be analysed graphically and so the compute
system must support the production of graphical data as well
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Now, by referring to these requirements of data stonagegssing
power and graphics capabilities, each of the computer
classifications that we listed earlier can be argyis turn. It can
be seen that

« personal computers do not have the processing power or
data storage capacity to enable large simulations tor
These machines might be used for training problems, where
the size of the problem is very small and the speed of
analysis is unimportant.

« workstations have all the necessary computing power, data
storage and graphics capabilities for some problems.
However, the largest problems may require extra
computing power such as that provided by a mini-
supercomputer or a supercomputer.

« mini-computers tend to perform like workstations but they
sometimes have less graphics capability.

¢ mini-supercomputers can used for most problems,
including the largest simulations, if the turnaround time of
the numerical analysis is not too important.

e supercomputers are especially useful for the largest
problems where results are required quickly. They tend to
be linked to workstations, or mini-computers, to enable the
graphics tasks of the analysis to be carried out oredlesm
machine, leaving the raw computing power and large data
storage for the numerical applications that need them.

This situation is summarised in Table 4.1. It shouldrbplesised
that useful CFD analyses can be carried out with adtramount

of hardware and so it is not necessary to have aaress t
supercomputer to start using CFD. Situations do exist, however,
where access to a supercomputer might be the required if
simulations are to be achieved in a reasonable tiale.sc
Guidelines for the specification of hardware are give@hapter
Twelve, but it is worth noting here that the length ofetitaken for

a simulation will be dependent on both the hardware and the
software used.
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Table 4-1. Suitability of Hardware Types
Hardware Type Graphics Sinall Jobs Medimn Jobs | Large Jabs
Persanal Camnputer Ok Ok he No
Woarkstation Goad Goad Good No
Mini-Cempurer Ok Gaod Good No
Mini-Superceunputer Gaod Gaod Good Ok
Supercainputer No Ok (expensivel) Good Gaod

4.4 Commercial Softwar e Packages Used For CFD

Each software package aimed at the CFD market hasish e
user in carrying out the tasks that form the analysisgss This is
done by providing, typically, three main pieces of software:

e apre-processor
 asolver
¢ a post-processor

together with a variety of utility programs. The use bftase
programs will be explained below.

4.4.1 Pre-Processing Programs

All the tasks that take place before the numerical molygrocess is
started are called pre-processing. This includes tsietfiree phases
of the analysis process that we have discussed, thinkirsdy, me
generation and flow specification and the part of the fourtegha
that defines the numerical control parameters. Whilstitsiephase
needs considerable thought, and considerable engineering
judgement, if the physical flow problem is to be tramslanto a
problem that is solvable by the CFD software; it doesmailve

any computing. It is only when this first phase has been el
that the computing starts.
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To assist in the computational part of the pre-processingphas
most software packages have a pre-processing progranathié c
used to carry out the following operations:

« define a grid of points and perhaps volumes or elements.
« define the boundaries of the geometry

« apply the boundary conditions

« specify the initial conditions

« set the fluid properties

« set the numerical control parameters.

In carrying out these tasks the user has to interalttive computer
in some way and so the pre-processing program usually has a
graphical interface, so that parameters can be skthamesulting
changes seen quickly. This is particularly importantwihe mesh
is being built. Also, datafiles can be read that coritsigs of
commands so that repetitive sets of instructions, say $omilar,
but not identical problem, do not have to be typed too often.

Usually, the most difficult task in the pre-processing plsgee
generation of the grid of points or mesh. Quite oftes thsk can be
simplified by using software that has been especialijgded to
carry out mesh generation. One example of this is the use of
programs written to produce meshes suitable for the filateent
analysis of structural problems. Such software is commonly
available and can interface with computer-aided designmgste
This allows the analyst to access computer models of opjkets
surface data of which can form the basis for the georaetynd
which the mesh for a CFD simulation can be built.

4.4.2 Solving The Equations

Each package has a program that solves the numericaiatg for
the problem under consideration. This program must be given all
the relevant data that has been defined by the pre-proc&sso
transfer the data between the programs, the pre-procestes aut
datafiles that the solver program can read. ThesecBleslso be
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moved, if necessary, between computers. This is extremefiylus
as it means that the solver program can run on a machine
specifically designed for high-speed numerical work sgca a
supercomputer, while the interactive tasks are carried oait on
smaller machine. This splitting of the tasks betweeohings
enables the hardware to be used in the most efficiemhena
keeping graphics-intensive and so-called number-crunching
activities separate.

Once the datafiles are in place, the solver programtigaded and
the required solution process carried out. At the end®ptiase,
further datafiles will be available, which may havd&transferred
back to the machine where the pre- and post-processing mgra
are run.

Although the solver program is the core of any CFD software
system, the user sees little of its operation.

4.4.3 Post-Processing Programs

As large numbers of points have to be created withifidke
domain if reasonable simulations are to be obtained and@ske
variables are stored at these points, computer graighitten the
only means of assessing the data written by the solver pmogitze
post-processing program is used to display the resuétsaarwith
the pre-processor, this program is interactive and so ysuallon
the same machine as the pre-processor.

Typical pictures obtained with the post-processor might coata
section of the mesh together with vector plots of the \gidield
or contour plots of scalar variables such as pressureeTetures
enable global trends in the data to be seen.

4.4.4 Utilities

Several utility programs are sometimes provided that doconot f
part of the above system of software. These programs aasede
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to convert the datafiles written by one system into m&brthat can
be read by another system. This is common for files oconta
mesh and results data.

Using these utilities the data can be transferred leetwagineering
software systems and this can be extremely useful ifgan®ation
has the use of commercial mesh generation software, swebudd
be provided with a finite element structural analysis g These
programs can be used to build a mesh that can then égsaddoy
the CFD analysis system. The files that are trarexiare often
referred to as neutral files, as they can be readjube standard
text editors of many systems or by small programs teaivatten
locally.
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5 DESCRIBING FLOW PROBLEMSIN
ENGINEERING

Producing a computer simulation of a flow problem requires the
analyst to provide a large amount of data to the solvgram It is
the quality of this data, in terms of both suitabiliydaaccuracy,
that may well determine the quality of the results ofdingulation.
Because of this, users of CFD software must be veryitamith
the flow problems that they wish to simulate. When using
computers there is a strong temptation to start computiagaasas
possible, but in this case it is much better if considerdfaught is
given to the problem before starting to use a computers@tite
urge to compute before thinking must be resisted.

As an aside, if you are considering having an analysis taeer
using CFD then please be aware of the following. At tithes
analyst will use hard information which will be gleariemh a
variety of sources. This sort of information includest of
information that is not controversial and is well knowno#ter
times, however, the analyst must rely heavily on the experiehc
running similar fluid flow simulations when deciding how to nmlode
the problem. This is because the CFD analysis will sonsstim
demand information that does not exist or the softwasenog
model exactly the situation that is required. In suctuonstances
the quality of the analyst can be crucial to the sinmridteing
successful.

The key to a sound analysis is the production of a speaificaf
the flow problem. This is a clear exposition of the reasdmsthe
simulation is being carried out and of what the physioal f
situation is. Once it has been produced it can belatadsinto the
set of data that is required by the simulation packalgs. chapter
looks at how such a specification is built up and then looks at
example of a specification for a realistic flow situatibat will be
simulated in Chapter Ten.
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5.1 Producing a Specification

A specification for a flow problem must be sufficientlyaltd so
that the analyst can obtain from it all the informatieecessary to
define the flow problem to a CFD solver program. Thisrimition
comes from a good understanding of the flow problem which the
analyst must obtain be talking with the people who regbee t
results of the simulation. In particular the analyst nkasiw three
things:

« why it is that the simulation is required
« what the geometry of the problem is, in broad terms
« what the possible flow behaviour might be.

5.1.1 Knowing What Is Required of the Analysis

Carrying out the analysis of a fluid flow problem is apensive
business. If someone wants to commission a computational ignalys
of a flow problem considerable expense will be involved assac
to computer hardware must be achieved, the necessary softwar
must be found and the labour costs in either time or mameycd
insignificant. Consequently there must be good reasorsmfoying
out the analysis and the analyst must therefore explose the
reasons first, by talking to the people that need thdtsesf the
simulation such as design engineers. At this stage tiysashould
also be able to decide if a CFD simulation will give thguired
results.

The reasons for an analysis being carried out are euachyaried
but they often include such things as the determinatiomedforces
and moments on a body so that the motion of the body can be
predicted or analysed, the prediction of the pressure thratigho
flow or the prediction of the ways in which the fluid moee®r or
through a system. Sometimes the analyst will have t& ot the
form of the results that the simulation should produce forague
description of an engineering problem. For example, the dank
in pumping a fluid at a given flow rate through a serigsasfsages
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of an engineering device might be too great and the re&soiiss
may not be known. A computational model of this problem would
show what happens to the fluid as it passes through thagesss
and it will also give an prediction of the fluid pressaverywhere
in the device. From this information the areas where the fl
pressure is lost can be identified, as usually thisoggur where
the flow is separated. With this information the computer mode
could be altered so that a prediction is made ofltve through a
modified geometry that should reduce the regions of separate
flow. The results of the prediction should show whether the
modification of the geometry would lead to a reductiorhen t
pressure losses in the physical flow.

Once the analyst knows the reasoning behind the flow problem it is
easier to plan ahead so that the computational model prathgces
necessary information. One further benefit of this discussion
between analysts and their clients is that they detdav each

other and their respective problems. Such an understanding ca
help the analysis process to be brought to a successtiuismm,
especially if things do not quite go as planned.

At the end of this initial part of the specification phéseanalyst
should have a list of the data that the computational nmodst
produce. This could include the change in pressure through a
system, the local pressure field, the local flow velogities time
variation of a variable at a given point or many othergseasf
information. Once this list has been compiled an assagsohthe
suitability of CFD in giving reasonable results should beenaVve
need to be aware at this stage that CFD cannot produsiie
results for all physical fluid flow problems, and we wiiscuss
why this is in Chapter Ten after we have looked at thdtsesf
some simulations. If the analyst concludes that CFDtig no
suitable tool to use in obtaining the required results, eveathe
reasons for this, then the analyst must highlight thesdgmstto
those who want the results and suggest that the anislysis
carried out with CFD. There is no point in running a simoiteif it
is likely that the results will be of poor quality. Thisuld only
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frustrate those who need the information and give the uS€bfa
bad name. Everyone should always be aware that sometiisies i
easier and cheaper to perform a physical experiment thtoe a
computational one, and sometimes it is more accurate too.

5.1.2 Specifying the Geometry of the Problem

Once the reasoning behind the analysis is known the actual
specification of the problem can be prepared. When lookingyat a
flow problem it is important to be able to describe the jolays
boundaries that contain the fluid. This is particulamportant for
engineering flow problems where it is usual for at least gzamteof
the boundary to be a man-made object and it is a predictithe
effect of this object on a flow that is required frol@RD analysis.

When we solve the equations governing fluid flow using a
computer, we need to have mesh of points at which the flow
variables can be stored as we saw in Chapter ThreseTgoints
have to be created both on and within the bounding surfatles of
flow and so some means of describing the geometry of these
surfaces is required.

Various sources of geometrical data can be available asel the
be used by the analyst to describe the bounding surfaces. For
example, this data might come from:

« analytical descriptions of shapes in two dimensions given
by such things as points, lines, arcs and splines
¢ engineering drawings
« databases created by computer-aided design (CAD) systems
¢ measurements taken from existing hardware.

From such sources most of the bounding surfaces of the flow
domain may be determined precisely. When building the mesh of
points inside the flow domain we will use this the precise
information (see Chapter Six), but during the specificagtage it

is sufficient to know roughly where these surfaces arelation to

103



Chapter 5. Describing flow problems in engineering

each other and how they fit together. A simple sketch nhiglpt to
show this. It is also worth remembering that when wedithié
computational model a complete description of the bounding
surfaces is required, and that some of these surfagés mot be
physical surfaces. For example, the non-physical surfacés loeu
the flow inlet or outlet or the boundary of an externahfproblem
that is effectively at infinity (the far-field boundaryrhese non-
physical surfaces will need to be created later, bugkaeeh should
at least draw attention to where they are.

5.1.3 Defining the Flow

Once the geometry of the problem is understood the analyst must
think about the flow itself and try to visualise what igpening to

the fluid within the bounding surfaces of the flow. The ahistep

in defining the flow is to know which fluid is to be studiddhis

could be air, water or any other fluid and the valofehe density

and viscosity of the fluid need to be found. Once theiteand
viscosity are known a calculation can be made of a paeamet
known as the Reynolds number. This is a non-dimensional mumbe
often designated by Re , which is defined as

_ pvre_fu

KEe I

(5.1)

where V sub {ref} is a reference velocity such as thetinélocity
and D is a characteristic length which might be somgtlike the
length of an object or the width of a duct. This pagtemis useful
in determining whether a flow will be laminar or turbulerst vae
shall see, and is one of a number of non-dimensional paeEmet
that are used in fluid mechanics to characterisesfléie will
discuss several more in Chapter Eleven when we look attgfies
of flow.
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Next, the production of the main part of the specificationtza
tackled. As we have already stated the CFD solver musivaee of
the boundary and initial conditions that are appropriatéf®flow
under consideration. The investigation of these conditions can be
started by building up a picture of the flow structure that migh
occur. This is done by thinking about the physical boundaridseof
problem that were identified in the previous part of theifipation
process. From our sketch of the location of the boundages w
should be able to identify those surfaces where the fhiet® or
leaves the geometry and those surfaces which are the séidesur
This information can then be used to gain some idea the tflow
structure within the geometry. The flow structure mightudel
such things as the direction of the flow, the location of vestic
areas of separated flow, boundary layers and wakes. Tdter®e
of these features within the flow can then be added tskitteh

that we are building up.

As part of the physical flow structure, areas where the flow
variables such as velocity have large gradients, fanplain
boundary layers and wakes, will be identified and thisrm&tion
can then be used when the mesh is built so that suffjpcents are
placed within the mesh in these regions. Also the floucsire will
help to identify the type of boundary condition that shdandd
applied to each of the boundaries and the initial sfatedlow
variable. Remember that it is the flow information be t
boundaries of the geometry, the boundary conditions, and tke stat
of the flow variables at the beginning of a time dependeiii@m,
the initial conditions, that determine the numerical solutiioa
particular set of equations. By now the sketch should hage oho
the information about the boundaries on it and this nedas to
translated into the form needed by the analysis. Thisrg by
looking at each boundary in turn.

Some common specifications that need to be made at boesdari
are:
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« tofix the velocity (at an inlet or a wall where the flawv
laminar)

- to activate a log-law velocity profile (at a wall whéhne
flow is turbulent)

« to activate appropriate functions for the turbulent kinetic
energy and its dissipation rate (at a wall where the fow i
turbulent)

 to fix the turbulent kinetic energy and its dissipation rate (
an inlet of a turbulent flow)

« tofix the pressure (at an outlet)

+ to do nothing (at a symmetry plane where the velocity
gradients normal to the plane are zero)

« to specify a pair of cyclic boundaries where the flow
variables are the same at corresponding points on the two
boundaries.

If we wish to solve a steady state problem the flow should mow
theory, be completely specified, but if we wish to solView with
a time variation which is either real or assumed irstiletion
procedure then the initial conditions must also be specifiegse
are the values of all the flow variables at the statthefcalculation
and they need to be defined at every point in the flow domain.
Often the values are not known exactly and so some sensilles
have to be assumed. Even if the problem is to be solviedirag
steady in time we must sometimes specify some initial Gondi
Many programs will assume an initial set of valuedtfierflow
variables, but it can help to give a better guess asdesgutational
effort might be used in reaching the final solution.

5.2 An Example of a Flow Specification

So that the above specification process can be illustnatedill
now take a flow situation and consider how a specificatiorbean
produced by this process. The example that we will udaiof a
two-dimensional slice of the flow of air over a saloonwhen it is
placed in a wind tunnel. This is one of the examples tHabevi
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used as a demonstration example in the chapter of cagesstud
Chapter Ten.

First, we must think about the reasons for carrying out the
simulation. Let us imagine that we are working for hicle
manufacturer and ask ourselves the question, 'What does the
company want to find out from the simulation of the flow overna
?'. Cars are tested in a wind tunnel for a varietga$ons that
include the search for information about the forcesraadhents on
a vehicle that can be used to predict the vehicle's foelosay, its
top speed and its acceleration and its response toajusisd
hitting the vehicle from the side. The data that is extdafctem
these wind tunnel tests includes:

« the drag on the car when the car is at various angleg to t
flow

« the lift on the car at the same set of angles

« the side force on the car at the same angles

« the rates at which the cooling system of the car can extract
heat from the engine

« the rate of cooling of the brakes.

If we carried out a three-dimensional simulation of the f'waund

a vehicle we could obtain values for the force and mesnama

basic body shape, but none of the above information can be found
from a two-dimensional calculation. This is simply becabse
two-dimensionality of the calculation will make the results
meaningless, however the procedures are just the same as those
used for three-dimensional calculations and so this exaraplbe
seen as a reasonable test case to pursue. In Chaptéefewill

be a discussion of the use of CFD in calculating the three-
dimensional flow over a vehicle after the two-dimensional
calculation has been made.

Let us imagine that we wish to run this simulation to stigate the
flow structure around the vehicle, which can give some psitbe
the three-dimensional flow. Consequently we will warbeable
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to plot the velocity vectors around the vehicle at the enldeof t
simulation. Having decided this we can move to the secepdrst
the specification process, that is the sources of datad
geometry and the arrangement of the boundaries must be feamd.
the car the shape might be defined as a set of engineleawings
or as a set of surfaces stored in a CAD system, bughtape of the
wind tunnel must also be decided. Most tunnels comprise of a
parallel working section placed between a contractioraand
diffuser. To simplify this problem the tunnel can be tatkeeoonsist
of a straight floor and roof which are placed at theemir
elevations relative to the car, and a vertical inletnepsh of the car
and a vertical outlet some way downstream of the car. This
simplification can be made as the main effect of the tuoméhe
car is to constrain the flow around it and this is done byvibr&ing
section immediately around the car. The fact that th&ing
section has been extended away from the car should h&eve litt
effect on the flow around the car, but it does simplify the
computation considerably. In particular, the outlet needs tarbe f
downstream of the car to reduce the influence, on the ftound
the car, of the approximate pressure boundary condition thdtewi
specified at the outlet. All this information is summead in a
sketch of the geometry which is shown in Fig. 5.1. The shigjhe o
car comes from a set of two-dimensional curves in spatarba
derived from the three-dimensional data discussed in Qhagte

Tunnel roof
- k)
¥ 3
® E
£ Car surface 5
E] =
-

Tunnel floor
Eimers € 1 T ar 3m a2 wand tunnel

Having specified the geometry the fluid can be definechign t
problem the fluid is air which has the following proper{igsa
temperature of 288 K and a pressure of 760 mm of mercury):
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« density 1.225 kg / msup 3
« viscosity 1.79 x 10 sup {-5} kg / ms
« kinematic viscosity 1.46 x 10 sup {-5} msup 2 /s

Then the Reynolds number can be found by taking V sub {oef}
be the inlet velocity of 28 m/s and the typical length dinwent
be the vehicle length of 4.165 m , giving

- (1ZI3NIE.0H4.163)

Re = =748 x 10%
(1.7%x 1079

(5.2)

From this calculation we can assume that the flowlalturbulent
as the Reynolds number is so high.

Now the boundaries of the problem can be analysed and figpm F
5.1 it can be seen that the boundaries can be listed a

« the car surface
« the tunnel floor
« the tunnel roof
« the tunnel inlet
« the tunnel outlet

and each must be considered in turn.

The effect of the car surface is simple to understanthig
boundary the flow will be turbulent and the surface willne:the
flow. Boundary layers will be created on the vehicle sea:fac
terms of boundary conditions a log-law profile conditionthe
velocity will have to be imposed here together with suitabl
conditions for the variables of the turbulence model. Simithey
tunnel floor will act in the same way and will requsimilar
boundary conditions to be imposed. On all these surfacesdble
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will have to be built such that several points are plaezd to the
surface in a direction normal to the surface.

The tunnel roof is an interesting boundary in that it adl like the
tunnel floor and have a boundary layer on it. However, iasome
way from the car, this boundary layer is unlikely to haweagor
effect on the flow over the car and so the roof can be takiea a
symmetry boundary so that no flow goes through the surféce. T
is of benefit to the simulation as the mesh does not tocleel very
fine near a symmetry boundary, whereas it does need to be fine
where there is a boundary layer so that the variationlatie near
the solid surface is captured. By making this approximatotiiie
roof the number of mesh points in the domain can be rdduce

At the tunnel inlet the fluid enters the domain in the hor&lont
direction at a speed of 28 m/ s and so, as both the magaitdde
direction are known, the velocity can be specified tHgegg
carried in with the flow is a natural level of turbulerzoe this
must be specified at the inlet as well. However, atuhedl outlet,
we do not know the speed of the flow at all positions ag ikex
boundary layer on the floor of the tunnel and a wake behinckthe
that is generated by the boundary layers on the vehiclecsukfée
can deal with this boundary by assuming that the velocity miates
vary in the horizontal direction at the outlet and so thvaléve of
the velocity in the horizontal direction is zero. Furthes,can
impose a fixed pressure at the outlet as it suffigreatl from the
vehicle that this boundary condition will not affect the hesswe
want to obtain. Normally we set the outlet pressureto.z

In terms of the flow structure the analysis of the bouedagives
us a picture of what is happening in the flow. Fluid entexaugh
the inlet, is retarded by the tunnel floor and the vehicliasey
forming boundary layers there. From our knowledge of flwod/fl
we know that the flow will separate somewhere towards treafe
the vehicle forming an area of fluid that has a redspegd behind
the vehicle. This is the wake of the vehicle. At the rogheftunnel
the flow is constrained to move horizontally, and the flaal/es
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the domain at the outlet. All of this information candoieled to the

sketch as shown in Fig. 5.2.

o flow through roof
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Figurc 5.2. Flow features in the tunnel

Flow retarded

As a last step we must decide upon the initial conditions.Higor t
problem a sensible way to approach things would be tihset
horizontal component of velocity to the speed of the inleioig,
to set the vertical component of velocity to zero and thespreso
zero. Turbulence values can be set to be the inleesals well.
Now the specification is complete and we can turn to thdihgi

of the actual computational model.
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6 BUILDING A MESH

Once the specification of the flow problem is known we can t
our attention to building a computer model. The first pathisfis

to build a mesh of points throughout the flow domain and perha
produce the necessary volumes or elements. When modelling a
simple problem this process takes very little time, but when
modelling a complex problem such as the flow inside a sefries o
passages, say the coolant flow in a internal combustion erigéne,
process can take several man-months to complete. Disethis
phase of the analysis process that determines theita¢alequired
to obtain results from a simulation, as all the other ghaseluding
the actual computation of the results, can be carried o@ quit
quickly. Similarly, the overall cost of the analysis tentotally
dominated by the costs of the labour required to build trelhme

In this chapter we will discuss the reasons for buildingeatmthe
requirements that a mesh must satisfy if it to givestsatory
solutions and the types of mesh that can be built. Teewill
discuss how a mesh can be built by using a variety of satwa
tools. Finally, we will look at ways in which a mesindbe
modified in the light of the results of a flow simulatisuch that
better results are achieved.

6.1 The Need For A Mesh

In Chapter Three we looked at various ways of discngfiie
governing partial differential equations of fluid flow sath
numerical equations were produced. Regardless of valfiitte
three discretisation techniques is used; the finite diffsxenethod,
the finite element method or the finite volume method; a maésh
points has to be produced within the volume of the fluid. Tairs
be considered as the discretisation of the space in wiadiotv
takes place. If we use the finite difference method thewnahes of
the variables at the points are used to produce equatiotie for
variables that enable a solution to be determined. Thisviesa
grid of points. However, if we use the finite volume mettoeh
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the points are arranged so that they can be grouped s#bof
volumes and the partial differential equations can be sdiyed
equating various flux terms through the faces of the voluAiss,

if we use the finite element method then the points anapgd to
define elements within which the numerical analogue tpé#ngal
differential equations can be set up. In both the latsescthe
structure of the mesh does not depend on the discretisatitbndne

As a consequence of this we can see that althoughedeanemesh
to solve CFD problems regardless of which of the three
discretisation techniques has been used, the mesh itk&léw
influenced by the discretisation technique. This isthetonly
influence as the expected variation of the flow can lada@ an
effect on the way in which the mesh is built.

6.2 Creating A Mesh For A Given Flow

Every flow problem will contain a wide variety of flowafires in
the domain. That is things such as vortices, boundarysiayer
regions of rapid fluid velocity and pressure change and separat
regions occur, and all of these need to be modelled byRbe C
simulation. If we are to have a mesh that is capditeoalelling
these features, where the gradients in space of the floables are
high, then we must be aware of where these features naigit. o
This shows the importance of the sketches that we deveésped
part of the specification process, as these can beasaghlight
the positions of the critical regions in the flow.

In the critical regions we need to have a large numbpoiots
within the mesh. To see the reason for this we must lpefek to
Chapter Three. There we saw that all the numericaiaodst
assume that the flow variables vary in some simple wayess
the points or within an element or volume. This variat®uagually
linear but, for finite element codes, a quadratic or evghdniorder
variation is sometimes used. Consequently, if the flareg
rapidly in space, as it does in the critical regionsefftow, a fine
grid will be needed to describe the variation accurately.
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We can see this clearly in Fig. 6.1 where a one-dimersiona
variation in a variable U is assumed to occur in the &etiion. Let
us assume that some numerical method has given us a agies v
for U which is exact at a number of points in the x-dicgc This
will never happen in practice but it is the best that aanigal
method can do. If we take the numerical prediction of betéhe
straight lines between these points, then several souree®oin
the variation can be seen. First, if the values htaimed at only a
few points which we will call a coarse mesh, then tietgn is not
an accurate representation of the variation. We cathaee the
region of x=1, the numerical value of U is too small andhe
region of x=0, the numerical approximation to the derivative ®U/d
is too small. If we know the values of U at more poititaf is on a
finer mesh, then we can see that numerical descriptitihreo
variation is much more accurate.

Uk

Ee;y__ Coarse mesh of paints
2 Fine mash of points
/ —— Exact sclution
| ] | | | I
0% 1 2 3 4 5 B Tx

Figure 6.1. Effects of mesh density

This is extremely important as we must have accuradtevaf the
variables and their derivatives if we are to simulb&egoverning
equations accurately. Any error in either the variable ltso
derivative dU/dx can lead to the numerical solution ofetpgations
being in error. A typical example of this is that flowagation on
the surface of an object may not be predicted if the nsesio
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coarse near the surface of the object. There is an éxaiihis in
Chapter Ten.

Even though we know that the mesh must be very fine in theatrit
regions we still have the problem of knowing where thesemnegi
are and how fine the mesh should be. Along solid surfaces the
will be a boundary layer and so there must be several prass to
the surface in a direction normal to the surface. Thosvalthe
numerical solution to model the rapid variation in veloditpugh
the boundary layer. This is an example of the geometry of the
domain influencing the way in which the mesh must be built.
Another example is where a surface has a large amount\ature
causing a rapid variation in pressure in the flow directiowever,
large flow gradients also exist in areas of the flow afvamy the
solid surfaces, say in the wake of an object or, ibweemodelling a
compressible flow, near a shock wave. Creating a suitaldb ime
these areas is more difficult as the exact locatighetritical areas
is difficult to determine. One way of proceeding is touass the
position of the critical areas and build a mesh takirgittio
account. Then, once the simulation has been run, thd eetuis

of the simulation may help us to determine the actual posiobn
the regions of high flow gradients. So we see that infooma
obtained from the results of a simulation can be used to yribwf
mesh and the technique is known as adaptive meshing. We shal
discuss this further in Section 6.5.

6.3 Mesh Structures

6.3.1 The Basic Parts of a Mesh

Given that a mesh must be suitable for the discretisa@mique
and also for the flow, we will now look at the differernpéyg of
mesh that can be built. A first step in this is to deteenwhat the
basic parts of a mesh are. From our discussions in Cheptee,
we already know that a finite difference mesh will cansis set
of points, that a finite volume grid will consist of parhat form a
set of volumes and that a finite element mesh will cosistib-
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domains known as elements on which the variables are found at
fixed points known as nodes. These then are the basic parts fr
which meshes are built:

¢ points, sometimes called nodes
« volumes, also known as cells in some documentation
« elements

but which of these parts are needed for a mesh depends on the
discretisation method being used. In all the discussioridhatvs
we will use the terms volume, cell and element to mesuba
domain without implying that a particular discretisation tegbhei

is being used.

Various mesh structures which are made up of these parb&can
built and we shall look at this in the next section, b itseful to
note here the range of sub-domains, be they volumes or elements,
that are used. In structural finite element programgla range of
element types can be used and these are classifiéé Bhape of
the sub-domain and the placement of nodes in the domain. With
CFD programs a much more restricted set of volumeseonents is
available at present. By far the most common volume anegig

for use in three-dimensional meshes, is a hexahedron gtth ei
nodes, one at each corner, and this is known as a briokeri®r
volume. For two-dimensional applications the equivalent etens

a four-noded quadrilateral. Some finite volume programs hawe
been released which have the ability to use tetrahedhage
dimensions or triangles in two dimensions. Most finiegrent

CFD codes will allow these elements to be used togethlerawit
small range of other element types. Figure 6.2 shows ebthe
commonly used sub-domains.
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Figure 6.2. Some common sub-domanms

6.3.2 Types of Sructure

Now that we know what the constituent parts of a meshnaean
think about how to arrange them through the domain. This
arrangement is known as the structure of the mesh orghkgy

of the mesh. When using the finite difference method thetpare
the positions in space where the variables are calculatethay

are arranged in what looks like a grid of cells. In casttto this,
when using the finite element method, the points are the nodes of
the set of elements used to split up the fluid volume laad t
elements can be arranged in any way, providing that ties faf the
elements are aligned correctly. We are able to do thiseas
calculation on any one element requires information frorm tha
element alone. The interaction between the elements pitdaes
when the element equations are added together to forghothes
equations. With the finite volume method the actual implementat
of the numerical solution will determine which schemeatime
placement can be used. Some programs demand that theegolum
are placed in the same way as they would be fordeoffinite
difference cells and others allow a finite element-likeecpment.
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From this we can see that there are two ways in whietmesh
structure can be arranged. These arrangements are:

Local eocrdinales

Global coordinates

Figure 6.3, Transformation of a mesh with a regular structure

e aregular structure or topology, where the points of the
mesh can be imagined as a grid of points placed inudareg
way throughout a cuboid (also known as a shoebox). These
points can then be stretched to fit a given geometry asd th
is shown in Fig. 6.3. Note that when the mesh is stretched
the connections between the points does not change. The
stretching takes place as if the mesh were made of rubber,
and the so-called topology, or form, of the mesh remains
the same. Consequently, if we consider any point in the
mesh it will be connected to the same neighbouring points
both before and after the stretching process. Sometimes
these meshes are called structured meshes as they have a
well defined structure or mapped meshes as they can be
seen as a cuboid mesh that has been mapped onto some
other geometry. When considering these meshes it is useful
to think of a local coordinate system within the medfis T
is enables the orientation of the cells relative to edloér
to be determined, and so before the mesh is transfaimed
axes of this system are the edges of the cuboid. Once the
transformation into the actual coordinate system being
used, the global coordinate system, is carried out the the
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local coordinate system axes become dependent on the
position within the mesh. This is shown in Fig. 6.3.

e anirregular structure or topology, where the pointst@l t
space to be considered but are not connected with a regular
topology. Figure 6.4 shows a two-dimensional example of
this type of mesh formed with triangular elemehiste
that the cell faces do not overlap. We can see from the
magnified section of the mesh that element number 1 has
the three nodes labelled a, ¢ and d at its cornerghand
element number 2 has the nodes labelled a, b and c at its
corners. The fact that any particular node is attached to
element cannot be known from the form of the mesh, and
so a numerical table must exist that describes the
arrangement of the mesh by listing which nodes are
attached to each element. This contrasts with the mdgula
structured mesh where a knowledge of the location of a cell
within the mesh enables the labels of the points at its
corners to be found implicitly. A mesh with an irrégu
structure is often referred to as an unstructured roeah
free mesh.

-‘v L ‘Lv‘ -vcv_ o.‘.
s A
1’- ‘N- "'" Tnanguial_

P ."A.Wj?i!a?ﬁ slement with

P A TAVAV WA 3nodes
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Figure 6.4, A mesh with an irregular structure
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Relating the mesh structure to the numerical methodefinit
difference programs require a mesh to have a regulattgte and
finite element programs can use a mesh with an irregtracture.
In theory finite volume programs could use a mesh witiragular
structure, but many implementations insist that the rhasha
regular structure.

As we mentioned in Chapter Three, when a mesh witgdae
structure is used there is an advantage in that tiiersmogram
should run faster than if a mesh with an irregularcstire is used.
This is due to the implicit relationship that exists Ewthe
number of a cell or a point and the number of its neigrbm a
regular mesh, which enables data to be found easilgukio
relationship occurs for meshes that have an irregulactate and
so when trying to find the values of flow variables in nbmlring
volumes there must be a computational overhead. This often take
the form of a look-up table which relates the faces to¢hs or the
nodes to the elements.

Many flows that are of interest to engineers take glace around
the complex geometries whose boundaries are man-made objects.
With some ingenuity on the part of the analyst, it is fbsd0 fit a
mesh with a regular structure to some of these geomsebue with
many geometries this is not possible. This is where mestiesnv
irregular structure can be used to great advantageeses meshes
can be used to describe the most complex of geometries due t
there being no restriction on the structure of the mesh.cais
make the mesh generation process much easier and in ssgsdtca
is a pre-requisite for producing a simulation. Anotheraatige of
using irregularly structured meshes is that they camdsged by
automatic mesh generation algorithms, some of which areilaksdcr
in Section 6.4.5. These algorithms generate meshes which are
unstructured using elements such as tetrahedra.

