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PREFACE  

Computational Fluid Dynamics (CFD) can be described as the use 
of computers to produce information about the ways in which fluids 
flow in given situations. CFD embraces a variety of technologies 
including mathematics, computer science, engineering and physics, 
and these disciplines have to be brought together to provide the 
means of modelling fluid flows. Such modelling is used in many 
fields of science and engineering but, if it is to be useful, the results 
that it yields must be a realistic simulation of a fluid in motion. At 
present this depends on the problem being simulated, the software 
being used and the skill of the user.  

Until recently the user of CFD has been a specialist, probably 
trained to doctoral level, working in a research and development 
department. Now, however, the technology is more widely 
available both in industry and academia and so it is being used to 
provide insights into many aspects of fluid motion. This increasing 
use has come about as there are now numerous commercial CFD 
software packages on the market and so it is not necessary for users 
to have to write their own programs in order to obtain flow results. 
Whilst the software is widely available, the means of learning about 
CFD and how to produce simulations with it tends to be restricted 
to post-experience courses in universities and polytechnics, where 
the level of assumed knowledge can be too great, or to courses run 
by software suppliers where users are shown how to run a particular 
software product. Also, there are several technical texts that 
describe the detailed mathematics of the modelling process, but 
these are often far too technical for the user of the software. 
Consequently, as the variety of users increases there is a need for a 
general text that is an introductory guide to the analysis of flow 
problems using CFD and describes the various stages of an analysis 
that must be undertaken if the user is to obtain sensible results.  

This book addresses the needs of new users of CFD programs. 
After the introduction there is a description of some aspects of fluid 
flow, written specifically for the non-specialist, together with a look 



 

at some of the equations that need to be modelled. The discussion 
concentrates on flows which are viscous and incompressible, as 
most of the CFD packages solve this type of flow. The ways in 
which the governing equations are translated into a form suitable 
for solution by computer is then described. Having looked at this 
the CFD analysis process can be determined together with some 
information about the software and hardware that will be required. 
Then each stage of the analysis process is discussed in turn, 
followed by a chapter where three examples of the analysis process 
are given. These are realistic problems which have been solved 
using two commercially available CFD software packages. This 
completes the core of the material, but as other flow types are met 
in practice some extensions to the basic analysis process are 
discussed that enable these flow types to be modelled. Then, finally, 
there is a review of how the necessary hardware and software can 
be specified. This looks at the features that might be considered 
together with a discusion of how the whole process can be used to 
influence engineering design.  

The book assumes only a minimal knowledge of fluid mechanics 
and mathematics, and so it is hoped that it will be a useful guide to 
the CFD modelling process, being read by new users of CFD 
software, by those interested in what CFD could do for them and 
even by their managers. Hopefully, the book will act both as a 
learning aid and as a reference. Ideally, if readers wish to perform 
simulations then this book should be read in conjunction with the 
documentation of the appropriate software. Also, it is not intended 
that the book will replace the support services of the software 
suppliers.  

For those who wish to study further some hints on how to do this 
are given together with a list of key references.  
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1 INTRODUCTION  

1.1 Using Computers To Predict Flows  

Towards the end of 1987, two disasters occurred in Britain. In 
October, a severe storm swept over the South East of the country 
causing considerable damage and loss of life, and then, in 
November, there was a fire at King's Cross Underground Station in 
which thirty-one people died. In the investigations that followed 
both of these events, the use of computers to predict how fluids 
flow was discussed at great length.  

Many people will remember that there was considerable debate as 
to why it was that the storm was not predicted by British weather 
forecasters, when forecasters in other countries did predict the 
storm. Forecasters use computers to predict the flow of the air in the 
Earth's atmosphere, finding things such as wind speed and 
direction, atmospheric pressure and air temperature. From this data 
they can predict what the weather will be several hours or days 
ahead. One feature of the debate was a comparison of the 
calculation speed and data storage capacity of the computers 
available to the forecasters in Britain and those more powerful 
machines available elsewhere. As a result of this debate, a more 
powerful computer has been installed in Britain for weather 
forecasting [1]. The forecasters make considerable use of the 
techniques known as Computational Fluid Dynamics (CFD) to 
produce their weather forecasts and, as we shall see later in this 
book, the storage capacity of the computer can effect the accuracy 
of the prediction, as can the speed of the machine. The results of the 
CFD calculations can be seen every day as part of the weather 
forecasts on television.  