With some CFD programs it is possible to have severaheses
which have a regular structure combined together. Programs use
these meshes in an attempt to gain the speed advardhgerties
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from using a regular mesh whilst retaining the flexibitdymodel
complex geometry. This combination of meshes is called a
multiblock mesh as it can be seen as a series of bbotks
together. There is, of course, a restriction on the waytlleae
meshes are built to ensure that the cell faces do not p\aridock
boundaries.

As a final point on the structure of a mesh it is woréntioning

two terms that are often met when dealing with regmeshes. In
Chapter Three we looked at some examples where each of the
discretisation techniques was used. In these examples tla@ndom
geometry was simple and the partial differential equaticere
discretised directly in terms of the Cartesian coorésaiVhen
meshes are built for more complex geometries, the partial
differential equations are sometimes transformed irgereeral cell-
based coordinate system. This is especially true whdimgeeth
finite difference methods and finite volume methods whicjuire

a regular mesh, as the local coordinate system candzk This
transformation of the equations enables a regular mdshused
even though it is not rectangular. In some transformatbtize
equations the mesh of points is required to be orthogonalhwhi
means that the sub-region faces must meet at right éngtesh
other. If these meshes are used fewer terms are reqaipeoduce
the transformation of the partial differential equatiand so less
computational effort is required to compute the solutiothdf

mesh is non-orthogonal, then the extra terms have to be
programmed and the solution requires more computational.effort
Sometimes progams which should use an orthogonal mesh can be
run with non-orthogonal meshes but the results that are produced
are less accurate.

6.4 Building M eshes

6.4.1 Defining the Geometry

In the specification stage of the process that we disdusse
Chapter Five we saw that we need to determine the saafrces
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geometrical data and to produce sketches of the posgidhe
bounding surfaces of the flow domain. Now we must use the
sources of geometrical information, be they sketches oneergng
drawings or computer models, and ensure that we can find the
location of the bounding surfaces in terms of the coorelénsdy x
and y and, possibly, z.

For two-dimensional problems we can create the boundingcssrfa
using points to define a series of lines and curves. Theses

might be defined as circular arcs, simple polynomials or splidk
of these constructions are described by equations thaedbg
relationship between the coordinates of points that mpkae
curve. For example, we all know that a line can be desthiehe
relationship

y=mx+c¢
(6.1)
where m is the gradient of the line and c is the valuevdign x is

zero. By substituting for the gradient in terms of two knpeamts
on the line, equation 6.1 becomes

¥r=¥i
X
X=X

+c

(6.2)

where the suffices refer to the two known points. Thesatens
describe a line which is infinite in length, but we will pulse lines
of finite length to describe the geometry of the flow domahis
means that we need to know the endpoints of the line.

Similarly, a circle can be described by
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x-a ) +(y-b )P =r?

(6.3)

where the centre of the circle is at x=a, y=b and thieisasir. A
part of this circle is a circular arc and three pogas be used to
define it. Usually these points are taken to be the twipe@nts of
the arc and a point on the arc somewhere between thésn. Th
enables both the limits of the arc to be defined and the unknow
constants in equation 6.3, namely a, b and r, to be atdcll

Splines are more complex curves, but they are also defined by
points in space. Usually four or more points are used, bytdt
not have to be on the curve itself. Note that there israfuhy
being formed here in terms of the numbers of pointsired to
define a curve. Two points define a line, three pointdedn arc
and four points or more define a spline.

In three-dimensional problems the geometry might be defiped b
similar three-dimensional constructions in the form ob-@alled
wire-frame model. In these models the edges of each saface
defined and, sometimes, the form of the various surfademisn
as well. Often these surfaces have a simple form sualptane or
part of a sphere or cylinder, but they can also have a coonplex
form. Another type of computer model is known as a solid model,
where the computer stores not only geometric information but
things such as the mass of an object. When using a sotidlitihe
geometry of an object is defined in ways similar to thessd by
wire-frame models.

Typical ways of describing the more complex surfaces are:
¢ numerous simple patches. Here the surface is discretised

into a series of patches which are usually triangular or
guadrilateral in form. This is the way that a surfeosld
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be described by the faces of a mesh of linear elements o
cells.

« Coons patches. These are patches over which the
coordinates of points on the surface are determined from
the bounding curves alone. Consequently, once the
boundaries of a surface are determined the surfaceigtself
defined. Three or four curves in space which form a closed
loop are often used in define the boundaries. Note that a
infinite number of surfaces will be able to fit through
given set of boundaries but the Coons patch description
defines only one surface. The assumption is made that the
patches are sufficiently small so that a good approximation
to the surface is given. This can lead to problems if a
surface is highly curved and only a few Coons patches are
used to model it. In this situation each patch will be too
large and the surface definition will not have the required
curvature.

« Bezier surfaces. These are surfaces which are destybed
a set of Bezier polynomial curves. Each curve is defined by
four points, the two end-points of the curve plus two
interior points which need not be on the curve. By moving
the two interior points the curve can be manipulated to have
a wide range of shapes. Bezier surfaces give an improved
description of a surface when compared to a Coons patch
description as information from within the boundaries is
used to define the surface. This helps to lock a surface in
space and so the number of surfaces that could fit the
description is reduced. These surfaces were developed for
Renault, the French vehicle manufacturer, as they had a
requirement for computational surfaces that could be
manipulated interactively when modelling new vehicles in
the styling studio.

¢ non-uniform rational B-spline surfaces (NURBS). These
are similar to Bezier surfaces, but the curves thatised
to define them are based on different points to the Bezier
curves. The end-points of the curves are only approximated,
but the points that are used to define the polynomials ensure
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that the spatial derivatives of the first- and secondrarcke
continuous at the end-points.

Such is the complexity of these curves and surfaces ttmahputer
has to be used to manipulate the data. For our purposeddafdpui
a mesh for use in a CFD analysis, it is not necessargderstand
the mathematics behind the descriptions, but the analysidsho
have some knowledge of the variety of types of surface xisit e
For those who are interested, several books describeatfeeim
which these computer descriptions of objects are handled in
computer-aided design (CAD) systems [19,20,21,22].

When we know that the geometry data exists we can stiauilth
the mesh as we know that we can find the coordinatesygiant
on the bounding surfaces of the domain.

6.4.2 Determining The Mesh Structure

Having made sure that the geometry description is complete the
next step is to decide the type of mesh structure thabevilised.
Sometimes this might be dictated to us by the CFD softikatds
to be used, as some programs only allow a certain struotutes
structure might be decided by the geometry of the domain. As a
mesh with a regular structure is simpler to createshould enable
the CFD solver to be computationally more efficient, weghtn
attempt to fit, mentally at least, such a mesh t@twmetry. If this
fails then we must use a mesh with an irregular strucidtieough
this will lead to some extra work, the effort can bduced by

trying to build a mesh that has a regular structureniach of the
domain, only using an irregular structure where absolutely
necessary.

Having decided on the mesh structure, a mesh layout can be
determined and an estimate made of the number of batisvill be
required. To do this requires considerable user-experiandeboth
the layout and number of cells will depend on the flow that i
assumed to take place within the domain.
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Once these preliminaries are finished we can think abouslgc
building the mesh. First we must decide upon the means offgyeati
the mesh, and this will depend upon the software toolatkat
available to us. For simple geometries a short computgrgmo
could be written to produce a mesh, but often wemeéld to find a
solution to flow problems in more complex geometries. Soni@ CF
packages have a mesh generator built into the pre-processor
program and this may well be suitable for some problensn, Al
there are other commercial packages that can be usedlyJsual
these will be commercial finite element pre-processorso et
programs do exist as we shall see later. It is ingmbito note that
every organisation will have different tools availableg ¢he

analyst must find out what these are.

6.4.3 Building a Smple Mesh With a Regular Structure

Many problems can be solved by using a mesh that hagpkesim
regular structure. This is made easier by the factiaaty CFD
packages, if they require a mesh to have a regulatsteyallow
some cells to be declared as what are known as deadTda8 is
an extremely useful feature that enables a variety ok&lot
regular cells to be used to model some complex geomédtaes.
example, the car problem described in Chapter Five cémobght
of as nine two-dimensional blocks arranged as shown irbFsg
The flow domain consists of blocks 1, 2, 3, 4, 6, 7, 8 amh@,
block 5 is obviously inside the vehicle surface. It is, tloees the
cells in block 5 that are declared as dead cellfiotlsl be noted
that even when dead cells are declared the appropriateenofb
cells must be created as it is the existence of thelsatlvatl keeps
the book-keeping of the analysis program correct. This book-
keeping is essentially the management of the data storageays,
and leads to efficient solutions.
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Figure 6.5. Mesh blocks for a two-dimensional car
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Figure 6.6. A hierarchy of enritics
One common way of producing a regular mesh on each block is to
use the hierarchy of entities as shown in Fig. 6.6. mfihure we

consider the hierarchy for four-noded two-dimensional cells or
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eight-noded three-dimensional cells. We can see thag &otkom
of the hierarchy is the basic geometrical entity whic p®int,
several of which can be linked to form lines (from 2 pgjrdscs
(from 3 points) or splines (from 4 points or more). By combining
adjoining lines, arcs and splines the third level entity,edge, can
be created. If four edges form a closed loop they caedrets be
the boundaries of a surface and six surfaces can beabedrid a
volume. This set of relationships is determined by the el&sne
being considered as, once the surfaces for a two-dimethsion
problem or the volumes for a three-dimensional problem are
defined, the cells can be formed. This is done by mapping the
surfaces into a square, and by mapping the volumes intbea c
These squares and cubes are used to define a local eberdin
system in which the cells can be created before beangformed
back to the global coordinate system which defines the readidom
Whilst commercial software packages use such a hieraschy t
produce a mapped mesh, often it is useful to thinkrmgef this
hierarchy even if the mesh is to be produced by some iokbeens
such as a simple computer program.

Returning to the car example, Fig. 6.5, each block caedrets be
a surface with four edges. The mapping of a mesh oigsuhface
is fairly straightforward and will be discussed inapter Ten. The
mesh can be created with the cells unevenly spaced sodhat
cells are placed in critical regions of the flow. Tlsiglone by using
a geometrical progression to bias the positions whereoihesare
created. Such a progression creates points with thexcksta
between neighbouring points being governed by a simple Fadio
example each cell may be 0.8 times the length of the presitis

Finally, before creating a mesh, the node and cell nuniizees to
be calculated within each block. This is done by alloggtthe
number of cells in the local coordinate directions fahdalock,
remembering that the number of cells in the two ceehocal
coordinate directions must be consistent with a reguésh. For
the car example a sensible number of cells might Isé@sn in
Fig. 6.7 where the cells within each block are shown feg#&n
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close to the vehicle surface. This mesh has been ch@atgdcing
several cells in the direction normal to the solid surfacethat the
boundary layer region can be predicted more accurately.

Fig. 6.7 A mesh around a car.

6.4.4 Using Commercial Mesh Generation Software

Commercial mesh generation packages have been around for some
time now and are aimed at the finite element strucamalysis
market. The meshes that they produce can also be useBor
calculations, providing that they are built with the special
requirements of the CFD solver program in mind. As stratt
finite element work involves many different element typesthad
use of many materials, these mesh generation packages are
extremely general in their capability. This generality great
strength but it can also make the packages slow to usé-for C
applications, as the database of the package is oftefavgeyand
so stored on the secondary storage media of a systeatlyudisks.
This can make data access slow. Another inefficiencyadaa
when the programs ask for information that is not @ahevor CFD
applications. Often this involves the definition of material
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properties for every block in the mesh. In structural catmns the
properties may well vary form block to block as différematerials
are used, but in flow problems it is usual to have only oné.flui

Commercial mesh generation packages usually have the following
components:

e ageometry creation routine, where two- or three-
dimensional geometrical data can be created in the fbrm o
points, lines, arcs, splines and, sometimes, surfaces. An
interface to extract similar data from CAD systema is
common feature as well.

« adomain definition routine. This allows the creation of
surfaces, in two dimensions, or volumes, in three
dimensions.

« a mapped-mesh generation routine. This enables a mesh
with a regular structure to be created within the domains
These domains must be topologically consistent with the
element type being used. For example, if four-noded
guadrilaterals are being used to mesh a two-dimensional
domain, then a four-edged domain must be used.

« afree-mesh generation routine. This enables a mesh
without a regular structure to be created within the
domains. In this case there is no restriction on the férm o
the domains, and so they can be either surfaces bounded by
any number of edges (for two-dimensional problems) or
volumes enclosed by a set of these surfaces (for three-
dimensional problems).

When using commercial mesh generation software, hierarshits
as that shown in Fig. 6.6 are used. Usually, this doesanseca
problem, but there is one area where errors in the modelliag of
geometry can occur. Coons patches are an obvious choice for
defining the geometry of a surface within the hierarchyhas t
edges are used to define the surface. As we discussedionSe
6.4.1 such a representation of a surface may not be adéddghate
patch is too large for the curvature of the surface. Oyeoiva
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overcoming this problem is to define smaller surfaces, but this
involves much more work on the part of the analyst. Anotresris
to use more accurate surface descriptions, say Bezfacssior
NURBS, derived from a CAD model of an object. Many
commercial finite element pre-processors can read these m
accurate surfaces from the database of a CAD systezn, &set of
edges can be used to define a Coons patch surface. Onlgasthis
been done, the user can tell the pre-processor to caldwtateesh
points on this surface by first calculating the coordinatekeof
points on the Coons patch and then recalculating the coordgmates
that they are positioned on the more accurate surface.

As has already been stated, when using mesh generatexsatim
producing meshes for finite element structural analysisl@nas
extra information has to be provided during the mesh generatio
define the structural properties of the elements as tleegraated.
This not only slows down the mesh generation, but it also means
that we have to be selective when extracting the dataeedoy a
CFD analysis. At this stage in the CFD analysis pioa#ighat is
required is a simple definition of the mesh that carebd by the
CFD pre-processor. This minimum set of informatioresricted

to two items:

« alist of the positions in space of all the nodes in thehmes
usually this will be a list of x-, y- and z-coordinates.

« alist of the element numbers, together with their gpe
the numbers of the nodes that are attached to them. This
known as the connectivity list.

Most mesh generation packages can write this data leatich
has then to be read by the CFD pre-processor. Some presoose
will read the mesh information file from a small numbé&the most
common commercial mesh generators. If the pre-processemdbe
do this, then the data has to be translated into eb&ifarmat. This
is done by a small computer program which must be writteorby,
for, the analyst. It is worth noting that each pre-pssor reads the
mesh data in a different format, and that this depend on the
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needs of the software. For example, programs that onlg use
regular mesh need only read the nodal coordinates, provided t
they are given in a pre-defined order, as the connectisitis|
implicit in the regular mesh structure. Conversely, progy that
can use an unstructured mesh will read both the nodal hthe
connectivity list in their own pre-defined format.

6.4.5 Some Automatic Mesh Generation Algorithms

For simple geometries it is easy to see how a mesheanilt, but
when the geometry becomes more complicated the meshinggroce
is more difficult. Several techniques have been develtpdan
take complex two- and three-dimensional geometries and then
automatically produce a mesh that models the geometry. Tiypical
the mesh will have an irregular structure. As we sattex
beginning of this chapter, mesh generation is a costly ptreo
CFD analysis process because of the large amount gfawan

that can be required to build the mesh for a complex geprfaty
savings in the time taken to build a mesh could make &€Ridre
attractive solution for some engineering design problems,@nd s
these automatic mesh generation techniques are being actively
researched.

The first method that we will discuss is Delaunay fgiaation
[23,24,25]. Figure 6.8 shows this algorithm at work for a two-
dimensional case where triangular elements are to beedcelhe
algorithm is easily extended to three dimensions wherahistral
elements would be formed. In Fig 6.8a we can sedlibdiasic
technique is started by producing nodes on the boundary of the
domain and nodes inside the boundary. In this case theneealve
nodes on a square boundary and one node inside the domain. To
ensure that the final triangulated mesh has no gaipsthree extra
nodes are then created that define a super-triangle. Fgoré.Bb
we can see that these extra nodes have to be plateat sloey
define a super-triangle which encloses all of the origindes of
the problem. This super-triangle is taken to be thedleshent and
then one of the original nodes is used to split this elementhree
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new elements (Fig. 6.8c). Now an iterative element aeati
procedure can begin. One by one each of the remaining nodes is
considered and the mesh modified. To do this a circleegted for
each element such that it passes through each of deertbdes of
that element. Looking at Fig. 6.8d we can see the ciofldse
elements and we will consider node number 2. This node lies
outside two of the circles and inside the other. Thegttation
algorithm states that if a node lies inside a circle therelement
that the circle is attached to should be deleted. @lhtlee
necessary elements have been deleted, new elementsaaated
that include the node being considered. This is shown ir6F8g.
where the lower element of Fig. 6.8c has been deleted eewd th
new elements have been created which are joined at nodendm
Then another node is considered and the process continues.
Eventually, a final mesh is created such as thatgn@8f. This can
then be modified so that only the original domain, in thise the
square, is modelled. This is done by deleting all the elenadnth
are attached to the nodes that formed the super-tridgfighly, the
shape of the remaining elements is checked and, where aiggess
the elements are modified to be as near to equilateragles as
possible. This produces a mesh which does not have elewitnts
a very distorted shape as these elements could naossical
problems when the solver is run.
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Figure 6.8, Exelaunay triangolation

The second method is based on the use of the Quadtree aed Octr
methods [26,27]. These methods take a domain and placelé insi
four squares, if it is a two-dimensional problem, or egltes, for

a three-dimensional problem. These are then sub-dividedhutil t
required definition is acquired. Hence the name Quadgéfees to

the structure of the elements in two dimensions ande®c#fers to
the three-dimensional method. Looking at Fig. 6.9a we caarsee
example of a two-dimensional domain that is to be medtmd.
squares are placed over the domain, as shown in Fig. 6Bb, an
node created where the squares are joined inside the dometin. Ea
square can then be sub-divided into four more squares @md m
internal nodes created. Two further sub-divisions are shoWwigs.
6.9c and 6.9d. Once the element size for the bulk of tisé e

small enough, only the elements that cover the domain boundary
are sub-divided. This selective sub-division is shown in Fig, 6.9e
where the shaded circles denote the nodes that are extetimal
domain but are attached to elements that cover the domain
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boundary, and the other circles denote internal nodessélgstive
sub-division can be continued as required, but it leavesh that
is a stepped representation of the domain. To overcomtghis
external nodes are moved so that they are on the surftee of
domain. Finally triangular elements can be createnhkaall the
nodes.
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Frgure 6.9, Quadreee method

Specialised software is available to perform mesh géoerusing
forms of Delaunay triangulation and Quadtree/Octree rdstHmut
commercial finite element mesh generation software Isanbee
used to generate a mesh with an irregular structae automatic
way. This is often done by meshing the surface of the domain,
using triangular elements. Then the volumes that have b&apdie
by the surfaces can be meshed using tetrahedral eleroenedf
from the elements on the surface. At first sight this mégiear to
restrict such free-mesh generation methods to only usiadnéstra.
These can, however, be easily converted to eight-noded brick
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elements as shown in Fig. 6.10. There a single tetrahdeinadet
is taken and new nodes formed at each of the mid-sidae of t
element edges, at the centroids of each face of theeeteand at
the centroid of the whole element. These can then be jamed
shown to produce four eight-noded brick elements.

L@

Tedeahiedron 4% gd-noged hexghedra

gPE

Expluamed vt

Figure 610, Teansiorming a tetrahedral lement

All of these techniques are still in their infancy wiitecomes to
their application to CFD problems. Much research hddctie
done before meshes that are suitable for CFD problems danlbe
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quickly and with a minimum of user intervention. Somegdeo
would even claim that this situation will never be acbd

6.5 Modifying An Existing Mesh To Give A Better Solution

Once a mesh has been built it is possible to modifystich a way
that the CFD solution that is produced on the modified rabaehbld
be a better one. This modification can take place bef@@ution
to the flow problem is found or afterwards. Some CFD pre-
processors can take a mesh with a regular structdremaooth it,
such that the cells form an orthogonal mesh. This aducesthe
computing effort required to produce a solution and incrémeese
accuracy of the solution, as we saw in Section 6.3.2. These
smoothing routines are based on the solution of a seriestiafl pa
differential equations that describe the variation ingitie
coordinates [28]. In this process the original mesh is asebe
first guess in an iterative solution procedure.

Other mesh modification techniques can be applied aft&la C
solution has been produced on an initial mesh. These tecsnage
used to modify the mesh in the light of the results achienatl
and so the dependence of the quality of the results on ttie use
experience is reduced. These modification procedures ectpait
an initial analysis is made using a crude but realistishno¢ points
in the flow domain. From the results of this initial arsiythe mesh
is recreated such that the density of the mesh poigteadest in
areas of the domain where the fluid variables changelyapid
where the error in the numerical equations is found tarige [15,
see Chapter 14]. The mesh is said to be adapted todedwer of
the results generated. Two types of mesh modificatien ar
commonly used:
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Figure 6.12. Mesh adaption

« mesh enrichment, where additional points are placed within
the domain at the locations where they are needed as shown
in Fig. 6.11. In this figure a mesh is required to medel
boundary layer. The original mesh of triangles hagalae
spacing but the enriched mesh has additional nodes and
elements in it so that there are more elements neaplide
surface. This techniques is usually applied to meshes that
consist of triangular cells or elements in two dimensi
and tetrahedral cells in three dimensions. Such meshes
allow additional points to be created in the mesh and then
the Delaunay Triangulation method, or similar methods,
can be used to create a new set of elements.

« mesh adaption, where the topology of the mesh stays the
same but the mesh points are moved so that the density of
points increases where required as shown in Fig. 6.12.

138



C.T. Shaw, Using Computational Fluid Dynamics, Prertiat, 1992

Here, a boundary layer is again modelled. Note that the
number of nodes and elements remains the same in the
adapted mesh. Only the node positions are changed. This
movement of the points can be brought about by using
modified forms of the partial differential equations taeg

used in some grid generation methods as was discussed at
the beginning of this section.

By using these smoothing or adaption techniques the accuracy of

the solution can be increased, but there is a penaltairektra
computational effort is required.
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7SETTING THE FLUID FLOW
PARAMETERS

We have seen in Chapter Six how to build a mesh. T ifirst
computational task of the pre-processing of a CFD analysis.
that the mesh data can be read by the CFD pre-proc#ssor,
specification that was determined during the thinking phateeof
analysis, Chapter Five, has to be translated intosténat the pre-
processor can understand.

This specification of the flow problem tells the CFD saitevthe
exact problem that is to be solved, and it is achieved bgrpgng
the following tasks:

« specifying the fluid properties such density and viscosity
« determining which flow-related variables have to be

calculated

« specifying the boundaries of the geometry as sets of cell
faces

« applying appropriate boundary conditions to each set of
faces

« defining the initial conditions for the simulation.

Note that the geometrical locations within the flow, suchminlet

or a wall, have to be defined as sets of cell faceven cells. This

is because the CFD solver knows nothing of the real geometry of
the problem, it only has information on the mesh of the flow
domain.

This stage of the analysis process is carried out by giving
commands to the pre-processor program of the CFD package.
These pre-processor programs are usually interactive pnsgra
where the commands can be entered using many of the input
devices available to the user such as the keyboard andseemo
This allows the specification of the flow to be built ugmall
stages. It is useful to enter the commands in groupseiadt to
one particular part of the specification. For example, tgesgps
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might be commands specifying the boundaries of the domalreor t
numerical control parameters. Examples of the wayshisat
happens in practice are given in Chapter Ten where some
simulations will be performed using commercial softwdi@assist
the user, the status of the specification can be checlesty &itme

by asking the pre-processor to show some part of the data.

Sometimes when entering the data for a series of sifhild flow
problems, interactive input can become a boring and repetitive
process and so most of the CFD pre-processors alloerdais
create a datafile with a text editor. This datafbatains the
necessary input for the pre-processor. Some programs will even
write such a file from the data that has already betreshand this
is extremely useful as the file of commands should he-&ee.
Using such files of commands can save a large amouwataf
preparation time.

7.1 Specifying Fluid Properties

Fluids possess a variety of properties, as we saw ipt€&hawo,

and the solver program must be given some way of calculating the
values of these. When solving problems with CFD two of thstm
important properties are the density and laminar viscokthe

fluid.

For simple problems, where the fluid is assumed t@imnar and
incompressible with no heat transfer effects, the deasi
viscosity are taken to be constants. These constes@iven to the
software by simply entering the appropriate value. Onelpessi
mistake is to confuse the two ways of stating a fluidsogigy. The
standard viscosity mu, also known as the dynamic viscissihe
constant that links the shear of a fluid to the sheasssteand the
kinematic viscosity nu is the ratio of viscosity to dengiho, i.e.
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s
(7.1)

For air, where the density is about 1 kg/m sup 3, any naissak
unlikely to be found from the results, but for liquids liketeva
where the density is 1000 kg/m sup 3, the result of a mistakd
lead to large errors in the calculated solution. Akexk, the units
of viscosity are kg/ms and the units of kinematic vidgamie m
sup 2/s. For the common fluids, tables of the density andsiigco
values have been drawn up [29,30].

If the flow is known to have significant variations of tesrgture,
perhaps due to heat transfer, then the viscosity wiyl &a a
function of the temperature. The pre-processor may Well ahe
user to specify the relationship or, at least, allow the tosgwitch
on some standard variation of viscosity. A common varidghahis
used is a power law form [3]:

(7.2)

which can be seen to be a non-dimensional relationshige. tHe
subscript refers to a reference value of viscositgmperature and
omega is a constant which has the value of 0.76 fohAlsin.the
Sutherland formula can be used [3]:

p T iy + 85
[T I +8

(7.3)

where S is a constant and has a value of {110 sup o} rKirfo
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The same is also true of density, where various gas ¢aw be
used to find the density from the pressure and temperdtargas
[31]. For example, we could use

P _
p¥ ¢
(7.4)

which is the isentropic relationship for processes which are
reversible and adiabatic (where gamma is the ratio of #afsp
heats and k is a constant}, or

E gy
p
(7.5)

which is the ideal gas relationship, where T is the gapérature
and R is the gas constant.

When the viscosity and density vary, the flow problem isemo
complex than that of a simple incompressible, viscous. f&mme
discussion of how these problems are solved using CFD is igiven
Chapter Eleven.

Finally other properties may have to be defined, but which
properties these are will depend on the problem. Some exaoiple
these additional properties are the thermal conductivigyflfid
which is needed if we are simulating heat transfer problernes
effective turbulent viscosity which is needed for the sintples
turbulence models.

7.2 Deter mining the Variables That Need To Be Calculated
Once the fluid properties have been defined we need tordete
which variables are to be calculated. The variablgsatteaneeded

depends on the way in which the governing equations have been
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discretised and the algorithm set up to solve them. With the
standard SIMPLE-like algorithms, the pressure has taloelated
together with some of the velocity components. In one dimension
only a single component, say u, has to be found; whereas iortw
three dimensions u and v or u, v and w have to be found
respectively. When we discussed the governing equations in
Chapter Two, we saw that these variables completelpeleafi
laminar, incompressible flow, and could define a turbulent
incompressible flow, if only we had the computer power teesall
the equations with sufficient time resolution.

As, usually, there is not sufficient computer power availadble
resolve the effects of turbulence, these effects havernwbelled.
This means that a set of variables that are pahedfurbulence
model has to be calculated. Exactly which variableseqeired
depends on the turbulence model that is to be used, and stimee of
models were reviewed briefly in Chapter Two. The simplest
turbulence model is to specify a single value of the additiona
viscosity mu sub T due to turbulence. This quantity, can be
regarded, in effect, as a property of the fluid andpiscification
has already been mentioned. Other common ways of catautag
additional viscosity due to turbulence are:

« tofind it from a mixing length which has to be speciffer
a boundary layer or wake. When using this turbulence
model, no additional partial differential equations have to
be solved but the pre-processor has to be used to give the
solver some way of calculating the mixing length and an
expression for converting this to the additional viscosity.
This model is normally only used for very simple
geometries as this makes it easy to specify the mixing
length in terms of the geometry.

« tofind it from a set of auxiliary partial differential
eguations where one, two or even more equations are
required. The industry-standard method is the two-equation
model that uses turbulence kinetic energy k and the rate of
dissipation of k, denoted by epsilon. Despite the fact that
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this turbulence model can produce poor flow predictions in
some circumstances, it still gives usable results faryma

flow situations. As we saw in Chapter Two there are other
relationships that could be used, and these include algebrai
stress models and Reynolds stress models.

For problems that involve heat transfer the fluid temipeea or
perhaps the fluid enthalpy, must be calculated. Thetieqsao do
this are similar to those for momentum transfer. &@mple, in
equation 2.8 the variation of the scalar variable, the itgloc
component u, is described, and the other variables caediedras
just additional scalar variables. Chapter Eleven lookswtthe
effects of heat transfer are modelled and also revieme ®ther
flow types such as compressible flow. In both of these ¢hses
density can vary throughout the flow field and so the fluitsdg
might be an additional variable that needs to be catulil&qually,
as the flow types become more complex so other varialiles w
need to be calculated.

7.3 Finding the Boundaries

To calculate the required variables, the governing patrtial
differential equations must be solved and so the boundary
conditions for each equation must be specified. When the flow
specification was produced the boundaries were definrirs of
the geometry of the flow domain, and now we must find these
boundaries in terms of the mesh that is being used.rfvat/es
defining the boundaries as a collection of cell or elerfess.

7.3.1 Boundaries for Meshes With A Regular Structure

If the mesh has a regular structure, a knowledge of ta lo
coordinate system (see Section 6.3.2) can be used to dsthefa
indices i,j,k. These indices denote the position of a adtlimthe
mesh structure and range from unity to the maximum nuofber
cells in each of the local coordinate directions. Theallooordinate
system can also be used to define the faces of a thkihwie
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mesh. Looking at Fig. 7.1 we can see a mesh with a regular
structure shown in terms of its local coordinate systeach cell of
the mesh has six faces and a typical cell is showniisiflaces
labelled with the points of a compass. Hence the faeesaamed
North (N), South (S), West (W), East (E), Top (T) &attom (B).
The first four names are fairly standard,being used Wide range
of CFD programs, but the last two are also known as Hgland
Low (L) in some programs. For example, the face of thelua is
at the most positive local x-direction position, in the i of
increasing the index i, is the East face and the one aidbe
negative local x-direction position is the West face.

Meash in local coprdinates

Figure 7.1. Use of local coordinate system

We can also see, by looking at Fig. 7.2, that any planelisfwill
have a constant value of either i, j or k, and thatetttent of the
plane can be defined by knowing the limits the other two indices
The patch of cells shown in Fig. 7.2 has a constanewaflthe

index i and the limits are defined by jmin, jmax, kmin and kmax.
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Also the faces of the cells in the patch shown are ipoiséive
local x-direction and so they are all East faces. Byguthis
notation a set of patches can be defined on the boundattes of
mesh. These patches have to be defined for all the ssivdEzre
the boundary conditions are not automatically specified by the
solver program.

It is worth remembering that when defining a patch dffaees on
a boundary, it is sensible to define patches that wilklanly one
boundary condition type applied on the patch for each partial
differential equation. This means that the whole patigihirbe an
inlet or an outlet, but not both. By doing this it is slenfo specify
the boundary condition that applies on a patch by a single
command.

Local coordmate axes

Figure 7.2, Defining a patch of cell faces

7.3.2 Boundaries for Meshes With An Irregular Sructure

When a mesh has an irregular structure the problem ofinigfine
boundaries becomes much more difficult. Actually findingdsk
faces that are the boundaries of the mesh is quitglgfiaward, as
we shall see. It is the collecting of the various celefinto groups
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that are suitable for the addition of the same boundary to@mdi
that is difficult.

Two pieces of information help us to find the cell faced &éne on
the boundary of the mesh. First, each face of a cetliguely
defined by the nodes that are on the face and, secondctsedn
the boundary of the mesh can only be associated with dne cel
whilst those internal to the mesh must be associatidtwd or
more cells. This is shown in Fig. 7.3, where it is cteat the
internal face is common to the two cells and that fterpeal faces
are only related to one of the two cells.

Non-shaded faces are boundary faces

Internal face

Figure 7.3, Internal and boundary faces

The process of finding the faces that are on the boundarynash
is called a free-face check. The algorithm used to daghghown
in Fig. 7.4, from which it can be seen that eachisalbnsidered in
turn. Then each face within a cell is found in termthefnumbers
of the nodes attached to it. A unique label for each dadhe cell
is then found from these node numbers. Each of these faale la
then checked against a list of the face labels storadiatabase.
This database is created as the process is carri@hduecords the
number of cells that a given face is attached ta.féice label does
not exist in the database then an entry recording the amldbel
is made in the database and the count of occurrencles fafde set
to unity. If the face has been listed before the caimareased so
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that it reflects the number of elements associatéutwe particular
face. Once all the faces on a cell have been procdssed hew
cell is chosen, and after all the cells have beenegesd the
database will be complete. By checking the databass, @ be
made of all those faces that are attached to only oneetefirhese
must be the faces on the boundary of the mesh, and tbéfestes
is known as a free-face list.

start

}

cell —n

¢

face =1 —

determina uniqua face label ——————

|
yes — face in database ? j”o

ackd face to databasa
set countes =1

last face?
YES | |11|:|
last cal fare = face + 1
yes I no

stop call =cell + 1

mererTent courder

Figure 7.4. Algonthm for determinatian of free-faces

Once the free-faces have been identified, they canduped into
the required sets of faces for the different typdsooindary

conditions. This is usually done by displaying the faces ifré&se
face list on a graphics screen in a variety of wayese include:
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« a hidden-line display, where the user sees the faces just as
they would be seen if they existed physically. Thafaises
that are behind other faces, as seen be the viewer, are
hidden from view.

« adisplay of the faces within a given volume.

Once the displays of the bounding faces of the mesh hawue bee
produced the pointing device of the terminal or workstataonlme
used to pick out the faces. This can be done either fafaebyor
whole sets of faces can be picked by placing a window on the
screen and noting the faces that are within the windove. ighi
illustrated in Fig. 7.5 where we can see a simple méshan
irregular structure. The flow inlet consists of the ninee$alabelled
in the left hand view. These faces could be picked manusiihg
the cursor on the display screen, but, by changing the vidwve of t
mesh to that shown on the right hand side of the figure, a
rectangular window can be defined using two corner points as
shown. Then all the faces that are wholly within the windbe,
nine required faces, can be labelled by the pre-processmirzg
boundary faces. This windowing method has great advantdges w
dealing with large numbers of boundary faces.
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Figure 7.5, Finding houndary faces on the screen

7.3.3 Grouping Faces Together

Regardless of whether the mesh has a regular or anlareg
structure, the boundary faces must be grouped togetheverst @f
faces using the methods we have just described. Eachfaeesf

can then be given an index that will allow the set to lz¢a@ to a
boundary condition. Sometimes, the boundary condition on a set of
faces will be unique to that set, however, in some cHsesame
boundary condition may well be applied to several setaadst. In

this latter case, each of the sets can be given theisdexeand

then the index can be linked to the given boundary condition.

Finally, it is useful to know that some CFD solvers Wil all the
cell faces on the boundary of the mesh. This list aédacan then
be compared to the boundary faces that have been spéuified
user. It is common for any unspecified boundary face®to
assumed to be solid walls. This can save a greabtieéibrt for
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the user if the mesh is for a flow problem such as a comple
internal flow. These meshes can have multiply connectesbpes,
the boundary faces of which can be very difficult to viey. B
considering all unspecified faces to be solid wallsuter does not
have to specify these faces and the saving in effatgelif this is
done.

7.4 Defining the Boundary Conditions

Now that we know where the boundaries of the mesh are;nrst

of the cell faces, and now that we have grouped them ajgespr
we have to consider which boundary conditions should be applied.
For each partial differential equation that has todbeesl, the
numerical method that is used determines which boundary
conditions can be specified. In some cases one particular bgunda
condition must be specified, such as the specification ofeloeity

or pressure. In other cases, certain conditions at a bouwdary
happen naturally if nothing is specified there. Oftenstfevare

will predict a flow which has the derivatives of the velpcibrmal

to a boundary calculated as zero if no other specibcasi made.

Of course, if the analyst wishes, such conditions at thadary

can be changed by specifying the appropriate values.

In most CFD problems several different types of boundary
condition are usually applied. Boundary conditions were discussed
in Section 3.5.4, but a summary of the possible types is isten

for completeness. When using a SIMPLE-like algorithm the
common boundary conditions that are applied come from:

« the momentum equations, where the velocity components
can be specified on a boundary. If this is not done then the
derivatives of the velocity components in a direction
normal to the boundary will be automatically set to zAso.
this is the required condition at a plane of symmetry,isind
often the required condition at an outlet, this automatic
specification is extremely useful.
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the pressure correction equation. This requires that&ss m
flow through a boundary is specified or it will be given as
zero; and it also requires that the pressure is fopebeit

some point in the flow domain. This latter requirement
comes from the nature of the pressure correction equation,
which can only relate the derivatives of the pressure, not
absolute values of pressure. Consequently, if the wdlue
pressure is not specified at some point then the pressure
solution is singular and cannot be found. A further
complication in specifying the pressure is that at places
where it is specified the continuity equation does not hold.
This comes about because the continuity equation is not
enforced at a point if the pressure is fixed at the past,

the specification of the pressure overwrites any information
about the continuity equation at that point. If the contynuit
of the flow is not strictly enforced then fluid cankaato

or out of a system through a point where the pressure is
specified.

Whilst these are the main boundary conditions that come fiem t
partial differential equations, flow problems are oftehdescribed
in such terms. For example, during the initial specificadf the
problem, discussed in Chapter Five, we might have decidé¢dht
boundaries should show the following characteristics:

a solid wall with a turbulent flow over it. To model this
accurately requires many points through the boundary layer
as the shear at a solid wall in a turbulent flow is much
greater than that for a laminar flow. The computational
effort required to do this can be reduced by assuming that
the flow velocity varies in a logarithmic fashion throuph t
boundary layer, as found in experiments. This was
discussed in Chapter Three. Then empirical approximations
to the values for the velocity at points just away from the
wall can be used. Similarly, the boundary conditiongter
additional turbulence parameters, such as the turbulent
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kinetic energy and its rate of dissipation, can be set in a
automatic way to some empirically-derived values.

« afree surface. Here, the fluid pressure is fixed butitie
velocity and the shape of the boundary are not known.
These surfaces occur, typically, when we model the surface
of a liquid in contact with air, for example when cddting
the flow around a ship. Special CFD programs can handle
these boundaries, but if the surface shape does not have
need to have the effects of waves modelled then we can use
a symmetry plane as an approximate model of these
boundaries.

« moving walls, such as a piston in an internal combustion
engine, where a solid surface moves in the flow.

« aninlet with a turbulent flow coming through it. Here the
turbulence parameters are convected into the fluid flow
domain and the levels of the variables that are brought in
must be specified.

Some examples of the application of boundary conditions will be
given when we look at the case studies in Chapter Temehie

will see that it is usual for the common boundary conditypes to
be pre-programmed options of the software.

At all the boundaries, it is possible that a given botyndandition
may apply for only a fixed amount of time. This couldthe case if
the problem is time dependent, for example when modelling the
opening or closing of a valve. In these cases, for each phcells

or each boundary index, the CFD pre-processor can be used to
assign the appropriate boundary condition and the duration of its
application.

7.5 Defining the I nitial Conditions
Many solution algorithms require that some form of inifliav
field is specified for the solver. This could be duéh® flow

actually being time dependent, where the initial statbeof t
variables is required to start the calculation, apoiild be due to the
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CFD solution algorithm using a quasi-time-varying solution
algorithm to calculate a steady state solution. Equtdé/non-
linearity of the problem will demand some initial guegstie
variables which will have to be supplied either as a sefidsfault
values or by the user. Chapter Three discusses thesesfacto

In all cases any initial flow field must be specified évery cell in
the flow domain. Usually, the specification of the initial coodis
is fairly straightforward, as some simple flow fieldn be given
such as the flow being at rest with zero pressure evergvaner
some uniform fluid motion could be specified such as tha
calculated from a potential flow solution. Such a soluiscan ideal
flow solution which would occur if a fluid had no viscosayd
could not be compressed. Sometimes the initial conditions are
specified for groups of cells with a constant valua wériable
being set within each group.

If turbulence variables such as k and epsilon are beingtiused
they are usually set to a small positive value or to s@alestic
value. This is done to prevent an error occurring duriag th
calculation procedure where the program attempts to divideroy z
when these variables are being used. Ways of calculagngjze of
the initial magnitude of these variables will be discuss&thapter
Ten when some simulations are performed.

7.6 Using User-Gener ated Subroutines To Influence The
Simulation

Each pre-processor will allow the user to specify the ptigse
boundary and initial conditions for a wide variety of flproblems.
This is usually sufficient for most CFD simulations thalt be
calculated. However, there will always be an exceptighisoand
sometimes the user will want to define some informatian ighnot
standard. To allow this, some CFD software systersvalsers to
write their own computer programs which can influence the
workings of the solver.
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One common way of doing this is for the user to write some
FORTRAN subroutines that are linked into the solver progam
lines of FORTRAN code can be written into some generasacc
subroutine that is provided by the CFD software supplier. This
subroutine is then compiled and the object code linked with the
main solver program libraries to provide a new, modified solver
program.

This might sound straightforward but in reality it isyeifficult,
as the user has to find out so much about the way the salver h
been written. Users should be extremely familiar wiDC
simulations before they embark on writing their own safenand
embedding it into the solver. This is a technique for dpee in
the use of CFD.
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8 OBTAINING A SOLUTION

As we have now created a mesh to describe the geomehy of
flow domain (see Chapter Six) and also specified the piiepef
the fluid and the boundary and initial conditions of the prol{se
Chapter Seven), the actual flow problem is completely defined.
This means that the CFD software should have all tloermation
that it requires about the flow. We are nearly readytatine solver
program and obtain a solution.

This chapter looks at the final preparation of the dataland
running of the solver. In particular we will discuss:

« how to set up the data for the solver. As the simulation is
achieved by a numerical transformation of the governing
equations, we must specify the information that is redquire
to control the numerical solution algorithm. Further,
administrative information such as the form of the output of
the solver program must be specified.

« running the solver and then analysing the output to identify
any problems that have occurred. These can then be
rectified before running the solver again to obtain a bette
solution.

We mentioned in Section 4.1 that the whole analysis proases®ot
be carried out by just executing a list of tasks one #fteother.
Sometimes we must run the solver, check the results and then
rebuild the computer model so that the simulation is improved.
Often, the production of a good simulation will be a contigu
process of trial and error.

8.1 Final Data Preparation
8.1.1 A Note On lterative Processes

When using a CFD package the details of the numerical @oluti
process will usually be hidden from the user. However, some
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features of the process are common to all packages and thalsson
that have to be used are often similar, even though thesvaf the
control parameters may be algorithm- or problem-speaiftwth.

In particular, as we saw in Chapter Three, the non-lityeafrthe
equations forces the solution process to be iterative,diegarof
whether the problem is time dependent or not. This meanartha
initial solution, normally a guessed solution, is requatethe start

of the solution process, and then the numerical equatienssad

to produce a more accurate approximation to the numericall
correct solution, which is one in which all the variablasfathe
governing equations. This new approximation, the updated solution,
is then used as the new starting solution and the processested
until the error in the solution is sufficiently small.dBarepetition of
the solution process is known as an iteration.

Sometimes during an iterative process the updated solutiba a
end of one iteration can be very different from the soluicine
start of the iteration. If we consider Fig. 8.1 we ce& a graph of
velocity against time. Let us imagine that we have a nigaie
scheme that predicts the velocity V sub {new} at some time
DELTA t ahead of the current time by using values ofciimeent
acceleration a and the current velocity V sub {old} infiiewing
way:

Voew ~¥oid _
— A& ¢
8.1)
or
Vrzew = Vﬂuld + ﬂ.l
8.2)
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which is a first-order method in time. If we know both therent
acceleration and velocity then we can predict the new vel@oid

so given the new acceleration and velocity we can marefafd in
time finding the velocity-time relationship. Looking at thgutie

we can see the actual velocity-time relationship and two
approximations bases on the above equations. In both of these the
initial acceleration is used to predict the velocitys Itlear from

this that if the time interval is small, say DELTAub 1, then the
error epsilon sub 1 between the predicted velocity and the actual
velocity is small, but if the time interval DELTA t s@ls large

then the error epsilon sub 2 is large. Similar errorsocaar when
carrying out a CFD simulation and if the error gets eugela

during the solution we will have a very inaccurate flow soluand
convergence of the solution will not be achieved (see Section
3.4.1). So that we can see whether or not this is oogre need a
measure of the error of the solution.

| _Iniial slope
£a

=

g é \h:‘h.lal
'y,
_+_

—=] [a-aty Time
AL

Figure 8.1. Errors in prediction
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Fortunately, the numerical equations that we wish teesthn also
be used to find such a measure of error. These meaduamsracan
be used to see if a solution process is converging, andrthey a
known as residual errors or residuals. At the end of ¢action,
the latest solution can be used to generate all the tertine
various partial differential equations. For example|litree terms

in the momentum equation, equation 2.8, are placed on thetedt
side of the equation and the individual components of the equation
formed from the solution for the velocities and pressiiner) these
terms can be summed and the sum should be zero. As uhiersol
is only an approximation to the required values of the vasalihe
sum will not be zero. It is this sum that is thadeal error.

As the solution process progresses from iteration tatiberehe
residual errors from each equation should reduce. If thegdice
then the solution is said to be converging. If the resichedsme
ever larger then the process is said to be diverging. Mdst CF
solvers write the residuals to a datafile or even tadheinal
screen at the end of each iteration. This enablescl gbeck on
the progress of the solution to be made.

If the solution scheme is time dependent or quasi-time deptenden
then the solution at the end of each time step needsdonverged
before moving to the next time step. This can mean controlling
several iteration procedures. As we saw in Section 3.bel, o
iterative procedure might solve the simultaneous equations
generated by linearising the partial differential equatitires,

second iterative procedure finds a solution at one time stép a
accounts for the non-linearity of the problem and a fieahtion
procedure, if required, moves the solution through the diffeme
levels. All of these iteration processes need to be altedr

8.1.2 Controlling The Iterative Processes

To prevent the whole solution process from diverging, when the
residual errors become larger from iteration to iteratnstead of
becoming smaller, we must control all the iterative prosesse
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some way. In Section 3.4.2 we discussed the use of iterative
solution algorithms to provide solutions to a set of simutiase
equations. If these are used by the CFD solver progranttiben
controls are often built-in to the program, but occasionafhay
be necessary to provide values for the number of ibersthat are
to be performed in solving the simultaneous equations khsisve
values for the relaxation factors. In CFD calculatibns always
important to ensure that the velocity field, used innioenentum
equations, satisfies the continuity equation. This mdatsithen
using a SIMPLE-like algorithm more iterations are usesbtoe
the pressure correction simultaneous equations than aréoused
solve those from the momentum equations.

Turning to the control of the other iterative procedures, tw
methods are commonly used. For steady state problemsitigite
the equations which contain the time variation are og#rolt,
and so the solution generated by this type of algorithntchbs
controlled by using relaxation parameters. These take thieosol
calculated during the current iteration and scale ihabthe
solution used in the next iteration is not too differeairfithe
solution at the start of the current iteration. Thidase by using a
relaxation factor omega and the scaling of a variablegrhbe
calculated from

Prow = O + [1'03] P14

(8.3)

Here, phi sub old is the value of a variable at the sfafte current
iteration and phi sub calc is the value of the samebkei

calculated at the end of the iteration. The relaxation psogigen

in equation 8.3 uses these two values of phi to produceia vl

phi, i.e. phi sub new , which is between phi sub new and phi sub
old. The solution phi sub new then becomes phi sub old for the next
iteration. This scaling uses values of omega which avede®s zero

and unity and is known as under-relaxation. Note that if angeg
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unity there is no relaxation and that if omega is zero tien
solution does not change at all. Intermediate values of@ame
provide scaling between these extremes and enable th@user t
prevent divergence of the solution process. Looking at Fig. 8.1
again, a reduced value of velocity obtained by iternasind
relaxation would be more accurate if the time step watatge.
Note that the scaling is carried out for every valua given
variable, that is at each node or cell.

In CFD simulations where relaxation factors are reguioecontrol
the overall iteration process, the factors are usually apiiall
the variables, with omega normally being set in the rarigeo@®.3
for the pressure solution and in the range 0.5 to 0.9 for to the
velocity solutions. If the k-epsilon turbulence model is ubed
the omega values for these two equations are set to bartfeas
those used for the velocity solutions or to lower values nhesh is
complex and the cells are not near-cuboid in their shapdhben
relaxation factor applied to the turbulence variables mighe ho
be much smaller, say up to ten times smaller, tharetagation
factor applied to the velocity variables.

The second means of controlling the overall solution proséss i
use a time dependent solution scheme, even if the flow is krown t
be steady. Such a scheme mimics the physical changesfithat a
would undergo if it were changing with time, as the moulgl6f
the time variation smooths out the way in which the solution
changes from one iteration to the next. With time dependent
schemes the main controlling factor is the value of the step.
This is set to give as small a number of time steps ssipe whilst
maintaining a smoothly converging solution. For steady state
problems, only the converged solution, after what is effegtael
infinite period of time, is required and so the timgpstan be large,
but for transient problems, when the time variation isi&rest, the
time step must be small enough to model accurately the tampo
changes in the flow variables.
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It is difficult to give specific rules for calculatingvalue of the time
step that will always give a converging solution, as thelgiabi
criteria of the Navier-Stokes equations cannot be founlytanadly.
A time step of the order of the residence time t sub rasflafd
particle in a cell is often used. This is the time aiwd take a fluid
particle to move through a cell. For example, if a fiogdgtticle
moves in the x-direction, the residence time is given by:

'IJ"E.'Z

Ax
L
(8.4)

where DELTA x is the length of the cell in the x-directaomd U is

the fluid velocity in the x-direction. These values are foiond

some typical cell in the flow field. This works wellrfthe

momentum equations which calculate the velocity components, but
the time step may have to be reduced by a factor qfpsay

hundred for the other transport equations such as tbo$esf

turbulent kinetic energy k and its rate of dissipation epsilben

the standard two-equation turbulence model is used.

8.1.3 Other Solution Control Information

Having decided how to control the iteration processes tkat ta
place, we can now use the pre-processor to build up the ragaini
information that is required by the solver. As welllzes iteration
control information that includes the relaxation and titep s
parameters, we must give the solver some or all of the faltpwi

¢ the number of time steps to run. This will be one stéeif
solver is to produce a steady state calculation.

« the number of iterations to carry out within each tstep
whilst resolving the non-linearity of the problem.

« the number of internal iterations required in solving t
simultaneous equations (if iterative methods are used to do
this).
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limits on the residual errors. Using these limits prevents
computing effort being wasted in trying to compute the
solution to some ridiculous numerical accuracy. Once the
all the residuals fall below this limiting value the
calculations are stopped.

the form of the discretisation of the convection operator in
the momentum equations. Various methods were discussed
in Section 3.5.3. For CFD calculations that involve
complex geometry it is best to start the calculation @ith
discretisation which will be likely to produce a converging
solution. This can often mean that the solution will be
inaccurate due to the diffuse nature of the discretisad®n,
was explained in Section 3.5.3.

the data that the solver should store in files orentnotthe
screen. This data should include all the values of the
variables that are calculated so that they can bgsedl
with the post-processing program and also read again by
the solver program if the calculation has to be continlied.
the solution is time dependent several sets of solutions at
various times might be required. Also we will want to
check the residuals of all the variables and so these are
written to a file. As a further check on the convergence of
the solution, most programs allow the user to specify a
location in the mesh, say one cell or node, at which the
program will write the values of the variables at each
iteration or time step.

the destination of the data that is to be produced. Some of
this data will be written to datafiles, some will gothe
screen. The location of the files, perhaps a directory on
disk of the computer, will need to be known by the
software.

Once these choices have been made, the specificatiorspisce
completed by entering the values using the pre-processsmiia
cases the CFD software as supplied will not write or eadculate
some of the required data itself. In these cases thénasdo write
computer program subroutines that can be linked in to the solver.
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These subroutines are used to produce the required datehom t
information stored by the solver, and some ways of doinghiie
mentioned in Section 7.6. It should be remembered tlzaistthe
realm of the CFD expert.

When all the data has been prepared, the pre-processor can be
instructed to write the datafile or files that will Becessed by the
solver program and the solver can be run.

8.2 Running the Solver and Troubleshooting

The way in which the solver program is run will vary frpackage
to package. It is common, however, for a small set of computer
operating system commands to be written that will aaterthe
process. This can be done by either the user or the supipdiex
software. These commands make sure that the corretitesatae
accessed, possibly copying them to another machine ibther s
and preand post-processors run on different machines.al$ey
run the solver program and then they return the resudtsthl the
user-specified location if this is required.

At the start of any analysis, the user should instrucsoheer
program to perform only a few iterations. This enabiesuser to
perform convergence checks on the solution process by looking at
the values of the residuals either on the screen odatadile and
seeing if they are reducing or increasing. After runsimignething
like ten iterations the initial trends in the residudiswdd be clear.
If they are reducing the solution process is clearly convgrgnd
this is the desired situation, whereas if they are isangdurther
thought is required before the convergence properties of the
solution can be determined. Some typical graphs of theuadsi
value for one of the flow equations plotted against tinanumber
are shown in Fig. 8.2.

Often, there is a large increase in the residual valtiee first two

or three iterations, but this is nothing to worry abottéf residuals
fall after this, as shown in Fig. 8.2a. However, if tegiduals are
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still increasing after ten iterations then the diffeenin the
residuals from iteration to iteration need to be examiti¢de
difference is increasing from iteration to iteratitm process is
diverging (Fig. 8.2b), but if the differences are reducing the
process is probably converging (Fig. 8.2c) and it is likiedy the
residuals will start to reduce in value if the solwerun for more
iterations.
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Figure 8.2. [nitial trends in residual variation

When the process is seen to be converging then the pre-processo
can be used to increase the number of iterationsytb0y and the
simulation continued. At this point the solver must alstoleto

use the last solution that was calculated as the newalisdiution.
Hopefully, this solution was stored in a datafile & émd of the

first run of the solver program. As this prevents computes from
being wasted, do not use the initial values that werbefete the
solver was run. When the latest values of a solutionsed as the
initial solution, the calculation is known as a restaltudation.

If divergence occurs, then the first remedy is to checkdhgater
model for obvious errors. This can be done by reading atheof
input data that has been written by the solver program and by
meticulously checking the data stored by the pre-procesker. T
computer model should reflect the original specification e
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produced at the beginning of the analysis. If nothing alsvie
found then the next step is to change the relaxation faatding o
time step. When using relaxation factors, if the valuenoega for
pressure is already about 0.1, then the values for theityedod
the turbulence modelling quantities must be reduced. Usually the
turbulence variables must be relaxed more than the vwelatitl so
the relaxation factor applied is smaller. This processhahging
relaxation and time step values is very much a questibraband-
error and so it can involve running several initial setsagf10
iterations each with different relaxation values. toaverging
solution cannot be achieved, then it is probable that themms
sort of error in the computer model.

Common causes of divergence related to poor modelling, arel som
possible solutions, are:

« apoor mesh which has cells that differ greatly from a
cuboid shape. This is a typical problem if a finite volume
scheme is being used which has some terms in the
numerical formulation missing. These terms might
describe, for example, the non-orthogonality of the mesh as
detailed in Section 6.3.2. It is these missing terms that
should enable the calculation to be accurate on a non-
orthogonal mesh. Smoothing the non-orthogonal mesh
using a procedure that produces an orthogonal or near-
orthogonal mesh might help to overcome this.

« inadequate prescription of the boundary conditions, such as
not specifying the pressure anywhere. This has to be dealt
with by carefully checking the data defined with the pre-
processor.

« poor initial conditions, that are unrealistic and too far from
the the conditions that exist if the solution is converged.
One way of improving the initial conditions is to run a
potential flow solution first. Such a solution assumes that
the flow is both inviscid and incompressible. This, of
course, will not take into account any effects of flow
separation.
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« applying insufficient upwinding for the convection terms as
was discussed in Chapter Three. Smoothing the mesh might
help, but the use of a more diffuse upwinding scheme
usually cures the problem, at the expense of getting a less
accurate solution than would have been hoped for.

« the turbulence model. Running the solver with the simplest
turbulence model, i.e. just specifying an effective turbulent
viscosity everywhere should enable some results to be
obtained. These can then be used to start a new cadoulat
with a more sophisticated turbulence model.

If modelling errors are found they must be correctatieeby
changing the mesh or by using the pre-processor to modify the
input data. Then the solver can be run again and the solution
process checked all over again.

Eventually, it should be possible to achieve a convergedaalut
This is a solution where the residuals are several oofiers
magnitude lower than the maximum value recorded during the
solution process. Once a converged numerical solution has been
found all that we can be sure of is that the numksciation
satisfies the numerical equations on the mesh we haveaaisethe
order of accuracy. What we require is that the convergletien
will bear at least some relationship to the physical tioat would
be obtained. Usually, this is the case, but we must chatkhi#
converged solution is reasonable in the light of the expeaed fl
structures, as discussed in Section 5.1, and as illedtiathe
examples of Chapter Ten. The difference between theqahysiw
and the numerical solution could be due to one of the follpw

« an inadequate mesh density being used in regions of high
rates of change of the flow variables, for example in a
boundary layer.

« inadequate physical modelling of the flow, especially due
to the use of turbulence models which are too simplistic.
For some flows this is all turbulence models.
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« poor specification of the boundary conditions which have
overor under-constrained the flow, typically at an outlet to
the system where the pressure has been fixed as a ¢onstan
This restricts the flow if it swirls out through the @iths
the calculated pressure needs to be able to vary abeoss
outlet to provide the necessary centripetal force.

Sometimes it is possible to see these errors duringate
processing phase and we shall look at various examplbs af t
Chapter Ten when we produce some flow simulations. Finding
these errors is really a matter of experience.
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9 ANALYSING THE RESULTS

In the previous chapter we looked at how to obtain a setsafts
using the solver program. These results should be a codverge
numerical solution to the governing equations, produced héth t
appropriate boundary and initial conditions on a mesh tlsarides
the geometry of the problem. Remember that the solutiginicsly
a solution of the numerical problem not of the physicablerm,
and that the differences between these two could bedueh
things as an inadequate mesh or a poor turbulence model.

When the numerical solution is obtained it is necessary to
determine whether or not it bears some relationship tohtysqal
reality. If it is likely that it does, then the requiregthnical
information can be extracted from the results. This @ndpoks at
what the results of a simulation are, how computer grapaitde
used to obtain pictures of the results, how the solution can be
checked to see if it is likely to be reliable and fipdlbw the model
can be refined so that the required data can be obtaoradhe
results.

9.1 The Results Obtained From The Solver

When the solver runs it produces a large amount of Hatdas to
be analysed. This analysis might be undertaken so that cause
of divergence in the solution process can be identifiethatathe
quality of the solution can be examined or so that usedinical
information can be extracted if it is a converged solutiarst we
must consider what information will actually be availables
when we want to analyse the results.

Information can be produced by the solver in two maim$o
These forms differ in how the data is stored by the compltene
form the data is stored using an internationally agfeedat that
defines individual characters of data such as the lett¢he o
alphabet or the numbers 0 to 9. This form of data is knasv
ASCII data, after the committee that divised the d&tadard, and
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can be written to a terminal screen or stored itekhown as an
ASCII file. Each character has to be defined by one hygeegight
bits, of computer memory and so 256 different characterbea
specified. ASCI! files of data can be edited by text essors and
other software, and they are effectively machine-independsnh
means that the data can be transferred from one compuateottoer
computer, even if the machines are from different manufacturers
without any translation process taking place. Whilst mostputer
manufacturers use the ASCII standard, there are othailastds
such as EBCDIC which are used by a minority of manufacs.

Numerical data can also be stored in the second datsgetformat,
which is known as binary data format. There is a stahidarthis
method of data storage, but usually, in 1991 at least, ttteothef
storage is peculiar to each computer operating systeongputer
manufacturer. Each of these binary storage methods emehles
numbers, for example, to be stored by four bytes in sipgdcision
or eight bytes in double precision. Binary data is standies
known as binary files. These files are not machine-indepeadent
so can not be transferred from computer to computer witloooe s
form of translation process taking place. Sometimes wahen
workstation, for example, is connected to a mini-supepcen a
translation program will be provided by the workstation vertdor
facilitate the transfer process. By using binary fitestore real
numbers, there is a saving in the amount of storagereefj@s can
be seen from the number of bytes required to storereamber.

The type of information produced by the solver program can
usually be controlled by the user but it often consists of:

« values of the residual error for the various partial
differential equations that have been solved. These are
listed as a function of the iteration number or timp.skes
was explained in Chapter Eight these values give some idea
as to whether the solution is progressing to a converged
solution. This is usually stored as ASCII data so ithegn
easily be read later.
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values of some of the variables at a limited number of
locations, known as monitor locations, for every iteration
time step. This data also gives an indication of the pssgre
of the solution towards a converged solution. For time-
varying solutions it also gives a limited history of the
development of the flow with time. Again this is usually
ASCII data.

a complete list of the flow variables at all the nodes of the
domain or all the cells of the domain as appropriate for the
way in which the solver works. These lists, also known as
dumps of the data, are produced at the end of the solution
process, but the solver can also be instructed to produce
such a list at intermediate stages in the process.niiptst

be necessary if the results at several discrete times are
needed to describe a time-varying flow. This is hormally
binary data to reduce the storage space that is regbured
ASCII forms can also be requested to make readinigeof t
data easier, if the amount of data is small, orltmed

transfer between computers.

mesh data. This is sometimes produced by the pre-
processor but might be produced by the solver program. It
includes the coordinates of the points in the mesh and, if
necessary, the connectivity list. Depending on the CFD
package, such things as cell volumes and face areas might
also be stored. This data is usually held in binargnfto
reduce the required storage, but again ASCII data could be
used for the same reasons as those given for the flow
variable data.

some form of ASCII file that reports on the progresthef
solution. This file might include an echo of the input data
from the pre-processor so that the input actually used by the
solver can be checked, a repeat of the residual vahaes a
monitor data at each iteration or time step, any user-
programmed results, such as the pressure drop between two
points or the integrated values of pressure to give sunea

of the pressure-derived drag and lift on a object, asasell
accounting information such as the length of time tiat
solver took to run and the amount of disk resources used.
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In Chapter Eight we discussed how the residual errorbean
analysed and a converged solution produced. Now, in this chapter
we are concerned with how the flow data at all the nodesllisric

the mesh can be analysed. Large quantities of thisadataroduced
by a CFD solver, especially if the mesh is complex asdaharge
number of nodes or cells, as might be the case for an fizddistw
problem. Only when small test cases are run is it pestliead

the ASCII files that contain the solution and so falistic

problems we have to resort to the use of computer graphics
technigues to analyse the results visually.

9.2 Using Computer Graphics For CFD

9.2.1 Using Graphics Hardware

Before considering what can be done with computer grapliias le
think about the hardware that is required to drive thevso#é that
will generate the pictures as well as to display the mstur
themselves. A typical hardware installation will consisthe
following devices:

e ascreen or visual display unit (VDU) that is able to
produce a grid of points in a variety of colours. These
points are known as pixels as we said in Section 4.2.2. The
resolution of the screen is determined by the number of
pixels that can be displayed and most graphics screens c
display a grid of something like 1000 pixels in the
horizontal direction by 1000 pixels in the vertical direction.
If the display is monochrome then each pixel can only be
shown as either black or white, whereas if the display is a
colour device then each pixel can be displayed in one of
several colours. Typically sixteen colours or even two
hundred and fifty six colours are used. The screen cauld b
part of a terminal which is attached to a computer or it
could be part of a workstation.
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« a keyboard which allows the user to interact with the
software by typing commands and replying to questions
from the software.

« a pointing device which should enable a cursor to be moved

around the screen. This pointing device could be a mouse
which is a small device that senses movement either
mechanically or optically, or it could be a simple afetour
direction keys.

¢ a button box. This is used in the more expensive
installations to manipulate the picture. The box has several
knobs on it that can be used to rotate an existing picture
about any of the three coordinate axes, or to zoom in and
out or pan across the picture.

When the user runs the graphics software, the program should
activate the screen, keyboard, pointing device and buttombox
such a way that the user can develop an intuitive fe¢héor
manipulation of the results.

9.2.2 Using Graphics Software

The graphics software itself is usually supplied asgfatte CFD
software package and is known as a post-processor. Sosietime
however, this software is combined together with the pre-psoce
to form a single interactive program that is used for botating

the computer model and post-processing. Also, post-processors
from other sources such as finite element structural anegmight
be available and these can also be used.

These programs enable a user to see the geometry of the flow
problem, the mesh and the results of the simulation by prgluci
pictures of the available data, usually in colour. Displajfregdata
in a visual way condenses the vast amount of informatiatnet
CFD solver can generate into a usable format. As compaveer
becomes cheaper, graphics software is often run ondtitera
colour workstations which have sufficient display resolutmrtiie
task and also have enough of their own computer power to groduc
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detailed pictures in a reasonable time without having anangra
other users on the network.

By entering commands the analyst can use the CFD post-pirgges
software. These commands direct the software to buildeup th
required picture of the data on the graphics screen. &ever
commands may be needed to create a picture and, in asey, C
the analyst will want to generate similar pictures from amaysis

to the next. To prevent the user from re-entering a lengthof se
commands it is often possible for the software to read the
commands from an ASCII file. This file can be credigdhe user
with a text editor or it could be written by the softwiself in

some cases.

When generating the pictures, the stages that are followed ar
similar regardless of the type of data being displayed.didmay
process involves, first of all, displaying some part ofgeemetry
or mesh on the screen. This could be a collection didse
entities that make geometrical hierarchy, Fig. 6.6, @btbundaries
of the mesh or even some part of the mesh itself. Therpicture
is manipulated so that the required view is displayedrbehe
solution itself is shown. This final display might be sarhéhe
velocity data, shown as a set of vectors, or the contiflssalar
variables such as the fluid pressure or the turbulence nagelli
variables. These three stages; show the geometry, modifjethie
and display the results; can be performed in any drdleit is usual
to display the actual results last of all. As this postesseing part
of the analysis process is highly interactive, the useoé&n move
between these three stages in a seemingly random fashion.
However, for most simple cases, it will be most uséfiile order
given above is followed. The following sections deal with ezfch
these three stages in turn.

9.2.3 Plotting the Geometry

When the post-processing software is started it hasatbthe files
of results and mesh data. Then the user has to finegoéed
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view. One way of doing this is to plot some part of the géigme
normally a part of the mesh used in the solution process tlos
graphics screen. This can be done by asking the progrdisptay
the basic entities used to create the mesh, if it tegesa to this data
or the boundaries of the mesh or the mesh itself. Bxatiich of
these is used will depend on the capabilities of the CHriwvae
itself and the user's preference. A simple plot of thndaries of
the mesh is usually good enough at this stage.

Once some part of the geometry has been displayed, theanser ¢
begin to manipulate the view of the geometry so that thecpéati
section of geometry that is required to be the centietefest is
displayed on the screen. For example, in the next chapteilwe
produce the simulation for the flow about a car. One dragdavest
is the rearscreen and boot of the car where the flowatgsarom
the vehicle surface. To plot the results of the simulatidhigarea,
we display the outline of the car and then change the vighaso
only the required area in visible. Techniques for carrguigthis
manipulation of the view will be discussed in the next section.