During the King's Cross fire, fireman reported that within the space 
of only two minutes the fire changed from being a small blaze 
within the escalator tunnel to a serious conflagration that engulfed 
the booking hall at the end of the tunnel. At the inquiry that 
followed this disaster the results of computer predictions of the 
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flow of air in the escalator tunnel and the booking hall were used to 
explain this flashover and to discount several of the theories that 
were put forward, such as the burning of the new paint on the 
ceiling of the tunnel [2]. These results showed a physical 
mechanism for the flashover, but they were so unexpected that 
experiments were carried out to see if such a mechanism occurred 
in practice. In scale models of the escalator tunnel the mechanism 
was found to occur, although the actual values of the flow velocity 
predicted by the computer were not accurate. This means that the 
computer predictions were correct in a qualitative sense, if not in a 
quantitative sense.  

The timing of the two disasters and the debate about the use of 
computers that followed are significant. They show that from 
around the mid-1980's computer predictions of fluid flow have been 
used routinely in both science and engineering to produce useful 
results. The predictions have to be derived from a technology that 
combines advances made in several technical areas such as 
computer science, mathematics and engineering. These advances 
have contributed to the increasing use of CFD that has taken place 
since the above date, and it is hoped that the links between them 
will be seen throughout this book.  

1.2 Situations Where Fluids Flow  

In many branches of engineering, there has to be an understanding 
of the motion of fluids. One classic example of this is in the aircraft 
industry, where the aerodynamics of an aircraft must be 
determined; i.e. the lift, drag and sideforces of a design must be 
estimated before a prototype flies. This ensures that the lift 
available will be sufficient to carry the weight of the loaded aircraft, 
that the required power of the engines can be determined together 
with the aircraft's fuel economy and that the motion of the aircraft 
can be predicted. To obtain this aerodynamic data many models of 
the design could be built and tested in a wind tunnel, with the 
model positioned in many orientations to the flow. Such tests might 
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consume many hours of wind tunnel time and cost many thousands 
or millions of pounds.  

As the equations that govern fluid motion are known, numerical 
approximations can be made to these equations, and, with the 
arrival of powerful computer hardware and software, some of the 
aerodynamics estimation can be made using these computer tools. 
This does not mean that wind tunnels are redundant. In reality, 
when computers and experiments are both used to produce 
predictions, engineers often choose to reduce the amount of wind 
tunnel time. Sometimes, however, the wind tunnels are used just as 
much as they would have been if they had been used alone. In both 
of these cases, wind tunnels can be used to investigate the problems 
that are too difficult to solve with the computational techniques and 
there are many such problems. Effectively, the use of computers 
releases wind tunnel time and this can be used to investigate the 
really difficult aerodynamics problems that could not be tackled 
before.  

Whilst this combination of experimental and computational 
investigations has been used to determine an aircraft's 
aerodynamics for some time, the use of computers for fluid flow 
prediction in other industrial areas is less advanced. Recently, 
however, other industries have been making the transition from 
purely experimental investigations to a mix of experimental and 
computational investigations. If we look at a variety of industrial 
sectors, such as aerospace, defence, power, process, automotive, 
electrical and civil engineering, there are many examples of areas 
where CFD is now used. For example, predictions can be made of 
the:  

• lift and drag of aircraft. Here, as we have said, engineers 
need the data for performance prediction. CFD is used in 
conjunction with wind tunnel tests to determine the 
performance of various configurations.  

• flows over missiles. This, again, is an area where there is a 
need for lift, drag and sideforce data, so that simulations of 
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performance can be made. As with aircraft, CFD and wind 
tunnel tests are used, but because of the wide range of flows 
that have to be simulated for a given configuration, use is 
also made of semi-empirical methods which are derived 
from large amounts of experimental data.  