Another use of the plotting of the geometry or mesh isiezk that
the geometry looks like the physical situation and also tokdiec
integrity of the mesh. By integrity we mean that tiesh should
both represent the required flow domain and be structorégki
correct way. The display of the mesh will show a useb#sc
cells or elements that have been used in the calculatomedure,
and so any significant errors in the mesh or bad modedliagtice
can be found.

The way in which the mesh is displayed depends on thibe mes
structure that is being used. If the mesh has a regulgilge then

the local coordinate system and the point or cell indicedeaused

to specify areas of the mesh just as was done in Séc8dh

Sheets of cell faces can be defined in this way anddisptayed.

On the other hand, if an unstructured finite elemeningefvolume
mesh is being used then the cells can be grouped in soyrenda

the group projected onto some cutting plane in space. Anotlyer wa
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of displaying the mesh is to draw only the free facab®imesh. In
the next chapter we will show how some of these methods can be
used.

9.2.4 Obtaining the Required View

Once the geometry has been plotted, the view of the geomayry
well have to be manipulated. There are an infinite nurobeays
of looking at any image and so there must be some means of
defining the exact view that is required. The picture orstneen is
drawn as if a single eye is looking at the object beingmlrd his
situation leads the graphics software to require thetas#efine a
few fundamental pieces of data. This data can include things
as:

« the target point, which is the point in space at which ylee e
is looking.

« the eye position, which is the point in space at which the
viewing eye is placed.

« the up-direction, which defines where the top of the picture
should be.

« the viewing area, which enables the apparent size of the
objects in a view to be specified.

Looking at Fig. 9.1, the target point is taken to be abtign of a
set of Cartesian axes. This target is shown being vieyedsingle
eye which can be placed in two different positions.abifvalues
are always given by the CFD software for the initial djtion of
both the target point and the eye position. These could be
something like the origin and a point on the x-axis, such as eye
position 1, respectively. When plotting data that reledes
engineering work, the eye will normally be at an infinistahce
from the target and so the effects of perspective arseot This
means that even though the eye position can be defined ad anpo
space the software will actually place the eye at infinityh@ same
directional vector that joins the eye position and the tgogstion.
So, it can be seen that it is the combination of thepegéion and
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the target point that defines the vector along which théomkes.
For some work, however, such as architectural drawingstinete
design, perspective effects can be produced by the sofanwdre
then the eye position will be the actual point in spaeehath the
eye is placed.

Eye position 2
v

2 = up-direction

TGTW\

x & Eys position 1

po 51ELOTS

Figure 9.1. Target and eye

Defining these two positions in space in still not sufficie®

specify the view of an object. Humans have a sophistidaalance
system and this gives us information as to which is thecaeért
direction and so where up and down are. Computers are not as
sophisticated and so they have to be told where the Jertica
direction is. This direction is also known as the up-dioectin Fig.
9.1, the up-direction is in the positive z-direction. A siengkample
of how the up-direction is used can be seen by considéréng t
example of the flow about a car again. We know that aocdr r
should be the furthest from the ground and so the up-directlbn wi
be from the ground to the roof. The vector definition of thi
direction, within our computer model, will depend upon the
orientation of the mesh and so upon the way the mesh wlas bui
For example, it might be in the positive or negative glabal
direction, or the positive or negative global y-directionthe
positive or negative global x-direction, or any one of a histher
directions. Consequently, we must tell the post-procesbkiah
direction the up-direction is, if the pictures that it praekiare to
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have the car in a realistic orientation. One command ysesadibles
this direction to be specified and some examples of thetedf the
command are given in Fig. 9.2.

If the up-direction cannot be specified to the post-proceasas,
sometimes the case, then the picture has to be oriebtatederies
of rotations about the three coordinate axes. This islysual
achieved by specifying the angles for each global cooelands,
X, ¥y and z, through which the axes are to be rotatesidifficult to
produce the correct view this way using a single commaner&le
attempts may be needed to get the picture right.

Once the eye position, target point and the picture orientatie
known, the display software can take the three-dimensiorafaiat
the geometry or mesh and draw it on the screen, in winditcourse
a two-dimensional representation. This can be done in ameoof
ways. The original way that this was done was tcsfam the
three-dimensional data into two-dimensional data usiegtst-
processing software. This two-dimensional data canlibguiotted.
Many systems still use this technique, but a more regaynof
handling the data is for the post-processing softwarent the
three-dimensional data to the display hardware, togetitletthe
current eye-position, target point and the vertical cgitgorh. The
transformation of the data from this set of three-dinwetad vectors
into a two-dimensional picture is then carried out withia t
hardware itself by a combination of both hardware anivaog,
known as firmware. This local transformation is extrenfiabt as
the firmware is dedicated to the task. Once the threestianal
data is stored by the firmware it can be manipulatedfurther
pictures very easily and quickly, and this is where theohtlibx,
mentioned in Section 9.2.1, can be used very effectivelyouifyn
the target point, eye-position or orientation, signalirgftrmware
to produce the new pictures so fast that the objectbeamved in
real time.
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Eyeis on +z-axis up = ~x

Figure 9.2. Semting the ‘up’-direction

Mew view

¥ Cursor-picket points

Figure 9.3, Loom ngein

Quite often, we wish to focus our attention on one parti@rea of
the model, for example to see the detailed flow aroundreercof

an object. This can be done by changing the target positetbthan
viewing area. The mechanics of doing this with the post-psoces
can vary, but there is nearly always a zoom command emteec
command. Figure 9.3 shows an example of the zoom command
being used. This allows a rectangular window to be placedlomer
current view by defining the two ends of one of the diagonatiseof
window with the cursor. The software then modifies the target
position and the view area to display the picture withirlithis of
the window. This is done whilst ensuring that the aspec oathe
geometry is preserved. The centre command works in asimil
way, but the user has to define the required centteeafi¢w view,
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together with the magnification required, as shown in &4y By
using these commands in the correct combination, the view of
mesh or the results can be infinitely varied.

When working with very complex meshes, and the associated
results, the shear volume of information displayed can byrieat.
The information content can be restricted by using the fatigw
techniques:

e
Original view higw vie -

x

L.

% New contre Jocation {cursor-gicked)

iMagnification set 10 22

Figure %.4. Centering and magnifying 2 view

« volume clipping, which enables the user to give limits in
the global coordinates x, y and z within which objects are
displayed, but outside of which they are ignored.

« suppression of hidden lines, which calculates whether
something that would be drawn is hidden from view by any
other object, such as, for example, a cell face. Ibtject
is hidden from view it is not drawn. The displays that ar
generated using this method are often called hidden-line
displays.

9.2.5 Displaying the Results

Now we have looked at how the geometry or mesh of the model ca
be displayed and we know how to orientate the view to give the
desired picture. Once this has been done we can add sonee of t
results to the picture. The results that can be viewaghigally
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have to be derived from the flow velocity data or from tladasc
data for quantities such as the fluid pressure and thelamnce
variables. This data is known at a series of points inespdaich
might, for example, be the nodes of a mesh or the centrbile o
cells.

With a mesh that has a regular structure the resafésan be
drawn for a sheet of cells or nodes, in the same wéyeamesh can
be drawn. It is worth remembering that this sheet n@ybe planar
in global coordinate space, as even a mesh with a regulature
can be curved in space so that it fits around an ofWéeen the
mesh has an irregular structure the display of resufistiso
straightforward. As there is no simple way of referrim@ group of
cells, many post-processors allow the user to define a gecahet
plane through the mesh onto which the results are interpoleted
plane is known as a cutting plane. Other ways of grouping cah
also be used, such as showing a hidden-line plot of thegesult
which displays only those results on the boundaries of thk, raes
displaying the results for a restricted group of cellsnaefiby
creating a list of cell numbers.

No matter which way is used to display the data, theee
essentially two types of results display:

« vector plots, which show the vectors relating to the velocity
results.

« contour plots, which show contours of the scalar variables
over the domain.

Dealing with vector plots first, the vectors are displayédin the
picture as arrows in two dimensions. These plots are whaee
when the so-called wind arrows are shown on weatherast®c
Plotting velocity information in this way can lead to fuming
displays being produced as information is lost. The artbafsare
drawn are the projections of a three-dimensional vectortivo-
dimensions. Take, for example, a vector pointing diremityof the
page, this would be displayed as a point. So that sonie dbst
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information can be retrieved, the arrows are oftenuraotoded to
denote the absolute magnitude of the vector which is the local flow
speed. Usually, red denotes a high speed and blue a sed afih
intermediate shades denoting the speeds in between. Thisaloes
work terribly well on monochrome terminals!

One other problem that has to be dealt with concernsnigéhlef a
typical vector arrow. Depending on the problem, the usenwvaitit
the length of the arrows to give as informative a disptagassible.
This means that the user must scale the arrows appropreteer
by letting the computer draw some arrows and then scaling tre
by giving the computer a typical velocity which might represent
say, ten per cent of the screen width.

For meshes which have very dense cell distributions the/sirro
may be so close together that too much is displayed andgs#iul
information is obliterated. This can be overcome by thevaoé
interpolating the velocity data on to a coarse, reguldraj points.
The user specifies the distance between the points gritheand
the arrows are drawn at the points. One problem wightyjpie of
display is that the true nature of the computed velocitgl tah be
hidden from the user. Sometimes it is better to dispiaydata at
the positions that it was calculated, and we shalliésethis is
when we look at some real data in Chapter Ten.

Turning to contour plots these are pictures of the linegjoél
scalar value of some variable plotted through the doriidiey are
similar to the isobars we see on maps for weather fstedattle
interaction is required to produce these plots, excepapsrio
specify the number of contours that are to be drawpically,
about ten contours will be calculated, and again thdsbewcolour
coded in the picture to show the value of the variable on the
contour. A coding scheme which is similar to that usedfer
magnitude of a vector is used in this case as well. Soregtithe
contour levels can be chosen by the user to give the reqaigeeky
This is done where several separate pictures of contoursdhbee
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produced to create the required display, and it provigdessistent
display.

A variation of the contour plot is to use a surface fibts is
generated by displaying a three-dimensional surface, tgattafi
which above a plane is a measure of some variable. Thabler
should be a function of the two dimensions that describpléme.
Effectively, the display shows a series of mountains ahelysa

9.2.6 Special Displays

All of the above is applicable to the production of two-dimensi
images of the data at a given point in time. Sometsneh
representations may not convey enough information to a@eer.
such situation is when the data describes a time-varitunation
such as the flow of air into a combustion chamber of adtake
internal combustion engine. To provide a better feel fordbelts
animation can be a useful display technique. If sevetalcf
results for say a scalar variable such as pressureecstored by
the solver, specialist software can read the data togettiethe
variation in time of the physical geometry and produce asefi
pictures at various times on the correct geometry foririee t
concerned. These pictures can be seen as the framesowfrey
picture and the display software can be used show theseepiatur
sequence to produce an animated display. This involves
considerable computer resources to ensure that the spaisglaj/
is sufficient for the purpose.

To overcome the two-dimensionality of images, three-dieas
displays are being made available. These show the user@ stere
image by interlacing two two-dimensional images the eydiposi
of which have been displaced slightly to represent theahusye
spacing. The interleaving can be carried out using alsabte
polarised filter and special glasses. In some systeenglasses act
as the filter and in others the glasses are passivénariitér is
attached to the display device.
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One final feature of the display of results that is comiwaglable is
the production of particle tracks. These show where the fluid
particles travel within the flow domain. They are produegd
integrating the velocity data at a point to show where thiicjg
will move to. Such displays are extremely useful in showieg
gualitative features of a flow such as vortices.

9.3 Checking A Solution

When analysing the results of a simulation, certain piete
information will be required. For example, we might nez&now

a prediction of the pressure difference between two pioiritee

flow domain for some physical system. Then slight geometrical
modifications might be made to the mesh and another CFDaslut
produced to find the comparable pressure difference for the
modified geometry. Another requirement might be the investigati
of the flow field structure at a series of places indhleulation
domain. Whilst the user can run the solver, obtain converged
numerical results and then find the required data,ishmot a very
satisfactory procedure. It is much better to add semnmediate step.
This step is the determination of whether or not the solution
produced by the CFD process is a reasonable one, s @fihigh
guality and is likely to resemble the physical flow. Théthe
simulation is reasonable, the user can find the spefzte that is
required and have some confidence in the findings.

Some of the following features of a set of results camsed as
checks on the quality of the results:

« the flow should look qualitatively correct. For example, it
should flow in the directions that might be expected.

« where boundary layers exist the results should show a
velocity change that resembles that in a boundary layer.
Near a stationary wall the velocity vectors should stimat
the velocity changes with the distance away from the wall.
The velocity should be seen fall from some valueadiat
well away from the wall, the free stream value, t@zsr
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the wall. This should take place over several cells, perhaps
five or more. If there are less cells than this insie
computed boundary layer, then the mesh is too coarse and
should be refined near the wall.

« the mass of fluid entering the domain should equal the mass
leaving the domain. This is often calculated by the program
itself and reported in an ASCII file to the user.

« at points where the pressure is specified, the veloclty fie
should be smooth. At these points the coontinuity equation
is not satisfied and so fluid can leave or enter theagiom
a non-physical way. If this can be seen to be happenisg it
clear that the fluid mass is not being conserved in dveral
terms.

If these simple checks show that there might be problerhstinat

quality of the results then users should consider checkingitipeit
data and changing their models, if necessary, before reagitire

solver program.

9.4 Refining A Computer Model

If it looks likely that a model must be refined, a user ncossider
the advantages of producing a better prediction against the cos
constraint of repeating the whole simulation process. @ttita
even crude models can give large amounts of new and useful
information to a user. This might prove adequate for the gego
of some users but not for others. It all depends on thecafiph
under consideration.

The process of refining a model might include any of tHeviahg:

« increasing the density of mesh points in a given avdhat
the changes of the flow variables in that area can be more
accurately captured, for example, in a boundary layer.

« improving the physics of the model, such as would happen
if a more suitable turbulence model could be used.

186



C.T. Shaw, Using Computational Fluid Dynamics, Prertiat, 1992

In terms of effort, the first of these involves a laageount of work,
as it would involve rebuilding the mesh of the domain, either by
repeating one of the mesh generation processes that aneettac
Chapter Six, or by using an adaptive meshing process. Once the
mesh is built the fluid specification within the pre-prooessd the
setting of the boundary and initial conditions has to lbeechout
again, transforming the data generated as part ofitjeal
specification process onto the new mesh. Then, finally, the
numerical control procedures have to be repeated bitfesolver
can be run.

A systematic way of increasing the mesh density fmeah with a
regular structure is to double the number of cells ah ed the local
mesh directions. Similar refinement schemes can alsarbea out
with unstructured meshes by, for example, placing a newatode
the centroid of each cell and then remeshing. With themesh a
solution is calculated, and the results obtained. Whendgsults do
not vary in global terms from one mesh refinement to thethext
the results are said to be mesh independent. Whilst wklwo
always like our results to be independent of the meshfsizeyany
industrial problems this is not always possible as theti@nts in
terms of cost or time or computer capacity are tootgrea
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10 SOME CASE STUDIES
10.1 The Examples

In Chapters Five to Nine we have discussed the varioussstage
the CFD analysis process. Each of these chapterssagtisasic
guide for an individual stage in the process. The timenbascome
to demonstrate how the whole process is used to produce a CFD
simulation. To do this we will look at three examplesttshow the
CFD analysis process being used. By going through thesgptes

in considerable detail, it is hoped that the analysisgg®can be
brought to life and some of the realities of carrying outthedysis
process can be conveyed to the reader. The three examples tha
will look at are:

« asimple laminar flow. To illustrate the basic procedures
we will look at predicting the two-dimensional laminar
flow between two plates. Simple examples such as this a
often used to test a new CFD program and to give the use
some confidence that the program produces accurate results
compared to known analytical solutions. Also, they can be
used in the training of CFD users as they require vighy li
computational effort to produce results.

« the flow of air over a vehicle. In this example, we sifypli
the three-dimensional problem of calculating the flow over
a car by considering the flow to be in a two-dimensional
plane corresponding to the vertical plane of symmetry. The
flow is turbulent, however, and so we have to think about
how to model the effects of the turbulence on the flow. To
discretise the flow domain we use a mesh which has a
regular topology, i.e. we use a structured mesh, but the
mesh is distorted to fit around the surface of the vehicle.
Having looked at the two-dimensional problem, some of
the results from three-dimensional simulations will be
discussed together with their implications for the use of
CFD.

188



C.T. Shaw, Using Computational Fluid Dynamics, Prertiat, 1992

« the flow of water around a combustion chamber. This
example considers a three-dimensional flow in a complex
geometry, such as that found inside a water-cooled piston
engine. Again the problem is simplified in that the flow
around a single combustion chamber is modelled. In this
problem the turbulent flow through an inlet, a cooling
chamber and an outlet is modelled as a fully three-
dimensional flow using a mesh that is essentially
unstructured.

These cases are described so that the reader carastg row the

CFD solutions were produced by using commercial softwaddogt
following the analysis process that has been describibe in

preceding chapters. By studying these examples you should become
more familiar with the tasks that need to be perémrduring the
analysis; that is the tasks of flow specificationsmbuilding,

setting the fluid flow parameters, controlling the nunadric

solution, running the solver and analysing the results.

10.2 T he Softwar e Packages

All the cases have been run using commercial CFD software
although the meshes for the two turbulent flows have been built
using simple, locally-generated computer programs. For czssh
the operating system commands that have been usedtterun
programs have not been given as these are often speafic t
particular type of hardware; but the commands that haveuseeh
to set up the simulations within the software packages leee
given. This has been done to give the reader a feel foyphe of
command that need to be issued, not to give a tutoriakiuse of
the software. In fact, the syntax of some of the commuauiltis
probably change before this book is published, and so therreade
should be very wary of using the commands listed here. The
reference guide or user manual of the particular CFD aoé&w
package should always be consulted when creating the computer
model for a simulation.
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Two CFD software packages have been used to generatevthe f
simulations discussed here. The packages used are:

« PHOENICS. This has been available since 1981 and is
written by CHAM Ltd. of Wimbledon. It is a CFD softwear
package which uses the finite volume method to solve the
governing equations on a staggered grid which has a
regular topology. As it was one of the first packages to be
available, it can be used to simulate a very wide iade
physical problems.

« STAR-CD. This is written by Computational Dynamics
Ltd. of London and is a CFD software package which uses
the finite volume method to solve the governing equations
on a non-staggered grid which can have an irregular
topology. This capability to deal with an unstructured mesh
is achieved by using the Rhie and Chow algorithm which
was mentioned in Chapter Three.

These CFD packages have been used with the permissiom of
authors and it is not the intention of this book to drawamsons
between the two packages. Each of these packages has unique
features and they are both used here solely to give tofdedw
different packages can be used to produce flow simulatioract,

if a user follows the simulation process that has beensgbied, the
CFD package might be thought of as being reduced to thefrale
translator, translating the flow specification intcoant that is
understood by the solver program and then translating the
numerical results into a form understood by the user.

It must be recognised that the needs of users vary as rey@do
solve many different types of flow problem. This meard &ach
user, or commercial organisation, must decide whatliaisthey
require the use of a CFD software package to give theavely
case the requirements that are decided upon will beefiffebut
the process of making decisions can be standardised. Thigmpro
is addressed in Chapter Twelve, where the issuesdternine the
specification of a CFD package are discussed.
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10.3 Laminar Flow Between Parallel Plates

10.3.1 Producing The Flow Specification

Figure 10.1 shows the flow situation for this simple example. W
can see that two thin parallel plates, of length L chdistance h m
apart, are placed horizontally in a flow which, well upstneof the
plates, has a constant velocity in the horizontal directfahe flow
velocity is sufficiently small or the kinematic viscosgyfficiently
large, the Reynolds number will be low. If this is tlase then the
flow should be laminar.

Given that this test case is being run as a simpl@rigpexercise,
the first task in the production of a simulation is to edaswhat
will happen to the fluid as it passes between the pl&test.let us
assume that the plates are so thin that the flow ahethd pfates is
not affected by them. This means that we need only bestés in
the flow between the plates and the flow above the top pidte a
below the bottom plate need not be considered. From lilei$lowv
domain can be taken to be a simple rectangle. At thedefl side
the flow has a uniform velocity in the horizontal directioowng
from left to right and so this boundary is an inlet. plages are
stationary solid walls and so the velocity there mustdve. Hence,
there is a retardation of the flow at the plates dugsimous shear
which is generated by friction and two boundary layers@radd
on the plates as shown in Fig. 10.1. These boundary lageosne
thicker along the plates from left to right until they mergethe
end of the plates, the fluid leaves the domain and saghiehand
side of the rectangle may be taken to be an outlet.
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Figure 10.1. Flow berween parallel pharcs

This consideration of what happens enables us to seédéniet
flow is symmetric about the horizontal plane half-way betvteen
two plates, and so the flow domain can be halved for th@opes
of our calculations. Figure 10.2 shows the rectangular doamain
gives the four boundary types that will be used. These are a
stationary solid wall on the lower side where the velasiero, a
symmetry plane on the upper side where the vertical velocity
component is zero and the normal derivative of the horizontal
velocity component is also zero, an inlet with a uniféronizontal
velocity imposed at the left hand end, and an outletevtie
pressure will be taken to be uniform at the right hand end.
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Figure 10.2, Domain with boundary conditions

We must also decide upon the values of the density and tyscos
parameters. For simplicity, these will be taken to higyun each
case (i.e. rho = 1 kg/{m sup 3} and mu = 1 kg/ms). Hehee t
Reynolds number Re is given by

V., &
Re = PV inter ™ Iﬁm = Viger B

(10.1)

Finally, as the flow is a simple shear flow and none obthendary
conditions change with time, it is reasonable to assuméhida
flow itself will not vary with time and so will be stdy. This
completes the flow specification.

10.3.2 Some Analysis

We have already said that this flow situation can be asedtest
case to check the accuracy of a CFD code. This comes about
because, some distance after the two boundary layers rtiegge,
flow becomes one-dimensional. When this occurs the flonidstsa
be a fully developed flow, which means that the horizontal
component of velocity does not change in the x-direction and that
the vertical component of velocity is zero. If this flonsisulated
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using a mesh which is very long in the x-direction, therCthB
solver should produce results that are one-dimensional and the
results should be of the form that will now be derived.

When the flow is fully developed the Navier-Stokes equations can
be simplified. If the flow is steady and has the velocity
characteristics given above then the x-momentum equation
(equation 2.8) can be rewritten as

_g%,,%_

(10.2)

and the y-momentum equation (equation 2.9) can be rewrgten a

_%zn

(10.3)

Equation 10.3 shows that the pressure is a function of x anys@
when equation 10.2 is integrated with respect to y thespres
derivative can be taken to be a constant. This gives

Ju _ B
Mgy = gy e
(10.4)

where A is a constant or a function of x only. Further irggn
with respect to y gives

2
(10.5)
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where B is also a constant or a function of x. The wabfeA and B
can be determined by applying the boundary conditions for the
velocity at the two plates. We know that the horizontal wiloc
component u is zero at the plates, i.e. u =0 at y = ¢ anh,
where h is the distance between the plates, and so@ydatb
becomes

T T I TE

(10.6)
which describes a parabolic velocity profile.

Finally, we can calculate the mass flow in and ouhefsystem.
For an inlet velocity of 1 m/s and a density of 1 kg/{up 8}, the
mass flow per unit area is simply h and this must be tssrflow
at the outlet too. Integrating the velocity expression iraégn
10.6 to obtain the mass flow at the outlet:

h 1 3
1 A dp b
hzi“dyzﬁ{"' xT__&%T}
(10.7)

which can be rearranged to give an expression for theupeess
gradient

%[E=—12.|DEIJ:LLr

(10.8)

Equation 10.8 enables the pressure gradient for a fully qgeeklo
flow to be found for a given mass flow rate, and this tteen be
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used in equation 10.6 to give the fully developed velocity lgrofi
for the same flow. These quantities can then be compatiedhe
values calculated by the CFD program.

10.3.3 Building a Mesh

Having produced a specification of the flow problem, weroan
use a CFD program to produce a numerical simulatiolneof t
problem. The next step in this analysis process is to depuiea
suitable mesh and this part of the process is explain@dapter
Six. The domain and its boundaries are shown in Fig. 10.thand
mesh must fit within the domain in such way that the viana in
the flow variables can be calculated as accurately ssipe.

For the flow situation that we are considering, we knowtthee is
a boundary layer on each of the plates due to the shexring
fluid caused by friction. We also know that at some de#an
downstream of the inlet, perhaps a factor of ten timedist@nce
between the plates, the flow becomes fully developed and is
effectively one-dimensional. Whilst this takes quite aadisé to
occur, the velocity changes most rapidly near the inléhdn
vertical direction, between the plates, the velocity peasil
parabolic at the outlet and so it varies throughout théceért
distance.

For the problem that we are going to simulate we whi téne
distance between the plates h to be 1.0 m and the lengjé of
plates to be 20.0 m. Hence, the computational domain is 0.§m hi
and 20.0 m long. For our first mesh we will place tersda¢tween
the lower plate and the symmetry plane, and ten cells down the
length of the plates. To ensure that the rapid changesadnity at

the inlet can be captured, we will bias the mesh satbag cells

are placed near the inlet. Between the plate and the syynptete
we will use equal cell spacing, as we do not know where the
velocity will vary the most in the vertical direction.
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Having considered the layout of the mesh, we must work out how
to create the mesh data in a form suitable for the @®Bram. The
way that this is done will be specific to the CFD waite being

used. For this example we will use the package PHOENIf,

so, before we look at the creation of the mesh dataueat first
consider the software tools that make up PHOENICS.

PHOENICS is a finite volume program that is compriseddd
main components or programs. The first of these, naheed t
SATELLITE program, is a pre-processor; the second, dame
EARTH, is the solver program, and the third, PHOTON, is a
graphical post-processor. Initially, the SATELLITE gram has to
be given sufficient information for it to produce the diuzt
EARTH needs. One means of doing this is to prepare an ifgut f
for SATELLITE, which splits the input data into 24 grougss|lin
this file that the mesh data is defined. SATELLIT& @lso be run
interactively, allowing the user to create data or modifgtmg
data in any of the 24 groups. When SATELLITE is run, fies
produced for EARTH to read and, from this input data, EAR
produces the CFD solution in the form of further files, \Whace
usually binary files, and these can be accessed using ©NO
EARTH also produces some ASCII files which can be Batthe
user.

The input file for SATELLITE is known as the Q1 file,daseveral
lines can be used to define a simple mesh. First we deogte
upon the exact location of the mesh points. For this problemilive
change the labels of the coordinate directions from x dodzyand
y respectively, that is, we will take the directionvbetn the plates
to be the y-direction and the direction along the plateg tihd z-
direction. This choice of coordinate directions is deterthimgthe
internal structure of the programs that make up PHOENTG&se
programs calculate the flow variables in sheets of pamthe local
z-direction, taking one sheet of points at a time. Hbeelocal z-
direction and the global z-direction are the same (see @h@pj.
By carrying out the calculations in this way the nuniifgvoints
being considered at any one time is reduced from 100 to 1Bisor
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problem. Whilst such a reduction is not significant for thesh, as
the memory storage requirements for this problem aré, strean
mean the difference, when the mesh is much larger, betweaémg
sufficient computer memory to produce a solution and nahba
enough memory.

Returning to the generation of the mesh for this exammdiave
already stated that we will use equal cell spacing =tlee plates

and so the mesh points will be at the following valueg 6£0,

0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5. In the z
direction, the choice of points is more difficult, andrswill try

values which halve the available distance working froenctlitlet

i.e. we will use z values of 0.0, 0.03906, 0.07813, 0.15625, 0.3125,
0.625, 1.25, 2.5, 5.0, 10.0 and 20.0. Once we have decided upon the
mesh coordinates, we must build the mesh using appropriate
commands in the Q1 file.

Below, we have listed an extract from the Q1 file. Notd twhere a
line is indented by several spaces SATELLITE takes thedithe a
comment not a command. The commands the specify the mesh are:

TALK=t;RUN( 1, 1);VDU=TTY

GROUP 1. Run title and other preliminaries
TEXT(SIMPLE DEVELOPING FLOW IN BETWEEN
PLATES)

A Cartesian coordinate system is used to encapsulatézagular
duct

GROUP 2. Transience; time-step specification

GROUP 3. X-direction grid specification

NX=1

GROUP 4. Y-direction grid specification
NY=10

YFRAC(1)=0.05

YFRAC(2)=0.1
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YFRAC(3)=0.15
YFRAC(4)=0.2
YFRAC(5)=0.25
YFRAC(6)=0.3
YFRAC(7)=0.35
YFRAC(8)=0.4
YFRAC(9)=0.45
YFRAC(10)=0.5

GROUP 5. Z-direction grid specification
NZ=10
ZFRAC(1)=0.03906
ZFRAC(2)=0.07813
ZFRAC(3)=0.15625
ZFRAC(4)=0.3125
ZFRAC(5)=0.625
ZFRAC(6)=1.25
ZFRAC(7)=2.5
ZFRAC(8)=5.0
ZFRAC(9)=10.0
ZFRAC(10)=20.0

GROUP 6. Body-fitted coordinates or grid distortion

Looking at the beginning of this extract from the Q1 file, ¢hsra
single line which tells the SATELLITE to read the Q1 &led then
allow the user to interactively modify the data. Thendh& is
given group by group as follows:

e Group 1 - Preliminaries. A title for the simulation is give
This is printed on any ASCII files that are written by
EARTH and on any pictures generated by PHOTON.

« Group 2 - Time Dependence. Here, the transient nature of
the problem can be specified, but PHOENICS assumes that
problems are steady state unless told otherwise, and so
there are no entries in this case.
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e Groups 3to 5 - Mesh Specification. In these groups our
simple mesh can be defined. For this problem, the x-
direction is across the flow and so is not really neédied
the simulation. However, PHOENICS is a program that
must have a three-dimensional mesh and so there has be a
single cell in the x-direction. This is defined in Group 3 and
the cell will have the default width of one metre. Thelmes
in the y-direction is specified in Group 4 by setting the
number of cells (NY) to ten and by giving the coordinates
of the mesh points. Similarly, in Group 5, the mesh irzthe
direction is defined. This is all the information that is
required to define the mesh.

e Group 6 - Body-Fitted Coordinates. As the mesh is very
simple and not body-fitted, no entries are required here.

10.3.4 Setting the Fluid Flow Parameters

Having defined the mesh, we can proceed with the next stage
process and define the fluid flow problem. It is this pathe
analysis process that tells the CFD software whafiufde
properties are together with the boundary conditions anahitied i
conditions. This section of the process is explained in Chapte
Seven and involves translating the flow specification intmse
understood by the CFD solver. Again, an extract from thel@1 fi
follows:

GROUP 7. Variables stored, solved & named
SOLVE(P1V1,W1)

GROUP 9. Properties of the medium (or media)
ENUL=1.0
RHO1-=1.0

GROUP 10. Inter-phase-transfer processes and properties

GROUP 11. Initialization of variable or porosity fields
FIINIT(W1)=1.0
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GROUP 12. Convection and diffusion adjustments

GROUP 13. Boundary conditions and special sources

Wall

PATCH(DUCTWALL,SWALL,1,1,1,1,1,NZ,1,1)
COVAL(DUCTWALL,W1,1.0,0.0)

Inlet

PATCH(INLET,LOW,1,1,1)NY,1,1,1,1)
COVAL(INLET,P1,FIXFLU,1.0); COVAL(INLET ,W1,0ONLY
MS,1.0)

Outlet
PATCH(OUTLET,HIGH,1,1,1,NY,1,NZ,1,1); COVAL (OUTLE
T,P1,FIXVAL,0.0)

GROUP 14. Downstream pressure for PARAB=.TRUE.

It is these entries that determine the flow problem,thed
commands that are entered group by group are:

e Group 7 - Solution Variables. We need to determine the
variables that must be calculated. As this is a two-
dimensional laminar flow problem, the equations to be
solved are the momentum equations in the y- and z-
directions, together with the continuity equation. The
variables that we need to find to complete the solution are
therefore, the velocity components v and w, and the fluid
pressure p. PHOENICS can solve problems that involve
flows comprising of several fluid components or phases, as
discussed in Chapter Eleven, and so the entry herdtells
software which variables to calculate by listing tmeimes
V1, W1 and P1. These variable names specify that the
variables are those of the first fluid phase, which is thi
case is the only phase.

e Group 9 - Properties. We have already decided that the
fluid viscosity and density should both be unity and these
values are set here.

e Group 10 - Multi-Phase Flows. As this is a single phase
flow, no extra specification is needed here.
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Group 11 - Initialisation. In this group the initial conditions
can be defined. The specification of these conditions might
seem to be contradictory as the flow is steady anth o,
mathematical sense, the numerical solution should not
require initial conditions. Despite this, we specify tafe
initial conditions for the variables and these are theadl us

as a first guess by the non-linear solution procedure. For
this example we have defined the velocity component w to
be unity within the domain when the time is zero and we let
the other variables take their default value of zero.

Group 12 - Unused. No entries.

Group 13 - Boundary Conditions. Finally, in specifying the
fluid flow problem, we must specify the boundary
conditions of the problem. This involves specifying where
in the mesh the boundaries are and then applying the
correct boundary conditions at the relevant boundaries. For
this problem, the boundaries are shown in Fig. 10.2, where
we can see an inlet, an outlet, a solid stationaryawal a
symmetry plane. To identify the location of the boundaries,
PHOENICS uses the notation described in Section 7.3.1
and shown in Fig. 7.1. Hence, the inlet is a LOW boundary,
the wall is a SOUTH boundary, the symmetry plane is a
NORTH boundary and the outlet is a HIGH boundary. The
PATCH commands define the inlet, outlet and wall areas,
giving the limits of a patch in the local coordinate
directions x, y, z and the time t respectively. Note that
symmetry plane is not defined as this is the default
boundary type in PHOENICS. So-called COVAL
statements can then be used to apply the appropriate
boundary conditions on the given boundary patches. On the
wall the velocity component w is set to zero, at the ithle
mass flow and inlet velocity are specified and at the butle
the pressure is set to zero.
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10.3.5 Running The Solution

At this stage, all of the fluid mechanics parametettisfexample
have been defined, and so we can now set the parametters th
control the numerical solution. The remainder of the Qlidile
listed below, and it can be seen that some of the grangpsmpty
as no input is required and the default values will bd.uBlee
groups that do have entries are concerned with the cafitod
solver itself.

GROUP 8. Terms (in differential equations) & devices
DIFCUT=0.5

GROUP 15. Termination of sweeps

L SWEEP=100
RESREF(P1)=1.E-6;RESREF(V1)=1.E-6
RESREF(W1)=1.E-6

GROUP 16. Termination of iterations

GROUP 17. Under-relaxation devices

GROUP 18. Limits on variables or increments to them
GROUP 19. Data communicated by satellite to GROUND
GROUP 20. Preliminary print-out

ECHO=F

GROUP 21. Print-out of variables
GROUP 22. Spot-value print-out
IXMON=1

IYMON=2

IZMON=2

GROUP 23. Field print-out and plot control
IPROF=3
ITABL=3;NPLT=1

GROUP 24. Dumps For restarts
STOP
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The control commands for this problem are found in the fatigw
Groups:

« Group 8 - Terms in the Differential Equations. Here, only
one parameter, DIFCUT, is specified. This determines the
way in which the convection terms in the momentum
equations are handled. For this simple laminar flow
problem which is calculated on a rectangular mesh, the
discretisation of the convection terms should create very
few problems. If the value of DIFCUT is set to 0.5, this
tells EARTH to use a hybrid upwinding scheme, where the
local cell Peclet number is calculated and if ttw® or less
central differences are used, and if it is greatan tivo
upwinded differences are applied. Further details are
discussed in Section 3.5.3.

e Group 15 - Termination of Sweeps. In this group of data,
the number of overall iterations, or sweeps as they are
known to PHOENICS, is set to 100. Normally, far fewer
iterations would be run to start the calculation and citsck
initial convergence performance, but for this problem the
calculation is very robust and converges easily. The
reference residual values or RESREF parametergtre s
such that the calculation will stop automatically if theueal
of the residual errors from the equations falls below the
values specified.

e Groups 20, 22 and 23 - Print Out. In these groups, the data
that is written to an ASCII file is controlled. The HO
command suppresses the printing of the data read by
EARTH and the rest of these commands ensure that the
residuals are printed to the file at each iteration toaget
with the values of the velocity components and pressure at
one cell in the mesh. This cell has been chosen to be nea
the inlet so that the variation in the variable valueslza
monitored as the iterations progress. It is known as a
monitor location. As well as numerical values, simple
graphs of the spot values and residuals are printed.
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To run this model the following stages are carried outt,Ehs
SATELLITE program reads the Q1 file and then allowsutber to
check the settings of the data in each of the groups dtitesly.
Once the user is satisfied that everything is in ordier, t
SATELLITE program writes the datafiles that EARTHju@es.
Then EARTH is run and produces a set of output files. Sdime
these can be read into PHOTON for graphical anatysise ASCII
files can be read by the user using a browse facilitg>dreditor.

10.3.6 Analysing the Results

In Section 10.3.2, we derived some analytical results faildte
under consideration. These are valid near the outlet ofave f
where the velocity field is fully developed and one-dimendiona
Consequently, near the outlet, we can determine the ealaes of
the pressure gradient and the velocity profile that shoeld
calculated by the CFD solver program. From equation 10:& if
substitute for the viscosity and domain height, the pressudesgta
can be found to be:

%E ==12.0

(10.9)

and the velocity profile can be found from equation 10.6 as:

u =6.0 [}' - },2]
(10.10)

By comparing the output from PHOENICS with the expressions
above, we can obtain some measure of accuracy for ouricame
solution.

For this test case the mesh contains only one hundradaceliso it
is a manageable task to read the output files from PHOEMIC
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full. In Appendix A, an edited version of the output written by
EARTH is listed. This output consists of the mesh paatagthe
final values of the variables calculated within eaelh the
variation of the values of the variables at the monitcatioo with
sweep number and the variation of the residuals withpwee
number.

From the data listed in Appendix A it can be seen Hftdy the first
one hundred sweeps, the following information is available:

« from the pressure field data and the locations of the mesh
points, the pressure gradient near the outlet is -9.564. This
has been calculated manually, knowing that the pressure is
stored at a cell centroid.

« from the velocity field data, the W1 velocity component is
varying all the way down the mesh in the z-direction and so
the flow is not fully developed at the outlet.

« at the monitor location, the value of the pressure P1 is
rising steadily, the velocity component V1 has risen to a
peak and is now falling and the velocity component W1 has
fallen to a minimum and is now rising.

« the residual errors are all falling, but those for V1 @it
rose initially before falling.

The data calculated for the flow field suggests thaintimerical
solution is not that which is expected and the data fremtonitor
location shows that the solution is not converged. Howevehgeas t
residuals are falling, the solution is progressing satsfilicand
further sweeps need to be run to see whether a solutiobewill
produced which is numerically converged and also closanrto
expectations. To do this, a restart calculation has felfermed.
This is done by running SATELLITE again, and telling EARTH to
use the values of the variables that have previously bé=riatad.
The necessary command is RESTRT(V1,W1,P1) and this isednte
in Group 11. As one hundred sweeps have not produced a
converged solution, the value of LSWEEP is also increaséddo
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Once SATELLITE has written a new set of datafiEARTH can
be run to produce a further solution.

Again, Appendix A has an edited listing of the PHOENICS output
after what is now five hundred sweeps. The solution now yibakls
following information:

« from the pressure field data, the pressure gradient is now -
12.48.

« from the velocity field data, the W1 velocity component is
approximately constant with distance down the plates in the
columns of cells numbered 6, 7 and 8 in the z-direction.
This shows that the flow is becoming fully developed near
the outlet but the process is not quite complete as yet.

« at the monitor location, the value of the pressure P1 is
rising but at a reducing rate and so can be seen to be
converging. The velocity component V1 is again rising but
converging, and velocity component W1 has fallen to a
minimum and is now rising if only slowly.

« the residual errors are all falling.

This solution is clearly a much better one, the solution is
converging and the actual values are looking like those wedwoul
expect, even if they are not quite right. To improve theatitin

still further, or at least to try to, we can run theusoh for another
four hundred sweeps, restarting from the latest solutioainAg
Appendix A contains the results after this additional catmrsand
from these it can be seen that:

« from the pressure field data, the pressure gradient has
changed slightly to -12.55.

« from the velocity field data, the W1 velocity component is
approximately constant with distance from the plates in the
columns of cells numbered 6, 7, 8 and 9 in the z-direction
and so the flow is effectively fully developed near the
outlet.
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« at the monitor location, the value of the pressure P1 is
rising but at a reducing rate and so can be seen tdlbe st
converging. The velocity component V1 is falling but
converging and velocity component W1 is rising and
converging. In fact, the changes are magnified in the plot o
the values, as if we look at the last few sweeps, ey t
fourth significant figure is changing.

« the residual errors are all falling.

Now the solution is effectively converged and the accuradyeof t
simulation can be calculated. Table 10.1 shows the outtstitye
at the end of each of the three solution runs together éth t
analytical solution from equation 10.10. From this it can lee se
that there is only a small error, which is worse riearwall.

Table 10-1. Simple Ilow - Velocity Comparison
¥ Analytical Sweep 100 sSweep 500 Sweep 900
0.025 0.148 0.464 0.127 0.109
0.075 0.416 0.612 0.393 0.38H
0.125 0.658 0.156 0.639 0.639
0.175 0.866 0.%90 0.857 0.858
0.225 1.046 1.011 1.043 1.047
0.275 1.196 1.116 1.199 1.204
0.325 1.316 1.201 1.323 1.329
0.375 1.406 1.266 1.417 1.423
0.425 1.466 1.309 1.479 1.486
0.475 1.496 1.376 1.510 1.517
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PHOTON can now be used to produce pictures of the flow fihem
results. In Fig. 10.3 the velocity vectors can be seenthesd
picture has been created by using the following PHOTON
commands:

gridx 1

magnify grid 10

vector X 1

set reference vector

1.0

redraw
T -
- —
3= — . ——~
:’fﬂ%"—? —
= < J—
TFE=F =~ ——2 ——
B il — —
B "}r —F J— J—

Fig. 10.3. Parallel plates - velocity vectors.

When PHOTON is used, the default view has the y-direcgahea
up-direction and the z-direction goes from left to right. Tdis
exactly the orientation that we require and so no commeaeds
required to specify it. The first command that is giveswdr one
sheet of cells onto the screen and these are then madnyfeed
factor of ten with the cursor being used to put the cetiitdre
screen near the inlet. Then the vectors are drawn amdférence
vector set so that the length of a typical vector ishasvn. This
prevents the vectors being extremely long and filling theescr
Finally, the completed view is redrawn to give the pictlrewn.

From the figure, we can see that the velocity profile d@geinto
the fully developed profile as we move downstream from tle. inl
Also, a large vertical component of velocity is generatsat the
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junction of the inlet and the bottom wall. This is du¢h®
horizontal velocity component being changed rapidly in the z-
direction by the plate and so the flow must acquire a langieale
velocity component if the continuity equation is to be fatls

From these results we can see that this simple exaraplbeen
simulated with a reasonable accuracy. Changing the seettat
more cells are included could improve the simulation eafhgan
terms of the variation of the flow along the plates. Asony have
information as to what the analytical solution is fduldy
developed flow, i.e. near the outlet, we have no meackeuking
the variation of the flow variables along the plates. For, wesv
have gained sufficient information from this problem thatoan
move on to consider the next example which is slightly more
complicated.

10.4 Tur bulent Flow Over a Car

10.4.1 Producing A Flow Specification

For the second example in this chapter, we will considetwo-
dimensional situation that we have discussed already ipt&ha
Five. This example involves the simulation of the turbulent flow
over the longitudinal section of a car. In Chapter Five, we
considered this flow in some detail, producing the flow
specification of the problem, and so we can proceed imtedylia
build the computer model of this flow. The software that wé wil
use to produce this simulation is PHOENICS once agaththen
structure of this package has already been discussedilMise
this software in the same way as we did for the éxstmple, but
we must now consider modelling a turbulent flow as well asditt
the mesh to the surface of the vehicle. As a matterrebpal
preference, the mesh will be produced outside of the NHO&
program using locally-written software, but the mesh geioera
tools of PHOENICS itself could also be used.
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10.4.2 Creating A Mesh

From our consideration of the flow during the flow specifaat
phase, we know that the flow variables will vary greatly i
boundary layers near the vehicle surface and on the other solid
walls that make up the wind tunnel. This means that we todeel
able to produce a mesh which has many cells near the vehicle
surface. At the same time, however, PHOENICS must be pbvide
with a mesh that has a regular topology, i.e. a struttuesh. One
way of creating a structured mesh, for this exampl& build the
mesh in nine parts or blocks, as was shown in Fig. & Shéfull
mesh must have a regular structure, so the mesh irb&Esdhmust
also have a regular structure and the distribution ofele within
each block must be such that the cell faces match tfatben
blocks.

Such a mesh can be defined in two stages:

« first, a set of points on the vehicle surface must be
calculated. These points are created such that they define
the front, top, bottom and rear of the fifth block of gell
shown in Fig. 6.5.

¢ second, points are created in each of the nine blocks using
the points on the vehicle surface and the known geometry
of the wind tunnel.

The shape under consideration here is a two-dimensionglrsett
a full size model vehicle that has been used extensively to
investigate and compare the wind tunnels used by vehicle
manufacturers. The model vehicle is placed in the wind tunnel
being tested and various forces such as the aerodynamiordthe
vehicle found, together with the associated moments o thes
forces. As well as measuring these forces and momegisieers
can use the model to measure the surface pressure on the ashicl
there are a series of holes along the centreline seatsaround
the waist of the model. Hence, there is an extensive datatba
flow data for this model which can be used to validaé&® Codes.
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These uses of the both the model itself and the data dre we
documented [32,33,34,35], as is the shape of the vehicle.

From the drawings of the vehicle, the coordinates of the@ame
section of the vehicle can be computed, as the three-diomahsi
surface is comprised of planes, together with cylindrindl a
spherical sections. A simple program has been writtenaduce
the surface coordinates for the centreline section of thielee
This program is given the number of cells that thatieb& on the
vehicle surface in the flow direction, which we will takedte the
global z-direction, and the number of cells in the vattitirection,
the global y-direction. The coordinates of the points oridhef
the computational block, i.e. the bonnet, the windscreen, the roof
the rearscreen and the boot, and the bottom of the bloekehicle
undersurface, are then calculated by the program at thesvaflz
that it is given. On the front and rear surfaces obtbek, the
coordinates of the points are found for a set of yembtalculated
by the program using a cosine distribution.

Once the surface coordinates are known, the points witlcim @f
the blocks can be built up. This is done by a second prograch w
reads the surface coordinates, together with the positithre evind
tunnel inlet, floor, roof and outlet, and the numbeceifs in each
block in the two directions z and y. Points are pladedsn
horizontal and vertical lines, as appropriate, within igbteblocks
outside the vehicle surface. Figure 10.4 shows a simplifieth ioie
the domain and from this the point creation algorithm can be
deduced. Above the vehicle, in block 6, and below it, in bihck
vertical lines are created from the points on the vehiclasaito
the tunnel roof or floor. Similarly, ahead of the vehicleliock 2,
and behind it, in block 8, horizontal lines are createthfthe
points on the vehicle surface to the tunnel inlet and outtetn The
coordinates of the points that form the cell cornerdared by
splitting each line into sections using a geometrical pssgoa to
bias the positioning of the points.
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Fig. 10.4. Simplified mesh for the car problem.

For simple flows, where the variation of the flow varigkkenot
too great, the position of each point could be found hitiaglthe
line into equal intervals, given the number of celld tieed to be
placed along the length of the line. As we need to be able t
describe boundary layers along the vehicle surface, geoatetric
progression biasing is used to create the points alongithedch
that there are more points near the vehicle surfacea Geometric
progression, the sum of n terms is given by

s - ST n-1_ afl-r®})
by =@ +ar+art+ +ar = I=r)

(10.11)

where S sub n can be taken to be the length of the lingha i
length of the first interval and r is the ratio of reaguring element
lengths.

The mesh generation program is given the ratio of the leigtie
element near the tunnel boundary to the length of the elemta at
vehicle surface and then computes the value of the ratiom Fr
equation 10.11 the length of the first element a can be fantdo
the positions of all the points can be calculated. Tiessga set of
points which show a smooth reduction in cell size towdrels t
vehicle surface.

In the four remaining blocks, numbers 1, 3,7 and 9, thegpanat

created from the data generated in neighbouring blocksirake
seen in Fig. 10.4. Once these two programs have beeanyat
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wide variety of meshes can be produced very quickly. i§his
extremely useful if the mesh has to be changed for whateason.

Using these two programs, a mesh that describes the dofrtam
flow for this example has been created. Although the pnagra
already exist, they cannot be used until the mesh has lzered|
in some detail. This planning is done by drawing yet anotheclsket
of the geometry, Fig. 10.5, where the vehicle is shown attieat
height above the floor of the wind tunnel. The tunnel is takée to
3.0 m high, with the inlet 5 m ahead of the vehicle nosefad t
outlet 15 m downstream of the vehicle nose. The outlet isgkice
this position so that it can be assumed to be so far dieans of
the vehicle that it will have little effect on the flowosk to the
vehicle.

Bias 20 a.ai 20 +
14 cells
Bias 20
e » ‘
- ——— o 10 calis
—r
8 cefts
Cosine bias f—
10cels 40 cells h 10 celis

Figure 10.5. Sketch of a mesh layour for the car problem

Next, the block boundaries are sketched in, and the distniboti
cells is determined. Along the top of the vehicle thereiaee f
distinct regions; the bonnet, windscreen, roof, rearsaadrboot.
Several cells are needed to model each of these regioss &ody
cells have been placed along the whole vehicle length. The
positions of the cells have been chosen so that themaae cells
near the boundaries of the regions on the top of the veAiotad
of, and behind the vehicle, the flow changes rapidly neasethand
it changes very little near the inlet and outlet. Someédr have
been placed in the horizontal direction in these aredshencells
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are biased so that the cells nearest the vehicle angyttimes
shorter than those near the inlet or outlet. This valueenty is a
first guess for the biasing required to produce a redse
simulation.

In the vertical direction, eight cells have been placéddrn the
vehicle and the tunnel floor, with the cell sizes being deterdnby
a cosine distribution. This makes the cell size smaller thea
vehicle surface and the floor to allow the gradients irbthendary
layers to be captured. Through the height of the vehicle tisn ce
have been placed and fourteen cells have been platveednethe
tunnel roof and the vehicle roof. The positions of the cells attw/e
vehicle have been chosen such that the cell size aéekhee is
twenty times smaller than the cell size at the tunmal 1Of course,
there will be a boundary layer on the tunnel roof and this
distribution of cells will not be able to describe the fleaviation
there. For this simulation, we have assumed that thascof far
from the vehicle that it will not affect the flow around thehicle,
and so a symmetry boundary condition will be used. This will
ensure that the tunnel roof will constrain the flow during the
simulation by acting as a frictionless solid boundary.

This completes the specification of the mesh, and thé mes
generation programs produce a datafile which contains theemu
of cells in the local coordinate directions, together whth
coordinates of the corner points of the cells. This $ileead by the
SATELLITE program of PHOENICS using commands discugsed
the next section.

10.4.3 Preparing the Data Before Solution

Once a mesh has been created, the input file to SATHLLthe

Q1 file, has to be created. It is this file thatdad by the
SATELLITE program before it prepares the data forBEA&RTH
program. This section discusses both the commands required t
specify the flow problem and the commands required to cdizol
numerical solution process. The commands are arrangedupgy
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to assist the user in setting up the computer model, enabtalg) s
sets of data to be handled at any one time. A fuilhgsof the Q1
file is given below followed by a description of the commainds
each of the 24 groups, listed group by group.

TALK=T;RUN(1, 1);VDU=TTY

GROUP 1. Run title and other preliminaries
TEXT(TWO-DIMENSIONAL MOTOR VEHICLE)
REAL(W1IN,KEINIT,EPINIT)

GROUP 2. Transience; time-step specification
STEADY=T

GROUP 3. X-direction grid specification
NX=1

GROUP 4. Y-direction grid specification
NY=32

GROUP 5. Z-direction grid specification
NZ=60

GROUP 6. Body-fitted coordinates or grid distortion
BFC=T

NONORT=T

READCO(GRID)

RSTGEO=F

SAVGEO=T

GROUP 7. Variables stored, solved & named
SOLVE(V1,W1)

SOLUTN(PL,Y,Y,Y,N,N,N)
STORE(UCRT,VCRT,WCRT)
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GROUP 8. Terms (in differential equations) & devices
DIFCUT=0.0
ADDDIF=T

GROUP 9. Properties of the medium (or media)
ENUL =1.46E-05

RHO1=1.225

TURMOD(KEMODL)

GROUP 10. Inter-phase-transfer processes and properties
GROUP 11. Initialization of variable or porosity fields
W1IN=28.0

KEINIT=0.005*W1IN*W1IN

EPINIT=944.0

FIINIT(KE)=KEINIT

FIINIT(EP)=EPINIT
FIINIT(P1)=0.0;FIINIT(WZ1)=W21IN;FIINIT(V1)=0.0
CONPOR(INTERIOR,0.0,CELL,1,1,9,18,11,50)

GROUP 12. Convection and diffusion adjustments
GROUP 13. Boundary conditions and special sources
PATCH(INLET,LOW,1,NX,1,NY,1,1,1,1)
COVAL(INLET ,W1,ONLYMSW1IN)
COVAL(INLET,P1,FIXFLUW1IN*RHO1)
COVAL(INLET,KE,ONLYMSKEINIT)
COVAL(INLET,EP,ONLYMSEPINIT)
PATCH(FRONT ,HWALL,1,1,9,18,10,10,1,1)
COVAL(FRONT,V1,GRND2,0.0)

COVAL (FRONT,KE,GRND2,GRND?2)

COVAL (FRONT,EP,GRND2,GRND?2)
PATCH(BOTTOM,NWALL,1,1,88,11,50,1,1)
COVAL(BOTTOM,W1,GRNDZ2,0.0)
COVAL(BOTTOM,KE,GRND2,GRND?2)
COVAL(BOTTOM,EP,GRND2,GRND2)
PATCH(REAR,LWALL,1,1,9,1851,51,1,1)
COVAL(REAR,V1,GRND2,0.0)
COVAL(REAR,KE,GRND2,GRND?2)
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COVAL (REAR,EP,GRND2,GRND2)
PATCH(TOP,SWALL,1,1,19,19,11,50,1,1)
COVAL(TOP,W1,GRND2,0.0)
COVAL(TOP,KE,GRND2,GRND2)
COVAL(TOP,EP,GRND2,GRND2)
PATCH(FLOOR,SWALL,1,1,1,1,1,NZ,1,1)
COVAL (FLOOR,W1,GRND2,0.0)

COVAL (FLOOR,KE,GRND2,GRND?2)
COVAL (FLOOR,EP,GRND2,GRND2)
PATCH(OUTLET,HIGH,1,1,1,NY ,NZ,NZ,1,1)
COVAL (OUTLET,P1,FI XP,0.0)

GROUP 14. Downstream pressure for PARAB=.TRUE.
GROUP 15. Termination of sweeps
L SWEEP=10

GROUP 16. Termination of iterations
LITER(P1)=20;,LITER(V1D)=1,LITER(W1)=1,LITER(KE)=1;L
ITER(EP)=1

GROUP 17. Under-relaxation devices
RELAX(P1,LINRLX,0.1)
RELAX(W1,FALSDT,0.006)
RELAX(V1,FALSDT,0.006)
RELAX(KE,FALSDT,0.0005)
RELAX(EP,FAL SDT,0.0005)
KELIN=1

GROUP 18. Limits on variables or increments to them
GROUP 19. Data communicated by satellite to GROUND
GROUP 20. Preliminary print-out

GROUP 21. Print-out of variables
OUTPUT(W1,Y,N,N,Y,Y,Y)

OUTPUT(V1,Y,N,N,Y,Y,Y)

OUTPUT(PL,Y,N,N,Y,Y,Y)

OUTPUT (UCRT,Y,N,N,N,N,N)
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OUTPUT(VCRT,Y,N,N,N,N,N)
OUTPUT(WCRT,Y,N,N,N,N,N)

GROUP 22. Spot-value print-out
IXMON=1;1YMON=20;1ZM ON=39

GROUP 23. Field print-out and plot control
NPLT=1;ITABL=3

GROUP 24. Dumps for restarts
SAVE=T

RESTRT(V1,W1,P1KE,EP)
SAVGEO=F

RSTGEO=T

L SWEEP=150

STOP

The first line of the Q1 file tells SATELLITE to alloaoth
interactive checking and modification of the data oncdilindas
been read. It also determines the computer terminal tagbenill be
used. Then the commands that specify the structure ofdhle, m
read the previously prepared mesh data and set up the flolemro
are given in the following groups:

« Group 1 - Preliminaries. This contains a simple titld a
list of user-defined variables that SATELLITE needs to
know are real numbers. These variables will be usedifater
the Q1 file as part of some simple calculations.

e Group 2 - Time Dependence. Here theflow is specified as
being steady state, i.e. there is no variation with tifés
is a simplification of the problem, made so that atgmiu
can be found using a reasonable amount of computer time.
In reality there is always some time variation of a tiebt
flow, but we hope that for our computation the turbulence
model will take this into account.
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Groups 3 to 5 - Mesh Specification. This is where the
program is told how many cells there are in each of the
three local mesh directions.

Group 6 - Body-Fitted Coordinates. The program is told
that a mesh has been created that is body-fitted anthtn
coordinates of the grid points are stored on a file dalle
GRID. As the mesh has been created using projections of
points in the vertical and horizontal directions, it isacl

that no attempt has been made to ensure that the mesh is
orthogonal. EARTH needs to know this as extra numerical
terms must be used in the numerical analogue of the
governing equations when the grid is non-orthogonal. Once
EARTH has read the set of grid points, it can credike
which contains a great deal of geometrical information
within it. To save time when performing a simulations thi
file need only be created once and then stored. As the Q1
file listed refers to the first run of a solution, thst two
commands in this group tell EARTH that the geometry file
does not exist and that it should save this file at the £nd o
this run.

Group 7 - Solution Variables. To solve this problem we
need to find two velocity components and the pressure of
the fluid. The velocity components, variables V1 and W1,
are calculated by the program in directions defined locally
in each cell, and these directions are determined by the
positions of the corner points of a cell. As the post-
processor PHOTON needs to have access to the velocity
components defined in the Cartesian directions, we must
calculate and store these additional components. These
velocity components are known as UCRT, VCRT and
WCRT. The command SOLUTN is used to activate the
pressure variable P1 so that the default slab-by-slab
solution method is changed to a whole-field solution
method. This does not affect the values of the solution, but
it does speed the solution process up.

Group 8 - Terms in the Differential Equations. Here, the
convection operator is requested to be formed using upwind
differences regardless of the value of the cell Peclet
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number. This is done by setting the value of DIFCUT to
zero. The ADDDIF command ensures that the pressure
correction equation (see Section 3.5.2) includes the
diffusion terms in the momentum equation and does not
leave them out as it would by default. This inclusion of
terms increases the likelihood of the solution converging.

e Group 9 - Properties. As the vehicle is in air, the degnsit
and laminar kinematic viscosity are set to the values
determined during the flow specification stage, Section 5.2.
The TURMOD command switches on the two-equation k -
epsilon turbulence model, telling EARTH to solve for both
turbulent kinetic energy k and the rate of its dissipation
epsilon, calculating the effective turbulent viscosity using
the relationship given in by equation 2.18 in Section 2.2.3.

e Group 10 - Multi-Phase Flows. No entries.

e Group 11 - Initialisation. This group is used to define the
value of the velocity, turbulent kinetic energy and
dissipation rate at the inlet. At the inlet boundary, the
velocity component of the flow in the local z-direction, W1,
the direction of which coincides with the global z-direction
at the inlet, is 28 m/s. This velocity is convected ihto t
domain together with the turbulent kinetic energy and its
dissipation rate. To calculate the values of the turbulence
guantities at the inlet, the value of turbulence intensity
assumed to be 6%. From the definitions of turbulence
intensity | and turbulence kinetic energy k [3,10], the value
of the turbulence kinetic energy can be calculated as:

3 3
k= 2V inge? = ZH006Y 4y 2 = 0.005V 0,2

(10.12)

The epsilon value is set so that it gives an effectivieulent
kinematic viscosity which is one hundred times the laminar
kinematic viscosity, a typical value for air. Hence ustggation
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2.18 with the coefficient ¢ sub mu set to its standard vafl®09
we obtain

2 2
_ D.0Y%° _ (0.090382% _ yuu g,

£
Vr 1463 x 1073

(10.13)

These values will also be used when the boundary condarens
prescribed in a later group, but they are calculateddwetieat they
can be used as the first guess to the variables throutjteofield.

The FIINIT commands set the value of the pressure angetbeity
component V1 to zero, and of the velocity component W1 ankl the
and epsilon variables to the values at the inlet disclesedk.

These FIINIT commands work by setting the values of trables

at every location to the appropriate numerical value.

Finally in this group, the cells inside the vehicle, whicbusth not
take any part in the simulation as they exist only sisa# the
computational housekeeping, are labelled and switched off using
the CONPOR command.

e Group 12 - Unused. No entries.

¢ Group 13 - Boundary Conditions. Here the boundary
conditions are defined. We have already identified the
boundaries as being physically located at the inlet, outlet
floor and roof of the tunnel, and at the vehicle surface. As
we have decided to make the roof of the tunnel a symmetry
plane and not a viscous wall, we do not need to do anything
to apply this boundary condition as this is the default
boundary condition. The vehicle surface can be described
as the top of the car together with the bottom, the front and
the rear. These four sections of the surface form the
boundaries of the fifth block used to create the mesh. The
PATCH commands define the positions of the boundaries
by listing the cell ranges and the face positions using the
compass notation described in Section 7.3.1, and the
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COVAL statements apply the appropriate boundary
conditions. These conditions are specified such that at the
inlet the velocity component in the z-direction, and the
values of k and epsilon are specified, together with & mas
flow boundary condition for the pressure correction
equation (see Sections 3.5.2 and 3.5.4); at the outlet the
pressure is set to zero; and on the other boundaries, wall
functions are used to find the values of k, epsilon and the
necessary velocity components.

Now that the information defining the fluid flow problem hasrbe
explained, the rationale behind the choice of the settingbdo
control parameters relating to the numerical solution nsstize
explained group by group:

e Group 14 - Parabolic Flow. No entries.

e Group 15 - Termination of Sweeps. The number of sweeps
is set to ten. This enables the initial progress ofdéb&lual
errors to be monitored to see if the solution process is
moving in a satisfactory way towards convergence. If the
residual values fall then the process is proceeding lall,
if the residuals get bigger then the solution process may not
converge.

e Group 16 - Internal Iteration Control. Within each sweep,
the calculation of each of the variables involves the swluti
of a set of simultaneous linear equations. These solutions
are found by an iterative procedure inside EARTH. It is
important that the solution to the pressure correction
equation is computed as accurately as is realistically
possible, as this ensures that the mass of fluid isereed
throughout the flow domain, and so twenty internal
iterations are performed when calculating the pressuore. F
the other four variables, accuracy at the end of a swseep i
less important, and so only one iteration of the linear
equation solver is performed per sweep.

e Group 17 - Relaxation Parameters. To control the non-
linear solution procedure, the variables that are calcllate
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must be relaxed in some way. For pressure this is done
using standard linear relaxation, equation 8.3, and the
relaxation factor is set to 0.1. The other variables are
relaxed using a form of time step smoothing which is
sometimes called pseudo-time relaxation. Although this
problem is being calculated as a steady state problem,
PHOENICS allows the addition of a false time-dependent
term that smooths the solution procedure. Effectively, a
time derivative of a variable phi dot , which has the form

d}_ q}new = q}aa’d
=

(10.14)

is added to the left hand side of the discretised monmentu
equations. When the solution is converged this term will be zer
but in the initial stages it provides a smoothing of the soluTibe.
value of the time step DELTA t is found by calculatintyjagical
residence time for a particle in a cell. Here, amaye velocity w in
the z-direction is 28 m/s, there are sixty cells N subtleare-
direction covering a distance L of 20 m; and so an estimiathe
residence time is given by

= £ 20 _polle

tres T N W T 60M28)

(10.15)

For the velocity components a suitable, and conservatiltes vé
DELTA t is about half of this residence time, i.e. 0.006l=
turbulence variables k and epsilon require more relax#tgmthis
and so a value about one tenth of relaxation for the tgloc
components is used, i.e. 0.0005 s. These values are only first
guesses, chosen by what is a useful rule-of-thumb. Inigedhe
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required values depend on the shape of the mesh andwhisklf,
and so some modification to these values may well heresq

Finally, in this group, the form of the k - epsilon modeirade
appropriate for an external flow using the KELIN statem&his
selects one form of the linearisation of the terms irkthepsilon
model, which the PHOENICS reference manual suggests sheuld b
suitable.

e Groups 18, 19 and 20 - Special Features and Printout. No
entries.

e Groups 21, 22 and 23 - Printout. In these groups the output
from EARTH is specified. In particular, graphs and lists
the residual errors are requested, together with grayhs a
lists of the variables at a monitor location. This lcoais
chosen to be near the upper surface of the vehicle where the
flow varies rapidly in space. At this position, the chamge i
the variables from sweep to sweep should provide a
sensitive measure of the convergence of the numerical
solution.

« Group 24 - Restart Data. Here, the results are storethand
marker denoting the end of the Q1 file is written. The
indented commands do not really belong in this group, but
they are conveniently located at the end of the file &g th
are the commands that need to be activated if atestar
solution is to be performed. They tell EARTH to rele t
last set of results and use them as the initial vahrethé
continuation of the solution, to read the existing file that
contains the geometry data and not to re-write thigtfile
the end of the solution.

Once the input data has been assembled and written @ithike,
the SATELLITE program can be run. This produces input data
suitable for being read by the EARTH program, which can bee
run in turn.
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10.4.4 Running the Solver and Analysing the Results

To check that the values of the relaxation parametersugtedble

and that the solver produces results which appear to be gonyer
only a few sweeps have been run. As the residuals decrfeased
sweep to sweep during this trial run, the Q1 file was edde

instruct EARTH to run 150 sweeps. By running the SATELLITE, a
new set of datafiles for EARTH were written, and B/ARItself

run again. At the end of its run EARTH produces a refdert

known as RESULT, which is in ASCII format. This contains
various information including the reports that are esfied using

the Q1 file. Amongst these results are the values of thigbkes

within the monitor location cell at the end of each swéépse are
given in both numerical and graphical form. Similathg values of
residuals for each of the equations is listed in theesaay. Figure
10.6 shows the graph that EARTH has produced of the monitored
values against sweep number and Fig. 10.7 shows the dgrégh o
residual error against sweep number.
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In both of these figures, the abscissa is the sweep ndmbed to
150, scaled to be in the range 0 to 1. Also, the spot vahokthe
residuals are plotted as the ordinate with the vdleesy scaled to
fit between O and 1. Figure 10.6 shows that the spot valeesnee
constant with sweep number. We can see that the v-comipaine
velocity and the pressure both fall then rise to a stealiye,
epsilon rises then falls and both k and the w-componentfaite
and then rise again. From the printed numerical valutee
RESULT file, the variation in all of the variables durig final
ten sweeps occurs in the third or fourth significant figlomking
at Fig. 10.7, the residuals can be seen to fall steatiya small
departure for the residual of the w-component equation neanthe
of the run.