• jet flows inside nuclear reactor halls. Such problems 
involve the simulation of fault conditions, and so engineers 
have great difficulty in performing actual experiments, for 
safety reasons. Hence, computation is the only way of 
trying to understand such flows.  

• flames in burners. There is a need to understand the 
complex interactions between fluid flow and chemical 
reaction in flames. This can assist in the production of more 
efficient designs for burners in boilers, furnaces and other 
heating devices.  

• air flow inside internal combustion engines. When air is 
used to burn fuel inside an internal combustion engine, be it 
a gas turbine engine, a petrol engine or a diesel engine, the 
air must be drawn into the chamber with the minimum 
amount of effort and the flow of the air once it is in the 
chamber must be able to promote good burning. Hence, 
engineers need to know the pressure drop through a system 
and the velocity distribution in the combustion chamber.  

• flow of cooling air inside electrical equipment. In this 
problem, electrical devices, such as integrated circuits, 
produce heat. This heat must be dissipated if the equipment 
is not to become too hot. For example, the hot devices heat 
the air that surrounds them and this hot air rises, creating air 
currents that move the heat away from the sources of heat. 
If insufficient heat is moved away then it may be necessary 
to add fans that will force air over the hot devices.  

• dispersion of pollutants into rivers and oceans. Various 
pollutants are discharged into rivers and oceans, and 
computer programs can be used to predict where pollutants 
will travel in these naturally occurring flows and what the 
pollutant concentration will be at given positions in the 
river or sea.  
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From this list, it is clear that the applications can be extremely 
varied in nature. Despite this, the computer predictions of the 
different problems can be made with computer software and 
hardware that is not specific to a given problem. Now that these 
computer tools are widely available, CFD has been brought out of 
the research laboratory and is used by many more people. It can 
even be used in the engineering design process.  

It is intended that this book should assist scientists and engineers in 
understanding how software tools can be used to predict the motion 
of fluids in a wide variety of situations. The emphasis is, however, 
on engineering examples where the speed of the flow is low and the 
fluid is viscous but where the flow does not include any heat 
transfer. This type of flow is very common throughout industry and 
it can be used as the basic model upon which can be built a number 
of modifications that account for other types of flows. For example, 
the flow speed might be such that the density of the fluid will 
change, or heat transfer or combustion might occur.  

1.3 Why Read This Book ?  

Over the last few years, many commercial CFD packages have 
become available. The emergence of these packages has meant that 
CFD is no longer practised solely in a research environment by 
highly-trained specialists, but it is also being used in many 
industrial organisations as a design tool. Consequently, engineers 
who are not specialists in the CFD field are having to come to terms 
with this technology, if only in an attempt to understand what the 
benefits of using the technology are, and also to understand what 
the drawbacks are.  

As a subject, CFD can appear to be far removed from the 
experience of those who are not specialists in the field. The 
situation is not helped by the numerous books on the market that 
address the subject of CFD, which are mainly written for the 
theoretical engineer or applied mathematician who is interested in 
the details of how the equations that govern fluid flow are solved. 
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No general text is available for the less-specialised user of CFD 
techniques or even for their managers.  

There is a wide variety of people that have a need to be able to 
understand something about CFD techniques, be they 
computational analysts using CFD for the first time, design 
engineers interested in obtaining information about fluid motion, 
and even engineering managers or computer managers who provide 
the computational resources for CFD. Such people are invariably 
graduates, often with no formal background in CFD, or even in 
basic fluid mechanics. If these people are offered some sympathetic 
help and guidance, then they can understand the basics of CFD. It is 
the author's experience that undergraduate engineering students can 
successfully model fluid flow situations, if they are given 
appropriate background information as to what the CFD solution 
process is and how it is used to obtain predictions of the behaviour 
of fluids.  

This book is an attempt to put the necessary information into a 
simple and concise format, so that it can be used by students or 
practising engineers to assist in their understanding of the 
technology of CFD, regardless of the particular software package 
they might be using. In fact, the book should act as a primer for 
someone about to explore the documentation of any CFD package. 
Once someone is familiar with the material contained here, they 
should be able to produce simulations of fluid flow situations using 
a suitable CFD package or be able to talk confidently with those 
who produce such simulations.  