Using the spot values and residuals as a guide, we edhagghe
solution achieved after 150 sweeps is converged to an acairacy
three significant figures. No further running of the solgerequired
and so we can turn our attention to the results calcltateughout
the flow field. PHOTON, the post-processor of PHOENICS)
read the data produced by EARTH and Figs. 10.8 and 104 sho
the velocity vectors of the simulated flow for two diffietr@iews.
These figures have been produced using commands simitase t
given for the PHOTON picture in the first example, seei@®ct
10.3.6, and it is interesting to note that PHOTON hkert account
of the fact that there is no flow within the vehicle soegfand not
plotted any data there and that the vectors appear eglthe
positions where they were calculated. Some graphics pregram
produce data on a different mesh to that used by tbalatibn.

This can be useful if the mesh is unstructured. In Fi@ &
velocity field is displayed for the area of the reagsarof the
vehicle. The flow is seen to separate from the rearserseut two-
thirds of the way down the screen and a small vortexuisdan the
screen-boot intersection. In reality, a car of thape would have a
much larger area of separated flow over the rearscreesoahe
results we have obtained, although numerically converged,tdo no
guite agree with what we might expect. Looking at Fig9,1@e

can see the flow field over the roof of the vehicle. Her, th
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boundary layer is hardly noticeable, with nearly all thgation
taking place in the first two cells from the surface. dlthis
suggests that the mesh is not refined enough near theevehicl
surface.

Fig. 10.8. Velocity vectors at rearscreen (bias=20).

Refining the computer model is straightforward, now that we ha
the tools to build the mesh and a model Q1 file already eXists
second mesh has, therefore, been created using the same
distribution of cells along the vehicle surface and in the fleld,
but the biasing parameter has been increased from tveefifty t
for the blocks ahead of, above and behind the vehicle. Aavwe h
not changed the structure of the mesh, or the cell numbeech if
the local mesh directions, no changes are required Q1Hge,

but SATELLITE has to be run again, before running EARTH, so
that the new file containing the cell corner points is @aad new
geometry data is written for EARTH.
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Fig. 10.9. Velocity vectors on roof (bias=20).

For this second mesh, a run of 150 sweeps has been made by
EARTH, and the RESULT file shows very similar trend$hose
found with the original mesh for the variation of the sgaues at
the monitor location and the residuals with sweep numisngu
PHOTON to look at the velocity field, Figs 10.10, 10.11 and20.
several interesting features can be seen. By changingasiagi
parameter in the mesh building process, more cells areclzear
the vehicle surface and so there are more vectors nearrthess
This leads to a solution which has a larger aretoof $eparation
(Fig. 10.10) and a much better definition of the boundary laye
the surface (Fig. 10.11). Consequently, the overall flow matear
the car, Fig. 10.12, can be seen to be qualitatively @doiete that
in this last figure the flow slows down as it approachesrtr of
the vehicle and that it speeds up at the front of the bonnet &mel a
vehicle roof where the surface changes direction rapidly icespa
Also, as well as the separation at the rearscreere th a region of
separated flow behind the vehicle where two vortices capdre s
All of these features can be seen when the physical vehadel is
placed in an airflow in a wind tunnel.
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Fig. 10.11. Velocity vectors on roof (bias=50).
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Fig. 10.12. Velocity vectors around car (bias=50).

This refinement process can be continued and the biasiameter
continually increased. A case has been run with the péeaset to
200 above the vehicle and 50 ahead of it and behind it. One
hundred and fifty sweeps have been calculated yet dggure
10.13 shows the residual variation with sweep number eom, f
this, the variation of the residual error for the w-pament of
velocity can be seen to oscillate wildly. There i®asmaller
oscillation of the pressure residual. This shows thatdlwtien is
not progressing satisfactorily. Confirmation of thisaend by
looking at the spot values which also oscillate in magieitvhen
plotted against sweep number. One way of suppressing this
oscillation is to run the solution with more relaxationusjng
smaller relaxation factors and another way is to creaesh of the
domain which is smoother.
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Figure 1013, Frsduals aggaanst sweep roofl bian = 2000

At this stage in the process we appear to have reachenhihef|
accuracy with this particular distribution of cells. Whiigtther
simulations could be produced, we will leave this two-cisnenal
calculation knowing that we have found a solution which is
gualitatively correct for the velocity field.

10.4.5 A Note On Three-Dimensional Calculations

Knowing that a simulation is qualitatively correct iseof all that is
required of a simulation. Such simulations can providengimeer
with sufficient information to make sensible choices alboet
design of an object and the effect of these choices diothef the
fluid. In the case of the flow about a car, however, engsnerist
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know something about the forces and moments produced on a
vehicle by the flow. This is quantitative information.

If we carry out CFD simulations of the flow about a ea,will

also want to know what the forces and moments are that th
simulated airflow would produce. Several manufacturérs o
vehicles and CFD software authors have performed such
simulations in three dimensions [33,34,35], but the resaits hot
been promising. These simulations have shown that the qualitat
picture of the flow produced by the simulation is in good exgent
with that found in wind tunnel tests. Also there is a gagr@@ment
between the prediction of fluid pressure on the surfadeeof t
vehicle with that found by experiment. So far so good, ib#d
news starts when the predicted pressures are integratethever
vehicle surface, for each cell face on the surfaceviagmeasure
of the forces and moments on the vehicle body. Even if welake
problems of the modelling of the wheels of the vehicle andring d
due viscous shear into account, the predicted dragpisar
agreement with the experimental values.

One source of the error between the predicted forces aném®m
and the experimental values comes from the integratioregsoc
itself. A vehicle in a real flow sees what is in effan infinite
number of fluid particles over the vehicle surface, givipgessure
which varies continuously over the vehicle surface. Wherrakeve
hundreds of thousands of cells are used in the simul&ierost

of the computer time alone for the simulation is greater tha
cost of the corresponding physical experiment and the number of
cells on the surface might still be only of the order cdva f
thousand. This means that the simulation cannot captusathe
level of variation that the vehicle in a physical experinveould
see and, consequently, the numerical integration ysimaccurate.
This would still be the case even if the values of tlesgure at all
the mesh points on the surface were exact.

I mention this problem to give the reader something to thinktabo
The aim of CFD in engineering is to produce results whieh a
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useful in the design process, not to produce pretty colour gsctur
for the office wall or for your manager. This meand tttanpanies
and individuals must decide whether CFD is the right toolHeir t
particular application. The ways of doing this are discufistder
in Chapter Twelve. It should be mentioned here thatsdore
problems, CFD might be the only means of analysis amébit
also be cheaper than the experiment. The next example ahows
problem that is well suited to CFD, giving real insigitbithe
technical problem.

10.5 Water Flow Around A Combustion Chamber

10.5.1 Producing A Specification

In many industrial problems, the geometry is sufficientdynplex
that the restriction of using a regularly structured nezsinot be
tolerated. One source of extremely complex geometry is an
automotive internal combustion engine. Two major flow situation
that occur in this device are the flow of air and fued ithte
combustion chamber caused by the motion of a piston andthe fl
of water around passages inside the engine where the water
removes excess heat from the engine casing. In this finatae
we will consider the problem shown in Fig. 10.14, where water
flows through an inlet, around the cooling passages outside t
combustion chamber and then flows out through a verticalkoutle
This is a simplified example of the flow of cooling watierough

an engine.
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Figure 114, Ceometry of water jacket

When looking at the flow of a coolant, it is importanthe
efficiency of the design that there are very few ardasravthe flow
is separated. In such regions, the fluid moves slowly tnvehot
surfaces and so the heat cannot be removed from these sumface
an efficient way. One objective of a CFD analysis ohsaic
situation is to determine where it is, within the coolingeys that
these areas of separated flow occur, if they do occur. Then
modifications can be made to the geometry of the interrssigoes
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to ensure that such areas do not occur or that theteeke is
minimised. Further, it is possible that CFD can give a gestithate
of the pressure loss in the fluid as it passes througbytem and
this can be used to specify the required pressure hehd whter

pump.

From Fig. 10.14 we can see that the bounding surfades of
geometry are simple planes or cylinders and so the produdtaon
mesh should not be difficult. When considering the flow through
the system only three types of boundary can be presene @hes
an inlet, an outlet and a series of solid walls. Atithet, the
velocity is 5 m/s and the width is 0.0232 m. For water &t.1%up
o} C, the Reynolds number based on the inlet width is

_ PViued? _ (1000.)(5.)(0.0232)

I ST = L0188 x 103
Lo

Re

(10.16)

As the height of the inlet is 0.02 m, the Reynolds numberdbase
height will be much the same. Given these values of tlyadids
number, the flow can be assumed to be turbulent. Thibean
determined by considering the flow in a pipe [7,Chapter 7], where
the critical Reynolds number for the flow to change frolanainar
flow to a turbulent flow, the transition process, is about 2000.

10.5.2 Producing A Mesh

To produce a mesh for this problem, we can split the gepnmed
a series of blocks as shown in Fig. 10.15. Then a sistpletured
mesh can be built in each block and the blocks connettideir
boundaries in such a way that cell faces are alignegsithe block
boundaries. A program similar to that used to mesh thexzample
has been written to do this, but no biasing is applied todte
distribution. The program calculates the x- and y-coordiratdse
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mesh points within a block and then writes the fulldist
coordinates for each block by writing sequences of thdses/a
together with the appropriate value of the z-coordinate. Mib&ns
that the mesh in each block is made up of sheets of nodesetbf
planes which are defined by having constant values of z.

r4
f\l/("

Figure 10.15. Blocks of the mesh — water jacket

STAR has the ability to read ASCII files which contthe mesh
data. Two files are required to specify the mesh;filmeontains
the list of the x-, y- and z-coordinates for each pairihe mesh,
known to STAR as a vertex; and the other file containst aflithe
identification numbers of the vertices that are conndctedch
element. These files are written directly by the ngeeration
program.

To calculate the mesh, the program must be given a set of
parameters that state the numbers of cells in theuahblocks.
These parameters are labelled n1, n2, nz, ninlet and agshown
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in Fig. 10.16. A complete mesh is illustrated in Fig. 10.17 fo
values of these parameters set to 7, 7, 8, 10 and 20 respecti
This is the mesh that we will use.

Figure 10.16. Mesh layom paramerers for warer jacket
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Fig. 10.17. Mesh of the water jacket.

10.5.3 Other Pre-Processing Tasks

Before describing how the computer model is created using STAR,
we must outline the structure of STAR. The version thahave

run to produce this simulation is STAR v2.004 which consikts

two separate programs. The first program is PROSTARiki

used for the interactive tasks of pre- and post-processidghe
second program is STAR itself, which is the solver program.

Once PROSTAR is activated the computer model of the flow

problem can be built up in stages. There are several mddules
PROSTAR and these are used to create the data feoltlex. The
first stage is to create a mesh using the MESH modAslae have
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already created the necessary files of mesh dathaahas to be
done in this module is to read the two files. This is donegusie
VREAD and CREAD commands, where the V refers to vertices,
which are the corner points of the cells, and the Csetethe cells
themselves.

Next we can use the PROPERTY module to define the fluid.igh
done using the commands:

density,constant,1000.
Iviscosity,constant,11.4e-4
turbulence,ke,1.018e5,0.02
initialize,0.0,5.0,0.0,0.0938,2.87,293.

The first two commands set the values of the density andsrig

to be constant throughout the calculation and define appropriate
values in Sl units. The third command switches on theemu@tion
k- epsilon turbulence model and gives a typical Reynolds number
and a length. These two parameters were found during the
specification phase in Section 10.5.1. Finally, the initzlies of
the variables are given in the following order: u, v, wepsilon , T.
Here the last value T that is listed is the initial pemature and for
this problem it is not used. The velocity values are takdre those
that apply at the inlet. To calculate the initial valogthe
turbulence quantities, approximate inlet values are givdnlase
are found from an assumed value of turbulence intensity of 5%
Using the formulae for turbulence intensity, this gives

k= 21V = 240.05)5% = 0.0938 m s

(10.17)

An approximate value of the mixing length is known for a flow
near a wall, that is
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Ky _ (0.41M0.01) _ 0.024 m

{= —ir = =
ey {U.DE"H- 5}

(10.18)

Here kappa is a constant for a boundary layer and the oBjuis
taken to be half the inlet height. The value of the mixémgth that
is derived will be a maximum value and so an averagevailibe
used for the mixing length of 0.01 m. Finally, the valtiepsilon is
found from the additional turbulent viscosity. This is ckdlted
from equation 2.17 as

vy = e k™ = (0.09)0.0938%3)0.01)=2.76 x 1074 m%s

(10.19)

and so, from equation 2.18, epsilon is given by

_ D092 _ (0.09)0.04387)

=287 m sl
vy 276 107 e

£

(10.20)

Once the fluid properties have been defined, the boundary
conditions have to be set using the BOUNDARY module. STAR
assumes that any unspecified boundary is a solid walsa this
simplifies the specification of the boundary conditions
considerably. All we have to do is specify the locatiorhefinlet
and the outlet and then define the conditions that apply &t tives
boundaries. The surface of the cells of the mesh can tiecotm
the screen in PROSTAR. This is done using the
PLTYPE,QHIDDEN command which displays a simplified hidden-
line plot. Then the cursor can be used to pick the cedsfétat are
at the inlet and the outlet. The commands used to do this ar
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bcross,add,1
bcross,add,2

These define one set of faces to be region 1 and the otludr se
faces to be region 2. These regions are then assouitltethe
boundary conditions using the commands

rdefine,1,inlet
0.0,5.0,0.0,1000.,0.0938,2.87
rdefine,2,outlet

These specify that the first region is an inlet at whishvalues of
u,v,w, rho, k, epsilon are given as listed. Similatthg cell faces in
region 2 are defined to be the outlet.

The last module to be used is the CONTROL module, where t
data to control the numerical solution is provided. Withis t
module, the commands are used to control the initial run of the
solver. They are listed below together with the variattbas would
be used to carry out a restart calculation. The commapdgveh
the restart commands given in square brackets):

time,0.005,steady iter,10,500,0.001 [iter,100,500,0.001 | simple,on
rdata,none [ rdata,restart,binary | wdata,post,binary
relax,0.1,0.1,0.1

monitor,101

These specify that the calculation is a steady stateps; that ten
iterations out of of a maximum number of five hundredtaree

run with the program stopping if the residual falls belo®0@; that
the SIMPLE algorithm is to be used; that no initial datto be read
from a file but that a restart calculation would reathia data; that
a file suitable for post-processing is to be writtebimary format;
that the linear relaxation factors for the pressurecitglo
components and the turbulence parameters respectively twe set
0.1 and that the variables in cell 101 are to be printeg¢y ever
iteration.
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Finally, the data necessary for the STAR solver pragsawritten
using the commands

geomwrite,8
probwrite,10

which write the geometry data to the file numbered 8adlnitie
other data to the file numbered 10.

10.5.4 Running The Solution

At first, ten iterations are run to check that the malelorking.
The STAR solver produces output which lists the residualsrend
monitored values at each iteration and these show thegsiueials
are decreasing except for epsilon which is increasingtislighis
rise in the epsilon residual is not too much of a probkarmin an
attempt to get all the residuals reducing the relaxaticorféar the
turbulence variables has been reduced to 0.01. Seventioiterat
have then been run starting from the initial values again.

Yet again, all the residuals decreased except for thosethe
epsilon equation, but the rate of increase of this reswasilclearly
reducing. This suggests that if further iterations arenitimthe
same relaxation factors the epsilon residual shouldtstaetiuce.
At the monitor location the velocity components and presgsare a
changing rapidly, but the turbulence parameters are only moving
slowly due to the severe relaxation. To continue the solutiam
hundred further iterations have been run with the salaratéon
factors. The printout now shows that all the residual$adireg and
that the values of the variables at the monitor locatwashanging
less and less.

Finally a further eighty iterations have been run withrtiaxation
factor for pressure kept the same at 0.1, but the relaxattor for
the velocity components was increased to 0.4 and for the émd=ul
variables it was increased to 0.1. Initially all theideals fall but
later the ones for the velocity components and pressurecstart
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oscillate. The residuals for the velocity components ki@zeeased
by factors of several hundred and for pressure by sevenasdnd.
By looking at the values of the variables at the mondcation we
can see that they are now only changing in the third signific
figure every sixteen iterations and so, effectively sthietion is
converged.

10.5.5 Analysing the Results

To look at the results graphically, we can use PROSTgda
First of all we must tell PROSTAR to access the computedel
that we set up in PROSTAR during the pre-processing phéese (f
16) and the file of results that was created duringaheisen phase
(file 9). This is done using the commands:

resume,16
load,9

Once PROSTAR has read the data that it needs foipposgssing,
various commands can be used to plot the data. Forxtispde it
is likely that the most useful information will come fr@plot of
the velocity vectors calculated by STAR. These will aliow
engineer to make a qualitative assessment of the way it wiec
flow is behaving. For example, the commands:

vescale,0.5
poption,vector
getcell,all,none
plty,section
surf,on

edge,off
view,0,0,1
spoint,0.0,0.0,0.01
cplot

will plot the picture shown in Fig. 10.18. This is a velgaiector
plot at half the height of the main flow channel. The comrsand
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given above are used to scale the vectors to a reasorza)|set
the plot type to vector, use all the available cells, pced section
plot on a plane through a point (0.0,0.0,0.01) together with the
surfaces taken as if viewed from a view point on th&ig- The last

command actually plots the picture.
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Fig. 10.18. Velocity vectors around water jacket.

From this figure we can see that the flow comes in throlglnlet
and then splits into two to go around the cavity formethby
combustion chamber. At the point of splitting, the magnitddbe
vectors is small, as it is in the upper left and lowertraginers of
the flow system. Also, where the two streams come togetieer,
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flow velocity is small. If the surfaces of the cavity wais, and the
water was being used to transport heat away from theseas
then the heat transfer would not be very good in these. &igase
10.19 shows a similar plot through a vertical section wpadses
through the outlet channel. This shows that the flow seggafiadm
the passage surfaces at the entry to the outlet passage aad
see that there is a vortex near to the left hand wétleochannel
where the flow velocity is very small. This area of sefmatdow
restricts the effective width of the channel, and leagw¢ssure
losses. The outlet passage could be redesigned to remove this
separation region, reducing the pressure losses in thensyste
also improving any heat transfer in the area of the stdine outlet
channel.
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Fig. 10.19. Velocity vectors in vertical plane through outlet.

Even in large systems of pipes, it is this sort ofrimi@tion that can
be used to improve the fluid flow within a system and have a
beneficial impact on engineering design.

One thing that is clear from these two figures is thatioundary
layers near the walls of the passages have not been ewbdetly
accurately. This may not affect the qualitative naturinef
prediction, but it will effect any quantitative data suslitee
variation of pressure through the domain. If this simulado be
improved it would have to be remodelled using a mesh witte mo
cells and, perhaps, with the cells being biased towardsalie of
the passages.

10.6 A Review Of The Usefulness Of CFD

From this set of three examples we can find pointeiseto t
usefulness of CFD. The first example shows that simphenkr
flows can be calculated to a high degree of accuracylitie

effort. The other two examples show that we have to tefudan
using CFD if the flow is more complex. With the example of the
flow over a car, the predicted data provides a reasonatdeation
both qualitatively and quantitatively, but when the numerical
pressure data is integrated then the results are \argumate.
Depending on the information that is required this could Beod
simulation or it could be a poor simulation. In thedhexample we
have only sought qualitative data and this simulation provides a
large amount of information that is of use to an enginee

Looking at other examples of CFD, the use of the technology in
predicting the weather is extremely useful and accuratest
circumstances. However, the simulations are restriotétht the
mesh size cannot be too great as the calculations téee t
performed in a reasonable time and not use too much computer
memory. This means that freak weather events which dapatial
dimension smaller than the distance between mesh poihtsotvi
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be predicted very accurately. Without infinite computer power a
memory this will always be the case.

We have also discussed, in Chapter One, the Kings' Crgsisyi

and the use of CFD in determining the cause of the fireizll t
occurred. The CFD calculations pointed out a possible amesim

for this in the form of the so-called trench effechene the hot
gases stayed near the floor of the escalator tunnel. This
phenomenon had not been thought of before and so experiments
were carried out to investigate if it could actually odoupractice.
These experiments showed similar flow patterns, confirthiag

the mechanism predicted using CFD could occur in practieead
the combination of both the CFD prediction and the subsequent
experimentation that made this study so conclusive. It isrieg
more common that these two predictive techniques,
experimentation and computation, have to be used together. They
should be seen as complementary means of carrying out
investigations not as opposing strategies.

In summary, it can be said that CFD does have itshuge$at the
results of simulations need to be considered carefuftyr&ehey
are used.
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11 MODELLING FLOWS WITH ADDITIONAL COMPLEXITY

So far, we have considered the ways in which CFD taoise
used to predict flows which can be classified as incosgyk and
viscous. Many industrial flow problems encountered outiide
aircraft industry can be described as flows thatifiédl this
category. This means that many flows can be modelleglyiag
the techniques that we have discussed. If we are to reonte, or
all, of the other categories of flows, we must deterntiee t
modifications that need to be made to our modelling technigque.
particular, the modelling of four additional features wilable a
large proportion of the flows, that are not simply incomgilde
and viscous, to be modelled. These four features are:

« the prediction of heat transfer within a flow. In this case
additional equation, the energy equation, which describes
the transport of heat energy through a fluid has to be
solved.

« the effects of compressibility. Many fluids in motion
exhibit the effects of compressibility. This occurs whws t
density of the fluid changes in the flow field.

« the existence of multiple phases within the flow. In some
flow problems two or more fluids can flow together. For
example a liquid and a gas could move together. Also the
transport of solid material in a fluid can be descriaed
being a multi-phase flow.

« the inclusion of combustion. When a fuel is burned
chemical changes take place and energy is released. This
can occur in a fluid that is already flowing or it czause a
fluid to flow.

In this chapter, we will discuss in a simple way eddhese topics
in turn. It should be noted that the material th#o¥es is not meant
to be an exhaustive treatment. The aim of this chapterhighlight
some of the modifications that are made to the modellingepsoc
which enable these features to be catered for. Thihelp the
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analyst to look in the right places for further informatibithe
need to carry out such modelling ever arises.

11.1 Modélling Flows With Heat Transfer

11.1.1 The Effects of Heat Transfer on a Flow

Heat transfer is the movement of internal energy areusystem. It
can occur in three main ways; conduction, where thetayitaf
molecules transfers the energy from one molecule to another
convection, where the transport of material transfererieegy

from one place to another and radiation where electromagneti
fields are the mechanism of energy transfer. The textbpok

Rogers and Mayhew [31] provides a good basic introduction to the
subject.

Within a given situation, all three modes of heat transight
occur. For example, heat might flow through a solid by aofidn
and then be transferred into a fluid where it is congeateay with
the fluid and if, say, flames are present they willaselheat energy
all around. However, in the context of fluid flow, it is convea
that is the most important and so we will concentoatéhis mode
of heat transfer.

There are two main types of convection. Let us consider the
situation where a fluid is forced by some pressure fo@éew
over a hot object. Some of the heat is removed from the [exttob
and convected away. This is known as forced convection.
Conversely, a hot object might heat the surrounding stayidtoga
causing its density to reduce locally. When this happenisatter
fluid rises through the colder fluid, an effect of gtgvand we
have what is known as natural convection. In the first, dhedlow
takes place and the heat transfer is a secondary effesteas in
the second case, the heat transfer actually drives thefltve
fluid.
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When we started our discussions of the modelling of fluid floey,
had to derive mathematical relationships between theblesithat
could then be converted into numerical equations. Siyilahen
modelling heat transfer by convection, we have to have some
mathematical model of the energy transfer process and ssvaow
must look at how this can be derived.

11.1.2 The Energy Equation For Heat Transfer

When modelling incompressible, viscous flows we must use the
momentum and continuity equations to calculate the vglocit
components and the static pressure of the fluid. If wéocamodel

heat transfer by convection, then we must also find some
relationship between the flow variables and a properajeélto the
heat flow in the fluid. The property we normally choosdadhis is

the temperature, which we need to calculate throughodiotlie
domain. This is done by using an energy equation derived from the
first law of thermodynamics. The derivation is shown initieta
Schlichting [3] and in an abbreviated form by Chapman [36].

If we consider a given patch of fluid, as we did in Chapteo, the
first law law states that the heat entering the paachiead to some
combination of two effects. It can raise the intermedrgy of the
fluid in the patch and it can enable the patch of flaidd work on
its surroundings. Hence, by considering the rates at which thes
events occur, we can write the first law of thermodynaiscs

(11.1)

where Q is the heat energy entering the patch by conduEtisn,
the internal energy of the patch and W is the work done bijutide
in the patch.
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This can be rewritten in terms of the heat added péwvahime q,
the work done per unit volume w and the internal energy per uni
mass, the specific internal energy e, i.e.

dq _pde , dw
ol pd1+d1

(11.2)
where rho is the fluid density.

Dealing with each of these terms, the first is the aatghich heat
energy is conducted into the patch, which can for two diroess
be shown to be given by

(11.3)
where k is the constant thermal conductivity of the fluid.

The second term contains the rate of change of specémait
energy in the patch, and it is possible to describe thisegsroduct
of the specific heat at constant pressure c sub p andtthefr
change of the fluid temperature T, which in this cagbe
substantive derivative (see Section 2.2.1) of the temperdtutwo
dimensions this gives

(11.4)

The third term is the rate of work done per unit volumBuad and
this can be taken as being due to viscous forces altme filuid is
incompressible. This means that
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& (554

(11.5)

dw _ _
=5 - R

Here the negative sign shows that this is, in fact, worie on the
fluid in the patch not the work done by this fluid. Combirtingse
terms together we obtain the equation for the transport of
temperature through the domain, which is

[&f a1 ﬂ'f} k [&21 &21}4_ L,

—E—+H—E+‘F—a— &yz

B3
(11.6)

This equation is very similar in form to the momentumatmpns
for laminar flow that we discussed in Chapter Twas & non-
linear equation describing the temperature in the fluid exgbe
related to the flow velocity and some properties of kine.fTo
produce a numerical analogue of this equation, any of the
techniques described in Chapter Three can be used asaldtien
of the equation can be inserted into the full solutiorcgss. If the
SIMPLE algorithm is used to calculate the variables, th
temperature is found after the pressure equation hasubedrio
update the static pressure and to correct the velocity contgonen
that have been derived from the momentum equations.

Such a procedure will be valid for laminar flows whire effects
of any changes in fluid density can be ignored. This wbalthe
case in forced convection problems. The effects of turbalenc
the situation and of any changes in the density, the sedcall
buoyancy effect, still have to be taken into account.

As a last note on the energy equation, we can see froatieq
11.6 that the boundary conditions are likely to be the spatidic
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of the temperature on a boundary or the specificationeofi¢hmal
derivative of temperature. In some circumstances thesieaev
known directly, but often any derivatives will have to benfhu
from empirical data.

11.1.3 The Effects of Turbulence on Heat Transfer

In Sections 2.2.2 and 2.2.3, we looked at how to accouthddiact

that in a turbulent flow the velocity components can be thooight

as being made up of a mean value and a fluctuating component. W
saw there that such an analysis produced additional tertine
momentum equation which can be modelled as additionaksse

If we carry out a similar procedure for the energy equatil .6,

then further heat flux terms are generated. These againdaee
modelled by some means.

As it can be shown that there are analogies between the
modifications to the momentum equations due to turbulencehand t
modifications to the energy equation due to turbulence, simple
ways of modelling the additional heat flux terms are ofted.use

11.1.4 Buoyancy Effects

When a fluid is heated its density changes. This meahsshthe
density changes so gravity will exert a different éon a patch of
fluid. Consequently, hot fluids will try to rise tiugh cold ones.
This is the mechanism of what is known as natural or free
convection, and this has to be modelled in some CFD simudation
Take for example the case of a fluid inside a double rezystem,
Fig. 11.1. There, the left hand wall of the cavity is Hue, right
hand wall is cold and the other two walls have no heatirfigw
through them. Gravity can be seen to act vertically dowasya
parallel to the hot and cold walls. Due to the temperatitiee
walls, on the left hand side the fluid will be hottieart on the right
hand side, and the density of the fluid will be lower onl¢fftethan
on the right. As gravity will exert a lower force on thed at the
left, there will be a movement of fluid up the hot wall and ddke
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cold wall. To model such situations the addition of the energy
equation is not sufficient, as we have to include the effiegtavity
in the momentum equations. This is done by adding an effective
force term due to the density variation to the right heidd of the
momentum equations. This force acts in a direction lghtalthe
direction of the gravity force.

Mo heat flow
S

Gravity force *

TGanemF flow direction

Hot wall T l Cold wall
~T \
Fluidis hatter, =~ Fuidis coaler

density i lower Py
e densityis higher,
fluid rises fhuict fallg

¥
m\w
Mo heat flow

X

Fig. 11.1 The double-glazing problem.

Looking at Fig. 11.1, where the problem is shown with the g-axi
being vertical, i.e. gravity acts in the negative y-dicegctwe can
see that the density changes will lead to an additienad X in the
y-momentum equation. This term can be modelled, for our usua
patch of fluid, as

X = %E[Pf-P] Bx By

(11.7)
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where rho is the local density of fluid and rho subd igference
density. Hence, when the density rho is less than theeree rho
sub f the fluid will have a positive force on it. This dgns
relationship can be converted into a temperature rel&iphy
using the coefficient of volume expansion beta to give

X =gﬂ[r-rf] Bx By
(11.8)

Here, T sub fis a reference temperature and belfirsed by
_1l|lov| __1]|98
(11.9)

where bold v is the specific volume of the fluid and the iotkes
that the derivative is calculated at constant pres§iombining the
equation for X, equation 11.8, with the momentum equatiolmen t
y-direction, equation 2.9, gives

2
Sokodb g s B S voofior)

(11.10)
It is the additional term that is known as the buoyancy.term
11.1.5 Conjugate Heat Transfer Problems

If we set the velocity components to zero in the energy miat
equation 11.6, this equation can be used to describe thedresder
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in a solid. In some problems, such as the flow in &tvalled
pipe, Fig. 11.2, we might be interested in modelling the 8ytstem
of the conduction in the solid pipe wall and the convectiohen t
fluid. Such a problem is known as a conjugate heat trapsfbfem
and has some of the thermal boundary conditions set dt soli
boundaries not fluid boundaries. Considering Fig. 11.2 as sgowi
an axisymmetric situation, the pipe has a hot outer atailhich we
might know either the temperature itself or the heat fluauiph the
surface. Moving towards the centre of the pipe theres@id wall
in which heat flows by conduction and all velocity termszam®.
Then there is a solid-fluid interface before we comthe fluid in
the pipe itself. Within the fluid the velocity increasessg from
this interface to a maximum at the centre of the,pe the
temperature falls towards the centre.

Hot wall
Saolid /
Fluid >
Soiid \
Haot wall :
u T
Velocity Temperature
profile prafile

Figure 11.2. A conjugate heat transfer problem

Many CFD software packages can solve such problems, bat the
can be numerical difficulties at the fluid-solid interé. These
problems can arise from the distribution of cells with s@imge
volume programs, where a cell might straddle the interf&us.
would not happen with finite element programs. Also tloel@ting
of conjugate heat transfer with turbulent flows can legateblems
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when any of the discretisation techniques are used, aavog-I
profiles have to be applied at the interface.

11.1.6 Some Non-Dimensional Groups

When we looked at defining incompressible viscous flows, we saw
that a useful parameter in classifying the flow is the Rejgnol
number. There are several non-dimensional groups thatefal

when considering heat transfer problems and these are:

« Prandtl Number, which is defined as

(11.11)

and can be seen to be the ratio of viscous diffusion ofentum to
thermal diffusion through conduction. Typical values ofd?r f
gases are in the range 0.65 to 1.0, with air having a edloat 0.7.
By comparison water has a value of about 6.0 at room tetopera

* Nusselt Number, which is defined as

fid

Na = —

(11.12)

where d is a typical length and h is the heat transfdficeat
defined as the surface flux of heat g dot divided by some
temperature difference i.e.
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where T sub s is the temperature of the surface and Tisuab f
reference temperature, say of the fluid surrounding thasrf
Nusselt number is a non-dimensional measure of the heatdra
through a surface.

» Grashof Number, which is defined as

Gr = gdi[gﬂf'

(11.14)

where g is the acceleration due to gravity, d is a@ipength, beta
is the coefficient of volume expansion, DELTA T is a terap@re
difference and nu is the kinematic viscosity. This paramstused
to characterise natural convection problems.

11.2 Modélling Flows That Are Compressible

11.2.1 Some Features Found In Compressible Flows

Flows that are compressible have a varying density of e fl
throughout the flowfield. These flows exhibit some feattines are
not found in incompressible flows. Amongst these are the
discontinuities known as shock waves where fluid variatilesge
rapidly over a small spatial distance. Many books show pictires
the types of flow that can be found [6]. These featuredocamd in
addition to the features of viscous flows already discussed.

One way of classifying a compressible flow is by the paramet
known as the Mach Number. This is defined as the ratocaf
flow speed V sub {local} to the local speed of sound @nfthid a,
or
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2 ¥

1

Ma = Vioeal [u2+v2+w2JT
2 = =

[ r]

(11.15)

From this we can see that once a flow is moving, the Maafiber
iS not zero. Standard texts on compressible flow, su@hapiro
[37], show that if the Mach number is small, say lesst0.2, then
the flow may be considered incompressible, but when the Mach
number is greater than this then the flow must be considere
compressible. If the local Mach number is less than unity
everywhere, a subsonic flow, shock waves will not appearthend
flow will qualitatively behave like an incompressible fldwence
our modelling technique need hardly be altered. Whereths if
flow has regions where the Mach number is greaterdahanwhich
are known as supersonic flow regions, then shock waves can
appear. If we consider the flow around an object, the Magibau
well away from the object may be very small, however flthe
must accelerate around or through the object, and sodhkeMach
number can be much greater in some places. For exattmpiow
through narrow gaps such as that between an aircnadt avid a
slat can reach supersonic speeds if then Mach numbiee bke
stream, that is away from the wing, is as small as 0.

The change in the observed flow types for supersonic flove area
suggests that something fundamental must be happening iowhe fl
that is different from what happens in incompressible flBy

looking at the flow equations for compressible flow, thisngjgin
flow properties can be investigated.

11.2.2 Equations For Compressible Flow

If we assume that the density of a flow can vary, witicften does
in reality, then the equations we developed in Chapter ffeed
some modification. For the continuity of mass, the mel@nge
comes from allowing for the possibility of mass accumniggti
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inside the patch of fluid due to the density changing vintle.t
Also, the mass flow terms at each boundary of the patt now
include the density. This leads to the modified equation

B 20 10 -
(11.16)

and the momentum equations become [38]

E??[p“] + Ha;[p +|Ju2] +%[puv] = _ﬂx_"'_ﬂy_

(11.17)

and

3o &l 3o -5

(11.18)

where the stress terms tau are known functions of the yelocit
gradients and the viscosity.

To model a compressible flow we must be able to describe the
velocity field by its velocity components and we must alsable

to specify the pressure and density. This means thaaveetb find
four variables for the two-dimensional problem, and sdhfee
eguations above cannot give us enough information. To complete
the mathematical definition of the problem, we can writerzgrgy
equation similar to equation 11.6 in the previous section wadds
yet another variable, temperature.
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As before, the two momentum equations (11.17) and (11.18) can be
used to find the velocity components, and the compressible
continuity equation (11.16) can then be used to obtain the fluid
density throughout the flow. Temperature can be calculesied

the energy equation, and finally the fluid pressure cawbbaned

from the equation of state for the fluid. Usually, thedloan be

taken as being a perfect gas, and so the equation ofssfaig

7 = pRY
(11.19)

where R is the gas constant.

From this, we can see that the compressible flow equadmnst
require a SIMPLE-like algorithm as was discussed in Ghnapt
Three. The equations derived allow the solution to procead in
more intuitive way. Also, historically, people have sdlvlee above
equations with the viscous terms neglected. The equatienbar
known as the Euler equations. Once the local Mach numsber i
greater than unity, the equations change in charactdovotae
features such as shock waves to occur. They become hyperbolic,
and have characteristic solution directions. Numerida¢ises
capable of solving these equations must reflect these chddjes [

11.2.3 Some Practical Problems With Compressible Flows

Compressible flows, in reality, can exhibit behaviout thaery
different from that of incompressible flows. This comesfithe
existence of shock waves in some flows, where the flovalbkas
change rapidly over very small distances. Effectively, line f
solution is discontinuous. Also, if the flow speed is Varge,
when compared to the local speed of sound, the equatiangeim
character to reflect the changes that occur in the phy&ios.

This leads to CFD software having to be able to handle
discontinuous flow solutions and different types of partial
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differential equation. Hopefully, the CFD software paag will

take care of the solution scheme changes, but the analysbenust
aware of the requirements for a suitable mesh. Tindbea
problem, as the shock waves appear in the flow and propagaye aw
from the boundaries not along the boundaries. As the flowanea
shock wave is discontinuous, the mesh must be built such Haest
a large number of cells in areas where shock wavesxaected.
Unfortunately, before the solution is run, it is very idifft to
predict where the shock wave will occur, and so one useful
technigue is to use adaptive meshing as described in Clgapter
Then a solution can be run, the gradients of, saypréssure
calculated and the domain remeshed to put more cells ar¢hs

of high gradients [15].

11.3 Multiple-Phase Flows

Multiple-phase flows occur when two or more differeates of
material flow together. A solid might flow together witlgas or a
liquid, or a gas might flow with a liquid. Physical exales of this
are:

« the flow of steam and water in power plants
« the flow of water droplets and air in a cooling tower
« the flow of sand and air in a sand-transport system.

Modelling of these systems again uses the concepts of momentum
conservation, continuity and, if necessary, energy consenvat

other physical laws. In particular, each phase of naterassumed

to have its own velocity components and a volume fraclibis

latter quantity is the amount of material of a phaseydiyme,

relative to the total amount of material.

Equations are then developed for the conservation lawghand
interaction of the phases is taken into account by termsh are
derived empirically. Take the case of solid spheres flowirly a
liquid. The spheres gain momentum due to the relativeiglof
the spheres when compared to the fluid, and the fluid looses
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momentum in the same way. Effectively there is a &ichetween
the phases, and this is known as the interphase friction.
Consequently, the momentum equations have to be modified to
allow for the effects of these interface momentum changes

Standard papers on the modelling of multi-phase flows asethf
Harlow and Amsden [39] and Spalding [40].

11.4 Modélling the Effects of Combustion

Combustion is the science of burning substances. It is a sti@po
science, drawing on material from chemistry, thermodynsamc
fluid mechanics. Much of the material that has alrdaebn
discussed is of use in solving combustion problems, but thare is
tremendous amount missing especially in terms of chemikhe
following brief note might be of help if you need to solve flow
problems which involve combustion.

There are several books that give good introductions to thecgubje
such as Spalding [41]. In terms of modelling, the simulatfon o
combustion includes a combination of compressible flow and-mult
phase flow together with some chemistry which models the burning
process. This takes some fuel together with an oxidahpaoduces
what are known as the products of combustion. The rate at which
this takes place has to be determined and is often ceattofi the
mixing of the components or by chemical kinetics, which are
energy processes. The burning process releases heat enrgy t
system, and so the rate of heat release has alsddarize These
features are given to the calculation using simple models o
empirical data.

265



Chapter 12. Acquiring CFD technology
12 ACQUIRING CFD TECHNOLOGY

12.1 Preliminaries

In the first eleven chapters of this book, we have discubged
techniques that are used to produce a simulation of a flowg usi
CFD. Also, we have looked at the hardware and softwatash
commercially available for use in the analysis prodéesspeople
that need to understand what is happening when a fluid,ftbese
technigues might provide an additional means of finding
information, but the acquisition of the necessary harewsoftware
and expertise is expensive. For this reason, a catefly sf the
needs and requirements has to be made before the fimsibdeo
acquire the technology can be taken.

In this final chapter we look at some of the items thatkl be
considered before committing resources to CFD. This eh&ipis
been written to help guide those who have to make commercial
decisions about the use of this technology, and so it sdamainly
at the industrial user, but it also has some relevamagtier users.

12.2 Assessing the Need

The first thing to consider is how a knowledge of fluid flowgint
help you or your organisation. To explore this, we need to Ibok a
all the areas that are related to fluid flow. Let assider the case

of a manufacturer in the motor industry. Fluid flow isimportant
topic for many different people within the organisationhsas the
vehicle aerodynamicist, the engine designer and the “engineer
developing heating and air conditioning systems. All of tlaesas
are related to the production of the product of a company, et the
are other areas where fluid flow could be important.éxample,

in the design of a new manufacturing facility, the flovamfcould
affect the manufacturing process, the ventilation or evesdafety

of the plant with regard to a fire.
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Once the areas of interest have been listed, the tedwiljat are
available to investigate the fluid flow phenomena should be
assessed. In the case of the flow over a vehicle, it epeheand
more accurate to obtain estimates of the aerodynantedaohat
engineers require using experiments in a wind tunnel. Conversely
in the case of the flow within an engine, the experimentdete®
determine the characteristics of a flow are extremgbeesive due
to the problems of measuring the flow variables, and so Cigbtm
provide an alternative analysis tool that is cost effectWhen all
this information has been assembled, it should belgedsi see if
there is a place for CFD in the toolkit of techniques thigtht be
used.

If CFD has a place in the toolkit then the benefits of usigy
expensive technology must be made clear. Remember, it may be
that CFD is just another tool, providing no more or notleas

those tools currently in use. Conversely, it may provide saxtra
benefit, such as a direct saving in cash terms, atigng extra
information that is not currently available.

12.3 Producing A Specification For A CFD Program

If there is a need for CFD, then we must decide whatadf@~D
software is required. To find out which of the availgdekages
could be used, we must produce a list of requiremérasthie CFD
software should meet. More often than not, no singbiauge will
meet all the requirements but several packages will meet sbm
the requirements. Hence, when choosing the software we might
have to make some very subjective decisions.

To draw up the program specification, we must think cagefull
about the flow problems that we wish to analyse. For pi@nwe
should have some idea of the following features:

« the geometry of the fluid domains that might need to be

analysed. This will tell us whether we need a packagde tha
can solve problems in one, two or three dimensions. Also,
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if the geometry is very complex, we might be forced to use
a system that can handle a mesh which is unstructured, but
for many problems a structured mesh will be sufficient.

« the flow type. The classification of a flow depends on such
things as the speed of the flow relative to the speed of
sound, so that an assessment of the compressibititye of
fluid can be made. If the Mach number throughout the flow
is low then an incompressible flow solver can be used, but
if the Mach number is close to or greater than one,
anywhere in the flow, than a compressible solver will be
required. A knowledge of the Reynolds number is also
important, as we can determine from this whether the flow
will be laminar or turbulent. If the flow is turbulent, the
some form of turbulence model will be necessary, and the
level of sophistication required of this model will ats®
determined by the characteristics of the flow. In mosesa
a two-equation model such as the $k- epsilon$ model will
be sufficient, but if the flow swirls, for example, then an
algebraic stress or Reynolds stress model might well
perform better. One other aspect of the flow that needs to
be decided upon is the level of variation with time. Many
flows can be assumed not to vary with time, provided that
the gross features do not change with time, even though the
microscopic flow features may vary with time. However,
some flows will vary with time. This might be inherent in
the flow itself even if the geometrical boundaries do not
move. For example, the vortices can be shed behind a
cylinder in a periodic manner at certain Reynolds numbers.
In other cases, the flow will vary with time due to the
movement of the geometrical boundaries. An example of
this is the flow generated by a piston moving within an
internal combustion / engine.

« heat transfer effects. In many flow situations, the
knowledge of the flow of heat throughout the fluid might
be required. Further, the flow of heat in adjoining solid
material might also be of interest, requiring a conjugate
heat transfer problem to be solved, as might the effécts o
radiation.
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« the number of phases in the flow. This is usually one, but it
could be two or more for some problems.

The above list covers some aspects of the flow, but we adsbtae
determine some of the features of the simulations. For eramipl
should have some ideas about:

« the size of the simulation problem. We need to know
something about the number of cells or elements that a
typical mesh will contain and the number of flow variable
that we need to calculate. This information helps us to
determine the storage requirements of the CFD progmams i
terms of both primary and secondary storage. It is worth
remembering that the more data we calculate for aagive
flow, the more accurate the solution should be, but the
longer it will take to obtain the results. Clearly some
compromise has to be made here.

« the required results of the analysis; such as vetsgciti
pressures or forces.

« interfacing requirements. When defining the geometry of a
flow domain, geometrical data is required and, sometimes,
this will come from a CAD system or from a finite elethe
pre-processor. Equally, we may wish to send the results t
an existing post-processor or some other display software
If this is the case, then the CFD software should have
appropriate interfaces.

« solution speed. Many things affect the time that it ta&es
produce the solution to a simulation problem. Clearly, this
will depend on the processing speed of the hardware that is
used, but it also depends on the CFD solver itself. Some
algorithms for solving the governing equations are much
faster than others. This speed difference might come from
the basic discretisation of the equations, from the internal
organisation of the program or from the speed of the linear
eqguation solvers used.

« hardware availability. If there is a restriction on theken or
type of computer or graphics terminal that you wish to run
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the software on, this should be noted. It is common for
CFD pre- and post-processors to be very hardware specifi
and for solvers to be much more portable between differen
machine types.

From all of the above, we now know a considerable amount about
the flows that we wish to simulate and the simulatiatess itself.
Finally, it is important to assess what kind of sesvtds that we
need the software supplier to provide. This will be a geityjective
set of requirements, and will to some extent depend opethyge
that are available within an organisation to run the Géfbware

and talk with the supplier. At this point, it is wortisuing a
warning. With the proliferation of computers and softwarany
people are now used to buying a package, loading it ontolaimeac
and getting results without too many problems. For business
software this is certainly true, and it is becoming timany
engineering packages as well. Unfortunately, CFD softisanet

as mature as other engineering analysis tools that @he anarket.
Structural finite element packages, that solve lineaicstat
problems, and matrix manipulation packages are much lesstprone
error than the latest CFD packages. This is because CFD
technology is still developing and even the researchers inghe a
are not entirely sure as to how things will develop irftitgre.
Further, it is only since, say, 1985 that industrial compdrass
started to take an interest in running CFD tools. Tteama that the
wishes and demands of users have not yet been met in full.

Amongst the requirements that are related to the sdtsizgpplier
are:

« quality assurance or QA. This is the extent to which the
software has been tested against standard testfoases
which there is a known solution. The comparison data may
come from either analytical expressions or experiments.
These comparisons are carried out to both verify the code,
which means to show that it is correct against the nigaie
models that it is simulating; and also to validatecihee,
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which is the process of showing that the code gives reliable
results against physical experiments. There should be some
evidence from the supplier that the software has beenlteste
for both validation and verification. In fact, most piea#

CFD software are so complex that every possible
combination of operating features will never be tested| unti
that is, you as a user run your particular example, add fi
that it does not work. This may appear cynical but it is

often true. Hopefully, as more people use CFD so the
problems for users will reduce.

« user friendliness. This is probably the most subjective
feature of all, as what appears friendly to one persorbwill
unfriendly to another. Again, this will depend on the staff
that run the programs.

e user support. This is very important as users can never be
fully conversant with the programs that they run. Software
suppliers should provide some form of User Hotline that
can give a quick response to a user's questions. This
normally comes as part of the annual licence fee for the
software, or can be purchased separately if the program i
bought with a once-only payment, which is known as a
perpetual licence. There should also be the option of buying
training in the use of the programs, and the chance fos user
to work with the supplier in setting up a problem. This is
normally done by paying for consultancy from the software
supplier.

e current users. It is important to know who is currentingis
the software, not who has used the software. This enables
companies to see if firms in a similar business are ubing t
software, and can give some confidence in the suppliers and
their product.

The easiest way to document this information is to drp& table
of capabilities product by product. Sometimes this canffieudi

to do for someone with little experience. It is at diege that it is
important to obtain independent advice to guide you. Somgtime
people place too much reliance in the software suppliers
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themselves, and even though the suppliers can provide much
information, an independent view is worthwhile. A sample
specification table is shown in Table 12-1 and this can lzktose
assess each of the competing products.

12.4 Deciding on the Necessary Softwar e

Once the specification of the software is determinedoua
software options need to be evaluated against thisfigpdioin.
This can take a lot of time and effort as there aaaynCFD
products in the market place and the suppliers of each ofutliiem
be only too willing to shower you with information. The
information that is provided can take many forms, but timplkast
starting point is to look at the brochures that explagnsoftware.
Much of the information required can be determined fromethmst
quite a lot of it can not. In particular, the more satje
information such as the levels of user friendliness, isoiutmes,
QA and user support need to be investigated further.

One way of gaining this more specific information is toduce a
sample problem that is typical of the problems that yin o

solve. Suppliers will often produce a simulation of this pnoble

using their software at a reduced cost, or even ferifrine

problem is very small. This enables potential customesséeo
software products in action on a realistic problem. Sucialawill

help in understanding how the processes outlined in this book relat
to the specification and operation of the softwarwilltalso

produce some hard facts that should help in determiningpteof
obtaining a simulation using a particular CFD package.

When the competing products have been assessed using the
specification table, several suitable products should emer dgectl
it is probable that none of the products will be ideal, but some
should come closer than others. A simple way of assesngost
suitable package is to assign numbers to each of the catemo
the specification in some way such that the higher the nutinber
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better the specification level. Then by adding up these nurabdrs
getting a total value for each package they can be ranked

Once the products are ranked in order of suitability, tlestipn of
cost needs to be looked at. Normally, software is liedman an
annual basis with a single fee being paid to the suppliethwhic
includes the provision of the software and any updatesatvtell
as technical support in the form of a hotline service. Somesti
however, the software is purchased on perpetual licenos te
where one large payment pays for the software and a smatiaal
fee pays for the updates to the software and the supporttiBase
both methods are on offer, and it takes careful congidert
decide which of the two will be the cheapest option in the tang
This is especially difficult as the market is stilveloping and the
most suitable program today may not be the best choices@ tn
four years time. Finally, it may be that some sa@ificterms of
the capability of a package has to be made if an affordahléon
is to be chosen for purchase. This has to be achieved by
determining the minimum level of functionality that is guedle.

12.5 Deciding on the Necessary Hardware

Many organisations already have access to the compuiiéreisc
that are necessary for running large computational analysis
programs such CFD packages. Others will need to adtpgire
hardware. In both cases, however, it is important toidena
number of factors. For the former case this enableggbeto
determine if the existing facilities are suitable and Haege
necessary spare capacity, and for the latter cadevitsag¢stimates
to be made of the various measures that will determine the
hardware.

These factors include the following:

e computer processing power. A large amount of processing
power is needed to run some CFD test cases. Fortunately,
recent technical advances mean that the necessary isowe
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available very cheaply. The factors that affect the spéed
processing include such things as the calculation speed of
the processor which is measured in $mips$ and is the
number of millions of processor instructions carriat ger
second, or in SMFLOPS$ where one $SMFLOP$ is one
million floating point operations per second. There is no
clear relationship between the two for different proocess

as what takes one instruction on one machine might take
several instructions on another. The speeds of the various
computers are often quoted in these units, but different
software runs in different ways on different machines.
Consequently, the numbers quoted are only a guide to the
raw processing power. To find a true measure of speed for
the software and hardware combination a series of sample
flow problems must be simulated. This assumes that the
CFD software does not make any use of the secondary data
storage during execution, as the speed at which dataecan
accessed from devices such as hard disks can have a
marked effect on solution times. Some CFD software
packages write data to these devices during the solution
phase and if the processes of reading and writing to the disk
are slow, then the whole solution process is slowed down.
For a typical analysis on a given computer installatioa, t
total solution time will depend on all of these things
together with the number of simulations that will be solved
simultaneously on any one system.

e primary data storage capacity. On most computer systems,
the primary data storage system is known as random access
memory (RAM). This is usually sized by the number of
bytes of data that can be stored. Each byte consistgluf
bits, where one bit is the basic unit of storage
corresponding to a stored value of either zero or one.
Numbers can be stored as integers or real numbersvand
or four bytes are used for integers and four or eighsbyte
for real numbers. The greater the number of bytes the
greater the maximum integer, and the more accurate a rea
number, that can be stored. Sometimes, the software
supplier will specify the number of Megabytes of RAM that
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are required to run their software successfully. Igdar
machines, such as supercomputers, the memory size is
measured in words. These are usually words of eight bytes
or sixty four bits, and are the machine's minimum storage
for a single real number.

¢ secondary storage capacity. Random access memory is used
during the execution of a program, but if the user needs to
access the data after the program has stopped running then
the data must be written to some secondary storage device.
These are usually hard disks, which are aluminium disks
covered in magnetic material such as iron oxide, just as
happens with audio tape. In personal computers these disks
may store a few tens of Megabytes and in workstations
several hundred megabytes. In large systems, the disk
storage might consist of sets of disks each storingakeve
Gigabytes of data. We need to assess how much of this
storage we will need for each problem that we wish to
solve. A rough estimate can be made by taking the number
of nodes in a problem and multiplying by the number of
coordinates used to describe a node plus the number of
variables stored at each point, which would be nine for a
three-dimensional turbulent flow problem solved with three
velocity components, pressure and two turbulence
variables. So for a mesh with 10,000 nodes we must store at
least 90,000 real numbers. If the data is stored iraledad
(ASCII) format, say twenty bytes are required toet@ach
number, 1.8 Megabytes are required in total. If, however
the data is stored as single precision real numbdrsany
format, only four bytes will be required to store each
number and the total storage required will be 0.36
Megabytes. These are low estimates of the total data
storage requirements, as each software packageaavdl s
different information. The software supplier might be able
to give information on the data storage required faverg
model size.

e access points. If several people need to run CFD analyses
simultaneously then several access points will be required
These might need to be split between a number of gphic
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screens and a number of text screens. This will ersdrhe
people to perform graphics pre- and post-processing whilst
others run the solver program.

« backup facilities. There is a need to provide some backup
of the data held on disk, to protect against loss @f. dehis
can occur if a disk drive is broken, such that the datad
on it cannot be read, or could occur if a user delefés ia
error. It is common for each disk to be backed-up in full,
i.e. all the data is written to a tape storage dewice,
something similar, every week. Then further backup
procedures are carried out once a day, to ensure tliag¢ all
new files that are created within the previous twenty-four
hours, and the new versions of edited files, are algtewri
to a backup device. This is procedure is known as an
incremental backup and ensures that, at worst, only one
day's work can be lost. Once backup tapes have been
prepared it is worth protecting them against fire by uaing
fireproof storage facility.

When these items have been considered, it should bdledssi
know whether an existing installation will be sufficientrtm CFD
problems or whether it will need to be enhanced in sonye liva
new facilities are required, either to enhance theiagistpacity or
to provide a completely new system, then they could now be
assessed for suitability.

12.6 Finding People To Run CFD Simulations

Having decided upon a software package and a hardwarensyste
CFD simulations will not run themselves. We must, findtipk at
the most important asset in the CFD analysis prod¢ss.is the
analyst who actually translates the engineering problesraint
computational simulation, runs the CFD solver and anatyses
results. It is the skill of this person, or set of pessahat will
determine whether all the hardware and software will bisediin
the best possible way and produce good quality results.
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People from many different backgrounds can be trained to go
through the processes that we have discussed in this bodkisbut
my personal belief that more than this is requirea 3Hills that are
required include:

« mathematical skills. These enable the analyst to understa
the underlying features of the numerical processes used to
convert the governing partial differential equations into
numerical analogues, and to coax the solution procetlures
converge to sensible and realistic values.

e computational skills. The production of a CFD simulation
can involve the user in manipulating large amounts of data
with packages that do not interface together and reside on
variety of types of computers. This can mean, for example
that CFD analysts have to write their own interface
programs to convert data from one program'’s format to
another program's format. Also, an analyst might have t
write computer operating system command language
programs that instruct a computer or even a variety of
computers to move data around a network, run some CFD
programs and then move the data around the network again.
Consequently, CFD analysts must be conversant with
computer procedures at a level that is far greater tan t
required for analysts who use the more common software
products that perform engineering computations.

« good interpersonal skills. If the analyst is not the erad-us
of the data, then there will have to be close liaisetawben
the analyst and the end-user, who is in effect a customer
client of the analyst. This requires that a good working
relationship is developed between the two parties so that
the analyst knows what the customer requires, and the
customer is aware of the limitations of the analysis.

« engineering skills. Finally, the analyst must have a wgrkin
understanding of the engineering processes that are to be
modelled. This enables the limits of a computer model to be
established and the results of the simulation to be amhlyse
in a sensible way.
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Large organisations may well have a pool of analystshichwthere
are several people that could be used to produce CFD snsla
as they have a majority of the qualities listed aboves& people
could be engaged at present in running finite element stalct
analyses or similar large scale engineering computatiosscitf
people do not exist within the organisation, or if suégtzople
cannot be used for whatever reason, then staff will tmbe hired.
Hiring staff of the right technical background to use CFD in
industry, whatever their background is extremely difficutht N
many people have all the skills necessary and so s@esple may
be needed. Depending on the size of the organisation, thesrefe
or more people may be employed in the use of CFD, amigthte
mixture of abilities is important.

One other way of proceeding is to employ a limited nunobe
people to work with CFD and then to use external congslta
supplement the skills where appropriate. These consultantseca
found working with CFD software suppliers, general engineering
consultancy practices and in universities and polytechRms
industrial users who are not specialists in this field, important

to have access to advice at a moments notice. This ganownded
by a software supplier when problems occur running a particula
package, but another useful source is a local university of
polytechnic, where a specialist in the CFD field may Wwellwilling
to provide consultancy as and when required.

12.7 Integrating CFD Within The Design Process

As a final topic, let us look at how the results of Cétiulations

can be used within the engineering design process. In industry,
CFD can be used to provide information about how fluids flow and
what the effect of the flow is on engineering devices. Ch&pe

gave a list of possible uses. At present, there are siarmations in
which CFD simulations are being made, and many examples have
been presented at technical conferences, or in jourmiailsh
demonstrate the benefits of using CFD technology in particular
industrial areas.
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Now, whilst these demonstrations are useful in that they show
technical capability, their impact on the engineering desigrepsoc
is limited. If CFD is to be of use to an industrial angsation, then

it should be capable of being integrated into the desigrepsan
such a way that the simulations can influence the enggeer
design. This could happen after a given design has been pilopose
and before prototypes are built. However, this can oy péace if
the CFD simulation can provide the required engineeringidata
cost-effective way when compared to current methods ¢tysisa
whatever they are, and in a shorter span of time.

At present, the total integration of CFD into the degigrcess is

not possible because it takes a long time, perhaps sevenal

months to build a computer model of a flow problem, run the solver
and produce the results. All of this must be repeatedviaye
configuration that is considered. Compare this to the uae of
physical model. Whilst it may take some time to build the model
once built it can be tested at a variety of flow conditiand for a
variety of geometrical configurations with a minimum xfra

effort.

Looking at the CFD process that we have discussed, theagiene
of the mesh takes the longest time for complex but realistic f
geometries. If this mesh building time can be reduced, whaan
be if automatic mesh generation tools are developed furtlegr, th
the turnaround time for a CFD simulation can be reduzedi¢w
hours. Once the results of CFD simulations can be act#ssach
a short space of time for each configuration, then teegydgrocess
can be influenced much more easily as several confignsatian
be carried out and modifications made to the design whicbean
quickly modelled by the CFD analyst and tested compuniztio
When this is possible, then CFD will be a mature techndiamgy
use in industry. At present (1991), CFD is a useful tool buétiser
still room for improvement.
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APPENDIX A. PHOENICSRESULTSFOR A
SIMPLE LAMINAR FLOW

Results After 100 Sweeps

CCCC HHH PHCENI CS - EARTH
Version 1.5.3
ccececee HHHAH (C) Copyright 1989

ccccececC HHHHHHHHHH Concentration Heat and
Momentum Ltd

ccccccC HHHHHHHHHHHH All rights reserved.
cccceec HHHHHHHHHHHHHA CHAM Ltd, Bakery House,
40 High St

ccceecc HHHHHHHHHAHAHAA Wimbledon, London,
SW19 5AU

cccccCC HHHHHHHHHH Tel: 01-947-7651; Telex:
928517

cccccccC HHHHHA Facsimle: 01-879-3497
CCCC HHH The option level is -18

...edited...

Group 1. Run Title and Number

TEXT(SIMPLE DEVELOPING FLOW IN BETWEEN
PLATES)

280



C. T. Shaw, Using Computational Fluid Dynamics, Prerifiai, 1992

IRUNN=1;LIBREF=0

*** GRID-GEOMETRY INFORMATION ***
X-COORDINATESOF THE CELL CENTRES
5.000E-01

Y-COORDINATESOF THE CELL CENTRES

2.500E-02 7.500E-02 1.250E-01 1.750E-01 2.250E-01
2.750E-01 3.250E-01 3.750E-01 4.250E-01 4.750E-01
Z-COORDINATESOF THE CELL CENTRES

1.953E-02 5.860E-02 1.172E-01 2.344E-01 4.688E-01

9.375E-01 1.875E+00 3.750E+00 7.500E+00
1.500E+01

--- INTEGRATION OF EQUATIONS BEGINS ---
TIME STP=1SWEEP NO=100 ZSLAB NO=2 ITERN
NO=1

TIME STP=1SWEEP NO=100 ZSLAB NO=1ITERN
NO=1

FLOW FIELD AT ITHYD=1, ISWEEP=100, ISTEP=1
YZPR IX=1
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FIELD VALUES OF P1

'Y= 10 1.388E+02 1.236E+02 1.622E+02 1.595E+02
1.553E+02

lY=9 1.371E+02 1.235E+02 1.606E+02 1.586E+02
1.551E+02

Y= 8 1.376E+02 1.248E+02 1.602E+02 1.584E+02
1.551E+02

lY=7 1.385E+02 1.261E+02 1.601E+02 1.585E+02
1.550E+02

Y= 6 1.395E+02 1.271E+02 1.603E+02 1.587E+02
1.550E+02

lY=5 1.405E+02 1.280E+02 1.609E+02 1.589E+02
1.550E+02

IY=4 1.412E+02 1.287E+02 1.620E+02 1.593E+02
1.550E+02

Y= 3 1.421E+02 1.281E+02 1.638E+02 1.595E+02
1.548E+02

Y= 2 1.483E+02 1.210E+02 1.668E+02 1.592E+02
1.547E+02

lY=1 1.662E+02 9.704E+01 1.702E+02 1.582E+02
1.545E+02

1Z=12345

Y= 10 1.490E+02 1.373E+02 1.144E+02 7.173E+01 4.170E-
11

Y=9 1.490E+02 1.373E+02 1.144E+02 7.174E+01 6.545E-
11

Y= 8 1.490E+02 1.373E+02 1.144E+02 7.174E+01 6.328E-
11

lY=7 1.490E+02 1.373E+02 1.144E+02 7.174E+01 6.004E-
11

Y= 6 1.490E+02 1.373E+02 1.144E+02 7.174E+01 5.578E-
11

lY=5 1.490E+02 1.373E+02 1.144E+02 7.174E+01 5.056E-
11
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Y= 4 1.490E+02 1.373E+02 1.143E+02 7.173E+01 4.451E-
11

Y= 3 1.490E+02 1.373E+02 1.143E+02 7.173E+01 3.778E-
11

Y= 2 1.490E+02 1.373E+02 1.143E+02 7.173E+01 3.062E-
11

lY=1 1.490E+02 1.373E+02 1.143E+02 7.173E+01 5.032E-
11

1Z=678910

FIELD VALUES OF V1

Y=9 1.140E-01 1.174E-01 7.076E-02 4.693E-02 1.220E-02
Y= 8 2.043E-01 1.978E-01 1.427E-01 9.490E-02 2.391E-02
lY=7 2.719E-01 2.615E-01 2.092E-01 1.403E-01 3.344E-02
Y=6 3.179E-01 3.072E-01 2.657E-01 1.786E-01 3.925E-02
1Y=5 3.412E-01 3.324E-01 3.094E-01 2.048E-01 4.005E-02
Y= 4 3.391E-01 3.317E-01 3.380E-01 2.133E-01 3.512E-02
Y= 3 3.157E-01 2.927E-01 3.475E-01 1.982E-01 2.482E-02
Y= 2 3.067E-01 1.773E-01 3.294E-01 1.541E-01 1.123E-02
lY=1 3.592E-01 -8.412E-02 2.657E-01 8.187E-02 -8.201E-
04

1Z=12345

lY=9 5.606E-04 -5.055E-04 -1.038E-03 -7.173E-04 -2.708E-
03

Y= 8 1.103E-03 -9.909E-04 -2.092E-03 -1.783E-03 -2.709E-
03

Y= 7 1.469E-03 -1.441E-03 -3.060E-03 -2.712E-03 -2.710E-
03

Y= 6 1.546E-03 -1.835E-03 -3.885E-03 -3.441E-03 -2.711E-
03

Y=5 1.287E-03 -2.147E-03 -4.499E-03 -3.904E-03 -2.712E-
03

Y= 4 7.267E-04 -2.342E-03 -4.823E-03 -4.028E-03 -2.712E-
03

Y= 3 2.324E-06 -2.371E-03 -4.751E-03 -3.735E-03 -2.712E-
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03

Y= 2 -6.434E-04 -2.157E-03 -4.130E-03 -2.948E-03 -

2.712E-03

Y= 1 -8.519E-04 -1.533E-03 -2.689E-03 -1.636E-03 -

2.712E-03

1Z=678910

FIELD VALUES OF W1

Y= 10
1. 428E+00
'Y= 9
1. 400E+00
'Y= 8
1. 353E+00
'Y= 7
1. 287E+00
'Y= 6
1. 198E+00
'Y= 5
1. 083E+00
'Y= 4
9. 321E-01
'Y= 3
7.344E-01
'Y= 2
4. 720E-01
'Y= 1
1.120E-01

| Z=
5
Y= 10
1. 376E+00
'Y= 9
1. 309E+00
'Y= 8
1. 266E+00
'Y= 7
1. 201E+00

1. 089E+00

. 505E+00

1. 070E+00

. 474E+00

1. 053E+00

. 414E+00

1. 036E+00

. 324E+00

1. 018E+00

. 204E+00

9. 984E-01

. 052E+00

9.817E-01

.672E-01

9. 929E-01

. 488E- 01

1. 041E+00

. 961E-01

7.194E-01

.174E-01

1

1. 512E+00

1. 481E+00

1. 418E+00

1. 325E+00

1. 162E+00

1. 124E+00

1. 097E+00

1. 070E+00

1. 039E+00

1. 004E+00

9. 604E-01

9. 059E-01

8. 186E-01

8. 144E-01

2

1. 499E+00

1. 469E+00

1. 407E+00

1. 315E+00
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1. 282E+00

1. 249E+00

1. 212E+00

1. 169E+00

1. 118E+00

1. 057E+00

9. 809E- 01

8. 749E- 01

7.001E-01

3.617E-01

3

1. 447E+00

1. 416E+00

1. 359E+00

1. 274E+00
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'Y= 6
1. 116E+00
'Y= 5
1. 011E+00
'Y= 4
8. 903E-01
'Y= 3
7.557E-01
'Y= 2
6. 123E-01
'Y= 1
4. 640E-01

| Z=

...edited...

1

1

8.

200E+00

045E+00

581E-01

. 406E- 01

. 934E-01

. 278E-01

1

1

8

. 193E+00

. 040E+00

. 574E-01

. 459E- 01

. 090E- 01

. 659E-01

7

1

1

8

. 162E+00

. 024E+00

. 610E-01

. 770E-01

. 810E-01

. 003E-01

8

SPOT VALUESVS. SWEEP (/ITHYD IF PARAB)

IXMON=11YMON=2|ZMON=2

TABULATION OF ABSCISSA AND ORDINATES...

ISWPP1V1IW1

1.000E+00 1.000E-10 4.053E-02 9.950E-01
2.000E+00 1.391E-01 1.067E-01 9.617E-01
3.000E+00 3.632E-01 1.313E-01 9.370E-01
4.000E+00 6.851E-01 1.696E-01 9.186E-01
5.000E+00 1.106E+00 1.816E-01 9.050E-01
6.000E+00 1.623E+00 2.056E-01 8.906E-01
7.000E+00 2.239E+00 2.109E-01 8.793E-01
8.000E+00 2.951E+00 2.274E-01 8.670E-01
9.000E+00 3.736E+00 2.315E-01 8.590E-01
1.000E+01 4.601E+00 2.419E-01 8.490E-01

...edited...
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9.100E+01 1.123E+02 1.790E-01 8.228E-01
9.200E+01 1.133E+02 1.786E-01 8.224E-01
9.300E+01 1.143E+02 1.782E-01 8.221E-01
9.400E+01 1.153E+02 1.779E-01 8.217E-01
9.500E+01 1.162E+02 1.777E-01 8.212E-01
9.600E+01 1.172E+02 1.775E-01 8.207E-01
9.700E+01 1.182E+02 1.773E-01 8.203E-01
9.800E+01 1.191E+02 1.773E-01 8.197E-01
9.900E+01 1.201E+02 1.772E-01 8.192E-01
1.000E+02 1.210E+02 1.773E-01 8.186E-01

VARI ABLE P1 V1 W
M NVAL= 1.000E-10 4.053E-02 7.920E-01
MAXVAL= 1.210E+02 2.747E-01 9.950E-01
CELLAV= 5.988E+01 2.208E-01 8.211E-01

1.00 W....+..VVWVWVVVWV. +.. . +. . .+..+..+..PPPP

VvV VVVV PP .
0.90 + W VW
PPPP  +
WV VW PPP
0.80 + V VW PPP
+
v VW  PPP
0.70 +WV VWW

+
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PPP  VWWW

0.60 + W PPP

W PPP

o-

50 + W PP

W PP

o-

.40 +V PP

W PP

o-

30 4V W PP
w PP
0.20 + W PP
. W PP
VNN
0.10 + PV VAV
+

PPPP \WAW VA

0. 00

VPPPP+. . .. +WNNWANANANNAY . ..+ o+

+
0 1 .2 .3 .4 .5 .6 .7 .8
.9 1.0
THE ABSCI SSA | S | SWP. M N= 1. 00E+00 MAX=
1. O0E+02

RESIDUALSVS. SWEEP (/ITHYD IF PARAB)

TABULATION OF ABSCISSA AND ORDINATES...
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ISWPP1V1W1

1.000E+00 2.756E+06 6.753E+04 8.983E+08
2.000E+00 2.733E+06 2.124E+06 1.016E+09
3.000E+00 2.465E+06 2.567E+06 1.013E+09
4.000E+00 2.779E+06 3.106E+06 1.509E+09
5.000E+00 2.895E+06 3.011E+06 1.463E+09
6.000E+00 2.636E+06 3.871E+06 2.384E+09
7.000E+00 2.669E+06 4.324E+06 1.043E+09
8.000E+00 2.804E+06 3.729E+06 1.298E+09
9.000E+00 2.676E+06 3.791E+06 1.770E+09
1.000E+01 2.664E+06 3.973E+06 9.224E+08

...edited...

9.000E+01 1.052E+06 2.123E+06 3.499E+08
9.100E+01 1.037E+06 2.095E+06 3.463E+08
9.200E+01 1.022E+06 2.066E+06 3.422E+08
9.300E+01 1.007E+06 2.038E+06 3.387E+08
9.400E+01 9.934E+05 2.010E+06 3.350E+08
9.500E+01 9.790E+05 1.981E+06 3.311E+08
9.600E+01 9.646E+05 1.953E+06 3.274E+08
9.700E+01 9.512E+05 1.926E+06 3.240E+08
9.800E+01 9.372E+05 1.898E+06 3.202E+08
9.900E+01 9.239E+05 1.871E+06 3.170E+08
1.000E+02 9.109E+05 1.845E+06 3.136E+08

VARI ABLE P1 V1 W
M NVAL= 1.372E+01 1.112E+01 1.956E+01
MAXVAL= 1.488E+01 1.532E+01 2.159E+01

1.00 +.PW.+VVVVVVVVVVVVV .+ . . +. . .+ .+ + 4+

PPPVWVPVP P VWWMWWW

288



C. T. Shaw, Using Computational Fluid Dynamics, Prerifiai, 1992

0.90 + VP PP PPPP VWAWMWWWY
+

RVARYY PPP
VWAV .
0.80 +V PPP
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wWow PPP
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0.60 +WWW W PPP
W W PPP
0.50 W W W PP
AR PP
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VWAV PP

10.30 + VYAV PP
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THE ABSCI SSA | S I SWP. M N= 1. 00E+00 MAX=
1. O0E+02

SATLIT RUN NUMBER =1; LIBRARY REF.=0

RUN COMPLETED AT 16:49:16 ON TUESDAY, 27
NOVEMBER 1990

MACHINE-CLOCK TIME OF RUN =82 SECONDS.
TIME/(VARIABLES*CELLS*TSTEPS*SWEEPS*ITS) =
2.733E-03

B
Results After 500 Sweeps
R
CCCC HHH PHOENI CS - EARTH
Version 1.5.3
CCCCCCCC HHHHH (O Copyright 1989

ccccececC HHHHHHHHHH Concentration Heat and
Momentum Ltd

cccccecC HHHHHHHHHHHH All rights reserved.
cccecec HHHHHHHHHHHHAHA CHAM Ltd, Bakery House,
40 High St

ccceecc HHHHHHHHHAHAHAA Wimbledon, London,
SW19 5AU

cccccCC HHHHHHHHHH Tel: 01-947-7651; Telex:
928517

cccecceC HHHHAHA Facsim |l e: 01-879-3497
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CCCC HHH The option level is -18

...edited...

Group 1. Run Title and Number

TEXT(SIMPLE DEVELOPING FLOW IN BETWEEN
PLATES)

IRUNN=1;LIBREF=0

« GRID-GEOMETRY INFORMATION *** X-
COORDINATESOF THE CELL CENTRES

5.000E-01Y-COORDINATES OF THE CELL
CENTRES

2.500E-02 7.500E-02 1.250E-01 1.750E-01 2.250E-01
2.750E-01 3.250E-01 3.750E-01 4.250E-01 4.750E-01
Z-COORDINATESOF THE CELL CENTRES

1.953E-02 5.860E-02 1.172E-01 2.344E-01 4.688E-01
9.375E-01 1.875E+00 3.750E+00 7.500E+00
1.500E+01

o INTEGRATION OF EQUATIONS BEGINS -
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TIME STP=1SWEEP NO=400 ZSLAB NO=2ITERN
NO=1

TIME STP=1SWEEP NO=400 ZSLAB NO=1ITERN
NO=1

FLOW FIELD AT ITHYD=1, ISWEEP=400, ISTEP=1
YZPR IX=1

FIELD VALUES OF P1

'Y= 10 1.858E+02 1.879E+02 1.890E+02 1.865E+02
1.821E+02

l'Y=9 1.840E+02 1.860E+02 1.873E+02 1.855E+02
1.819E+02

'Y= 8 1.846E+02 1.865E+02 1.875E+02 1.855E+02
1.819E+02

lY=7 1.855E+02 1.872E+02 1.878E+02 1.855E+02
1.819E+02

Y= 6 1.867E+02 1.882E+02 1.882E+02 1.856E+02
1.819E+02

lY=5 1.886E+02 1.896E+02 1.886E+02 1.856E+02
1.818E+02

lY=4 1.913E+02 1.915E+02 1.890E+02 1.855E+02
1.818E+02

Y= 3 1.958E+02 1.940E+02 1.892E+02 1.853E+02
1.817E+02

Y= 2 2.036E+02 1.968E+02 1.885E+02 1.848E+02
1.815E+02

lY=1 2.085E+02 1.894E+02 1.860E+02 1.835E+02
1.813E+02

1Z=12345

Y= 10 1.760E+02 1.642E+02 1.407E+02 9.360E+01 7.349E-
11

lY=9 1.760E+02 1.642E+02 1.407E+02 9.361E+01 7.396E-
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11

IY= 8 1.760E+02 1.642E+02 1.407E+02 9.361E+01 7.085E-
11

IY= 7 1.760E+02 1.642E+02 1.407E+02 9.361E+01 6.617E-
11

IY= 6 1.760E+02 1.642E+02 1.407E+02 9.361E+01 5.994E-
11

IY= 5 1.760E+02 1.642E+02 1.407E+02 9.360E+01 5.216E-
11

IY= 4 1.760E+02 1.642E+02 1.407E+02 9.360E+01 4.283E-
11

IY= 3 1.760E+02 1.642E+02 1.407E+02 9.360E+01 3.197E-
11

IY= 2 1.760E+02 1.642E+02 1.407E+02 9.360E+01 1.963E-
11

IY= 1 1.760E+02 1.642E+02 1.407E+02 9.360E+01 8.367E-
12

1Z=6 78910

FIELD VALUES OF V1

IY= 9 1.102E-01 1.067E-01 9.143E-02 4.990E-02 6.791E-03
IY= 8 2.154E-01 2.078E-01 1.777E-01 9.651E-02 1.296E-02
IY= 7 3.160E-01 3.035E-01 2.559E-01 1.349E-01 1.677E-02
IY= 6 4.117E-01 3.919E-01 3.217E-01 1.604E-01 1.695E-02
IY= 5 5.011E-01 4.694E-01 3.688E-01 1.690E-01 1.284E-02
IY= 4 5.799E-01 5.285E-01 3.880E-01 1.573E-01 4.698E-03
IY= 3 6.381E-01 5.532E-01 3.670E-01 1.247E-01 -6.082E-03
IY= 2 6.495E-01 5.102E-01 2.930E-01 7.681E-02 -1.681E-02
IY= 1 5.318E-01 3.364E-01 1.677E-01 3.063E-02 -2.361E-02
1Z=12345

IY= 9 6.101E-04 2.545E-05 -5.636E-06 -6.392E-05 -2.030E-
04

IY= 8 1.169E-03 4.972E-05 -1.117E-05 -1.255E-04 -2.031E-
04

IY= 7 1.575E-03 6.988E-05 -1.640E-05 -1.826E-04 -2.032E-
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?Y4: 6 1.763E-03 8.401E-05 -2.107E-05 -2.329E-04 -2.032E-
?Y4: 5 1.718E-03 9.129E-05 -2.493E-05 -2.737E-04 -2.033E-
?Y4: 4 1.489E-03 9.196E-05 -2.769E-05 -3.016E-04 -2.034E-
?Y4: 3 1.175E-03 8.692E-05 -2.898E-05 -3.122E-04 -2.034E-
?Y4: 2 8.866E-04 7.690E-05 -2.818E-05 -2.976E-04 -2.034E-
?Y4: 1 6.646E-04 6.028E-05 -2.380E-05 -2.378E-04 -2.034E-
?24: 678910

FIELD VALUES OF W1

Y= 10 1. 086E+00 1.173E+00 1.310E+00
1. 466E+00 . 509E+00

'Y= 9 1. 082E+00 . 164E+00 . 293E+00
1. 439E+00 . 478E+00

'Y= 8 1. 079E+00 . 156E+00 . 273E+00
1. 393E+00 . 417E+00

'Y= 7 1. 075E+00 . 147E+00 . 245E+00
1. 324E+00 . 326E+00

'Y= 6 1. 070E+00 . 133E+00 . 202E+00
1. 229E+00 . 204E+00

'Y= 5 1. 062E+00 . 110E+00 . 136E+00
1. 099E+00 . 049E+00

'Y= 4 1. 045E+00 . 067E+00 . 030E+00
9. 287E-01 . 618E-01

'Y= 3 1. 009E+00 . 768E-01 . 577E-01
7.084E-01 .417E-01

'Y= 2 9. 081E-01 . 732E-01 . 760E- 01
4.322E-01 . 896E- 01

'Y= 1 5. 845E-01 . 088E-01 . 953E-02 -
2. 636E-02 . 114E-01

| Z= 1
5
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Y= 10 1.516E+00 1.517E+00 1.517E+00
1. 510E+00

ly= 9 1. 485E+00 1.486E+00 1. 485E+00
1. 479E+00

ly= 8 1.422E+00 1.423E+00 1. 423E+00
1. 417E+00

ly= 7 1.328E+00 1.329E+00 1. 329E+00
1. 323E+00

Y= 6 1.203E+00 1.203E+00 1.203E+00
1. 199E+00

ly= 5 1. 046E+00 1.046E+00 1. 046E+00
1. 043E+00

Y= 4 8.579E-01 8.577E-01 8.577E-01
8. 566E- 01

ly= 3 6.381E-01 6.379E-01 6.379E-01
6. 394E- 01

ly= 2 3.869E-01 3.864E-01 3.866E-01
3.926E-01

ly= 1 1.032E-01 1.017E-01 1.029E-01
1. 266E- 01

| Z= 6 7 8
...edited...

SPOT VALUESVS. SWEEP (/ITHYD IF PARAB)
IXMON=11YMON=21ZMON=2
TABULATION OF ABSCISSA AND ORDINATES...

ISWPP1V1W1

2.000E+00 1.219E+02 1.789E-01 8.181E-01
3.000E+00 1.228E+02 1.756E-01 8.178E-01
4.000E+00 1.237E+02 1.777E-01 8.170E-01
5.000E+00 1.246E+02 1.754E-01 8.170E-01
6.000E+00 1.254E+02 1.774E-01 8.159E-01
7.000E+00 1.263E+02 1.760E-01 8.157E-01
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8.000E+00 1.271E+02 1.777E-01 8.146E-01
9.000E+00 1.280E+02 1.770E-01 8.142E-01
1.000E+01 1.288E+02 1.784E-01 8.131E-01

...edited...

3.900E+02 1.968E+02 5.108E-01 7.717E-01
3.910E+02 1.968E+02 5.108E-01 7.719E-01
3.920E+02 1.968E+02 5.107E-01 7.720E-01
3.930E+02 1.968E+02 5.107E-01 7.721E-01
3.940E+02 1.968E+02 5.106E-01 7.723E-01
3.950E+02 1.968E+02 5.106E-01 7.724E-01
3.960E+02 1.968E+02 5.105E-01 7.726E-01
3.970E+02 1.968E+02 5.104E-01 7.728E-01
3.980E+02 1.968E+02 5.104E-01 7.729E-01
3.990E+02 1.968E+02 5.103E-01 7.731E-01
4.000E+02 1.968E+02 5.102E-01 7.732E-01

VARI ABLE P1 V1 W
M NVAL= 1.219E+02 1.754E-01 7.289E-01
MAXVAL= 1.968E+02 5.110E-01 8.181E-01
CELLAV= 1.819E+02 4.077E-01 7.549E-01

1.00
WW.. .+ . . +. .. +. . +..+..+..PPVVVVVVVVVVVVVV

W PPPPPPVVAMVAMW
10.90 +WW PPPPP \WAW

! W PPPP W

'0.80 + W PPP VWV
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WV PPP VW

0.70 + W PPP VW
+

WV PP W

'0.60 + W PP W
+

WV PP W

0.50 + WPP \A%
WAV
. WV W
VWANNNY
0.40 + PPWN W
VWAV +
PP WW VWAV

'0.30 + PP WW WA
! P wWw Vi
0.20 + PP W WV VAW

P W W Vi
'0.10 +P W WY WA

PPV WMWY VW

0. 00

VW. o+ o+ WY .+,

+
0 1 .2 .3 .4 .5 .6 .7 .8
.9 1.0
THE ABSCI SSA | S | SW. M N= 2. 00E+00 MAX=
4. 00E+02

RESIDUALSVS. SWEEP (/ITHYD IF PARAB)
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TABULATION OF ABSCISSA AND ORDINATES...

ISWPP1V1W1

2.000E+00 8.767E+05 1.818E+06 3.089E+08
3.000E+00 8.625E+05 1.794E+06 3.094E+08
4.000E+00 8.521E+05 1.766E+06 3.081E+08
5.000E+00 8.399E+05 1.743E+06 3.035E+08
6.000E+00 8.287E+05 1.715E+06 3.009E+08
7.000E+00 8.179E+05 1.689E+06 2.978E+08
8.000E+00 8.064E+05 1.669E+06 2.944E+08
9.000E+00 7.959E+05 1.641E+06 2.916E+08
1.000E+01 7.848E+05 1.627E+06 2.880E+08

...edited...

3.900E+02 4.374E+04 3.756E+05 2.281E+07
3.910E+02 4.372E+04 3.743E+05 2.265E+07
3.920E+02 4.373E+04 3.730E+05 2.252E+07
3.930E+02 4.359E+04 3.717E+05 2.202E+07
3.940E+02 4.360E+04 3.703E+05 2.191E+07
3.950E+02 4.356E+04 3.695E+05 2.177E+07
3.960E+02 4.358E+04 3.689E+05 2.164E+07
3.970E+02 4.353E+04 3.684E+05 2.150E+07
3.980E+02 4.356E+04 3.680E+05 2.136E+07
3.990E+02 4.367E+04 3.676E+05 2.157E+07
4.000E+02 4.348E+04 3.671E+05 2.105E+07

VARI ABLE P1 V1 W
M NVAL= 1.068E+01 1.281E+01 1.686E+01
MAXVAL= 1.368E+01 1.441E+01 1.955E+01

1.00 WW... 4.+t b
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VIV
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0.80 + \\WWW
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0.50 + PPV
+
PPV VIV
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+
PVWW VWY
10.30 + PPV WAV
+
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0 1 .2 .3 .4 .5 .6 .7 .8
.9 1.0
THE ABSCI SSA | S | SWP. M N= 2. 00E+00 MAX=
4. 00E+02

SATLIT RUN NUMBER =1; LIBRARY REF.=0

RUN COMPLETED AT 17:01:37 ON TUESDAY, 27
NOVEMBER 1990

MACHINE-CLOCK TIME OF RUN =477 SECONDS.
TIME/(VARIABLES*CELLS*TSTEPS*SWEEPS*ITS) =
3.985E-03

B
Results After 900 Sweeps
R
CCCC HHH PHOENI CS - EARTH
Version 1.5.3
CCCCCCCC HHHHH (O Copyright 1989

ccccececC HHHHHHHHHH Concentration Heat and
Momentum Ltd

cccccecC HHHHHHHHHHHH All rights reserved.
cccececc HHHHHHHHHHHHHA CHAM Ltd, Bakery House,
40 High St

ccceecc HHHHHHHHHAHAHAA Wimbledon, London,
SW19 5AU

ccccccC HHHHHHHHHH Tel: 01-947-7651; Telex:
928517
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cccccccC HHHHHA Facsimle: 01-879-3497
CCCC HHH The option level is -18

...edited...

Group 1. Run Title and Number

TEXT(SIMPLE DEVELOPING FLOW IN BETWEEN
PLATES)

IRUNN=1;LIBREF=0

GRID-GEOMETRY INFORMATION *** X-
COORDINATESOF THE CELL CENTRES

5.000E-01Y-COORDINATES OF THE CELL
CENTRES

2.500E-02 7.500E-02 1.250E-01 1.750E-01 2.250E-01
2.750E-01 3.250E-01 3.750E-01 4.250E-01 4.750E-01
Z-COORDINATESOF THE CELL CENTRES

1.953E-02 5.860E-02 1.172E-01 2.344E-01 4.688E-01

9.375E-01 1.875E+00 3.750E+00 7.500E+00
1.500E+01
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o INTEGRATION OF EQUATIONS BEGINS -

TIME STP=1SWEEP NO=400 ZSLAB NO=2ITERN
NO=1

TIME STP=1SWEEP NO=400 ZSLAB NO=1ITERN
NO=1

FLOW FIELD AT ITHYD=1, ISWEEP=400, ISTEP=1
YZPR IX=1

FIELD VALUES OF P1

Y= 10 1.864E+02 1.883E+02 1.894E+02 1.869E+02
1.828E+02

lY=9 1.847E+02 1.866E+02 1.878E+02 1.860E+02
1.826E+02

Y= 8 1.853E+02 1.870E+02 1.880E+02 1.860E+02
1.826E+02

lY=7 1.861E+02 1.877E+02 1.883E+02 1.860E+02
1.826E+02

lY=6 1.873E+02 1.887E+02 1.886E+02 1.861E+02
1.826E+02

lY=5 1.891E+02 1.901E+02 1.890E+02 1.861E+02
1.826E+02

lY=4 1.919E+02 1.920E+02 1.893E+02 1.860E+02
1.826E+02

Y= 3 1.964E+02 1.946E+02 1.893E+02 1.858E+02
1.825E+02

Y= 2 2.045E+02 1.974E+02 1.884E+02 1.853E+02
1.825E+02

lY=1 2.105E+02 1.918E+02 1.838E+02 1.841E+02
1.823E+02

1Z=12345
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Y=10 1.766E+02 1.648E+02 1.413E+02 9.416E+01 7.560E-
11

lY=9 1.766E+02 1.648E+02 1.413E+02 9.416E+01 7.430E-
11

Y= 8 1.766E+02 1.648E+02 1.413E+02 9.416E+01 7.116E-
11

lY=7 1.766E+02 1.648E+02 1.413E+02 9.416E+01 6.645E-
11

lY=6 1.766E+02 1.648E+02 1.413E+02 9.416E+01 6.018E-
11

lY=5 1.766E+02 1.648E+02 1.413E+02 9.416E+01 5.233E-
11

IY=4 1.766E+02 1.648E+02 1.413E+02 9.416E+01 4.292E-
11

Y= 3 1.766E+02 1.648E+02 1.413E+02 9.416E+01 3.194E-
11

lY=2 1.766E+02 1.648E+02 1.413E+02 9.416E+01 1.941E-
11

lY=1 1.766E+02 1.648E+02 1.413E+02 9.416E+01 5.697E-
12

1Z=678910

FIELD VALUES OF V1

Y=19 1.050E-01 1.015E-01 8.661E-02 4.748E-02 1.036E-02
Y= 8 2.051E-01 1.977E-01 1.682E-01 9.169E-02 1.997E-02
Y= 7 3.010E-01 2.887E-01 2.417E-01 1.277E-01 2.718E-02
Y= 6 3.931E-01 3.731E-01 3.027E-01 1.509E-01 3.070E-02
IY=5 4.802E-01 4.476E-01 3.446E-01 1.571E-01 2.988E-02
Y= 4 5.592E-01 5.052E-01 3.576E-01 1.431E-01 2.487E-02
Y= 3 6.222E-01 5.312E-01 3.282E-01 1.085E-01 1.687E-02
Y= 2 6.450E-01 4.934E-01 2.425E-01 5.882E-02 8.212E-03
lY=1 5.452E-01 3.308E-01 1.047E-01 1.133E-02 1.901E-03
1Z=12345

lY=19 6.707E-04 9.450E-06 -9.216E-07 -8.407E-06 -2.710E-
05
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Y= 8 1.289E-03 1.783E-05 -1.898E-06 -1.653E-05 -2.710E-

05

lY=7 1.727E-03 2.295E-05 -2.891E-06 -2.408E-05 -2.712E-

05

lY=6 1.897E-03 2.341E-05 -3.839E-06 -3.078E-05 -2.713E-

05

lY=51.772E-03 1.910E-05 -4.669E-06 -3.632E-05 -2.714E-

05

lY=4 1.397E-03 1.131E-05 -5.310E-06 -4.029E-05 -2.715E-

05

Y= 3 8.871E-04 2.345E-06 -5.680E-06 -4.215E-05 -2.715E-

05

Y= 2 3.984E-04 -5.036E-06 -5.637E-06 -4.094E-05 -2.715E-

05

lY=1 7.792E-05 -8.126E-06 -4.840E-06 -3.424E-05 -2.715E-

05

1Z=678910
FIELD VALUES OF W1

Y= 10
1. 445E+00
'Y= 9
1. 419E+00
'Y= 8
1. 373E+00
'Y= 7
1. 306E+00
'Y= 6
1. 211E+00
'Y= 5
1. 083E+00
'Y= 4
9. 152E-01
'Y= 3
6. 992E-01
'Y= 2
4.310E-01

1. 082E+00
. 510E+00

1. 078E+00
. 479E+00

1. 075E+00
. 418E+00

1. 072E+00
. 328E+00

1. 068E+00
. 206E+00

1. 062E+00
. 052E+00

1. 049E+00
. 652E-01

1. 018E+00
. 450E- 01

9. 221E-01
. 916E- 01
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. 161E+00

. 153E+00

. 146E+00

. 138E+00

. 126E+00

. 107E+00

. 070E+00

. 883E-01

. 951E-01

. 296E+00

. 280E+00

. 261E+00

. 233E+00

. 191E+00

. 127E+00

. 023E+00

. 542E-01

. 793E-01
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ly= 1 5.741E-01 3.151E-01 1.538E-01
1.174E-01 1. 056E-01

| Z= 1 2 3
5

Y= 10 1.518E+00 1.518E+00 1.518E+00
1. 517E+00

ly= 9 1.487E+00 1.487E+00 1. 487E+00
1. 486E+00

ly= 8 1. 424E+00 1. 424E+00 1. 424E+00
1. 423E+00

ly= 7 1.330E+00 1.330E+00 1.330E+00
1. 329E+00

Y= 6 1.204E+00 1.204E+00 1.204E+00
1. 204E+00

ly= 5 1. 047E+00 1.047E+00 1. 047E+00
1. 047E+00

Y= 4 8.588E-01 8.586E-01 8.586E-01
8. 584E- 01

ly= 3 6.389E-01 6.387E-01 6.387E-01
6. 389E- 01

ly= 2 3.875E-01 3.874E-01 3.875E-01
3. 882E-01

ly= 1 1. 046E-01 1.048E-01 1.051E-01
1. 085E- 01

| Z= 6 7 8
...edited...

SPOT VALUESVS. SWEEP (/ITHYD IF PARAB)
IXMON=11YMON=2|ZMON=2

TABULATION OF ABSCISSA AND ORDINATES...
ISWPP1V1IW1

2.000E+00 1.968E+02 5.101E-01 7.734E-01
3.000E+00 1.968E+02 5.100E-01 7.735E-01
4.000E+00 1.968E+02 5.099E-01 7.737E-01
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5.000E+00 1.968E+02 5.099E-01 7.739E-01
6.000E+00 1.969E+02 5.098E-01 7.740E-01
7.000E+00 1.969E+02 5.097E-01 7.742E-01
8.000E+00 1.969E+02 5.096E-01 7.743E-01
9.000E+00 1.969E+02 5.095E-01 7.745E-01
1.000E+01 1.969E+02 5.093E-01 7.747E-01

...edited...

3.700E+02 1.974E+02 4.936E-01 7.949E-01
3.710E+02 1.974E+02 4.936E-01 7.949E-01
3.720E+02 1.974E+02 4.935E-01 7.949E-01
3.730E+02 1.974E+02 4.935E-01 7.950E-01
3.740E+02 1.974E+02 4.935E-01 7.950E-01
3.750E+02 1.974E+02 4.935E-01 7.950E-01
3.760E+02 1.974E+02 4.935E-01 7.950E-01
3.770E+02 1.974E+02 4.935E-01 7.950E-01
3.780E+02 1.974E+02 4.935E-01 7.950E-01
3.790E+02 1.974E+02 4.935E-01 7.950E-01
3.800E+02 1.974E+02 4.935E-01 7.950E-01
3.810E+02 1.974E+02 4.935E-01 7.950E-01
3.820E+02 1.974E+02 4.935E-01 7.950E-01
3.830E+02 1.974E+02 4.935E-01 7.950E-01
3.840E+02 1.974E+02 4.935E-01 7.950E-01
3.850E+02 1.974E+02 4.935E-01 7.950E-01
3.860E+02 1.974E+02 4.934E-01 7.950E-01
3.870E+02 1.974E+02 4.934E-01 7.950E-01
3.880E+02 1.974E+02 4.934E-01 7.950E-01
3.890E+02 1.974E+02 4.934E-01 7.950E-01
3.900E+02 1.974E+02 4.934E-01 7.950E-01
3.910E+02 1.974E+02 4.934E-01 7.950E-01
3.920E+02 1.974E+02 4.934E-01 7.950E-01
3.930E+02 1.974E+02 4.934E-01 7.950E-01
3.940E+02 1.974E+02 4.934E-01 7.951E-01
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3.950E+02 1.974E+02 4.934E-01 7.951E-01
3.960E+02 1.974E+02 4.934E-01 7.951E-01
3.970E+02 1.974E+02 4.934E-01 7.951E-01
3.980E+02 1.974E+02 4.934E-01 7.951E-01
3.990E+02 1.974E+02 4.934E-01 7.951E-01
4.000E+02 1.974E+02 4.934E-01 7.951E-01

VARI ABLE P1 V1 W
M NVAL= 1.968E+02 4.934E-01 7.734E-01
MAXVAL= 1.974E+02 5.101E-01 7.951E-01
CELLAV= 1.972E+02 4.977E-01 7.900E-01

W VAN
PPPPPPP

0.90 + V VNV PPPPP
! Y, VAWV PPPPP
0.80 + W VAW PPPP

! W VI PPPP

0.70 + W W PPP

! W PPP

'0.60 + W WN  PPPP

' VWW  PPP

'0.50 + WA PPPP

! VIV VPP
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0.40 + VINPPPVY
' WeP W

'0.30 + W WV

! WP WV

'0.20 + VW WW

! WY WAW

10.10 +WW VWA

! PW VWA

.9 1.0
THE ABSCI SSA | S | SWP. M N= 2. 00E+00 MAX=
4. 00E+02

RESIDUALSVS. SWEEP (/ITHYD IF PARAB)
TABULATION OF ABSCISSA AND ORDINATES...

ISWPP1V1W1

2.000E+00 4.352E+04 3.666E+05 2.129E+07
3.000E+00 4.345E+04 3.661E+05 2.099E+07
4.000E+00 4.342E+04 3.656E+05 2.086E+07
5.000E+00 4.348E+04 3.652E+05 2.071E+07
6.000E+00 4.347E+04 3.648E+05 2.057E+07
7.000E+00 4.353E+04 3.644E+05 2.043E+07
8.000E+00 4.358E+04 3.641E+05 2.029E+07
9.000E+00 4.358E+04 3.637E+05 2.015E+07
1.000E+01 4.363E+04 3.634E+05 2.000E+07
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...edited...

3.700E+02 1.215E+04 1.446E+05 3.498E+06
3.710E+02 1.131E+04 1.443E+05 3.480E+06
3.720E+02 1.209E+04 1.440E+05 3.449E+06
3.730E+02 1.207E+04 1.437E+05 3.444E+06
3.740E+02 1.122E+04 1.433E+05 3.426E+06
3.750E+02 1.200E+04 1.430E+05 3.396E+06
3.760E+02 1.199E+04 1.428E+05 3.389E+06
3.770E+02 1.114E+04 1.424E+05 3.372E+06
3.780E+02 1.192E+04 1.421E+05 3.341E+06
3.790E+02 1.190E+04 1.418E+05 3.336E+06
3.800E+02 1.187E+04 1.415E+05 3.319E+06
3.810E+02 1.103E+04 1.412E+05 3.302E+06
3.820E+02 1.188E+04 1.410E+05 3.273E+06
3.830E+02 1.186E+04 1.407E+05 3.267E+06
3.840E+02 1.103E+04 1.404E+05 3.250E+06
3.850E+02 1.181E+04 1.401E+05 3.220E+06
3.860E+02 1.179E+04 1.397E+05 3.215E+06
3.870E+02 1.095E+04 1.394E+05 3.198E+06
3.880E+02 1.173E+04 1.392E+05 3.169E+06
3.890E+02 1.170E+04 1.389E+05 3.165E+06
3.900E+02 1.085E+04 1.385E+05 3.147E+06
3.910E+02 1.163E+04 1.382E+05 3.118E+06
3.920E+02 1.160E+04 1.379E+05 3.114E+06
3.930E+02 1.157E+04 1.376E+05 3.098E+06
3.940E+02 1.073E+04 1.373E+05 3.082E+06
3.950E+02 1.151E+04 1.370E+05 3.054E+06
3.960E+02 1.147E+04 1.367E+05 3.051E+06
3.970E+02 1.063E+04 1.363E+05 3.034E+06
3.980E+02 1.178E+04 1.360E+05 3.006E+06
3.990E+02 1.176E+04 1.357E+05 3.007E+06
4.000E+02 1.172E+04 1.354E+05 2.991E+06

309



Appendix A. PHOENICS Results for a Simple Laminar Flow

VARI ABLE P1 V1 W
M NVAL= 9. 271E+00 1.182E+01 1.491E+01
MAXVAL= 1.068E+01 1.281E+01 1.687E+01

10O WWVVPH. .+ 4+ttt

VAPV
'0.80 + VAAAN

! VAN

0.70 + PN

' PPPWAIY

10.60 + PP VWA

! PPPP VWV

'0.50 + PPP AW

! PPPPVVYANA

10.40 + PPPPPVWAW

! PPPPVVYANA

'0.30 + PPPPVANAY

! PPPVVVIYW
'0.20 + PPPVVINW

PPPVAP

310



C. T. Shaw, Using Computational Fluid Dynamics, Prerifiai, 1992

0.10 +
PPVWAPP +

PWANAP
0. 00
+oo o L+ PW
W

0 1 .2 .3 .4 .5 .6 .7 .8
.9 1.0

THE ABSCI SSA | S | SWP. M N= 2. 00E+00 MAX=
4. 00E+02

SATLIT RUN NUMBER =1; LIBRARY REF.=0

RUN COMPLETED AT 17:10:24 ON TUESDAY, 27
NOVEMBER 1990

MACHINE-CLOCK TIME OF RUN =279 SECONDS.
TIME/(VARIABLES*CELLS*TSTEPS*SWEEPS*ITS) =
2.331E-03
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