1.4 The Objectives Of The Study  

As we have seen, CFD can be used to produce predictions for a 
wide variety of flows. So that the basics of the subject can be 
clearly understood, particularly by those outside the aircraft 
industry, the content of this book has in the main been restricted to 
the class of problems that can be described as being viscous, 
incompressible flows. These flows are slow speed flows where the 
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fluid is not compressed and features such as shock waves do not 
occur. Many industrial flow problems are of this type, and so most 
of the available CFD packages can simulate these flows. There is a 
separate chapter that describes how to model variations from this 
basic type of flow.  

After reading this book, it is hoped that you will be able to:  

• understand something of how incompressible, viscous 
flows behave  

• understand the numerical techniques that are used to solve 
the governing equations of fluid flow  

• follow the stages undertaken during a CFD analysis  
• recognise the need for a mesh of points to be specified 

within the fluid volume  
• specify a flow, in terms of the relevant boundary and initial 

conditions  
• understand the documentation for commercial CFD 

software packages  
• be aware of the limitations of the CFD process.  

Once the reader has this information, it should not be difficult to 
run some simple examples and hence gain experience in using 
commercial CFD packages. Having done this, the prediction of 
more involved fluid flow situations, where such things as heat flow, 
combustion and compressibility occur, should be relatively 
straightforward.  

1.5 Using The Book  

The book is intended to be an introductory guide to CFD, as well as 
a working reference for analysts and their managers. Consequently, 
as readers will probably come from a variety of technical 
backgrounds, very little background knowledge is assumed and the 
book has been structured so that its chapters can be read in 
isolation.  
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Chapter Two describes the properties of fluids that are considered 
important when fluids flow and describes some of the flow features 
that usually occur. It also provides a review of the equations that 
govern fluid flow and the factors that determine the flow types. 
This chapter is intended to be read by those with little or no formal 
training in fluid dynamics, and so can be skipped by other readers.  

As the equations describing the flow of a fluid are partial 
differential equations, Chapter Three looks at the standard ways of 
solving these equations using numerical approximations. Three 
different techniques for transforming partial differential equations 
into a numerical form are explained and the features common to 
them are emphasised. Solving the fluid flow equations leads to 
some special problems, regardless of the numerical technique, and 
so these problems and the ways of overcoming them are also 
explained. By using one of these techniques of approximating 
partial differential equations, equations can be derived which can 
then be programmed into a CFD software package. There is a set of 
operations that needs to be carried out to use such a package in a 
way that will produce sensible simulations of fluid flow problems, 
and so Chapter Four outlines this CFD analysis process and looks at 
the hardware and software that is available to assist in this process.  

In both Chapters Three and Four, emphasis is given to the fact that 
the basic features of the software and hardware tools are common to 
all the packages. These chapters should be read by those who are 
unfamiliar with the numerical solution of partial differential 
equations and the software and hardware associated with such 
solutions.  

Whilst the first four chapters cover some background material, the 
subsequent chapters, Five to Nine, concentrate on the CFD analysis 
process itself. These chapters describe in detail each of the 
processes that must be undertaken in order that the simulation of a 
fluid flow problem is successful. These processes include the 
formulation of the fluid flow problem, producing a flow 
specification that is easily translated into terms understood by the 
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software packages, the production of a computer model, the running 
of the numerical solution so that reasonable results are obtained and 
the analysis of the results. Whilst any individual chapter forms a 
stand-alone module describing one particular phase in the overall 
process, the five chapters taken as a whole detail the analysis 
process from start to finish.  

Having explained the analysis process in Chapters Five to Nine, 
Chapter Ten attempts to bring the process to life by applying the 
techniques described to a series of representative flow examples. It 
is in this chapter that we show how the techniques are actually used 
in practice, as the simulation process used to model these examples 
is described in full based on the use of commercial CFD software. 
From these examples the areas where CFD can be useful and the 
areas where it is of little use can be seen.  

Finally, the last two chapters round off our study by taking a brief 
look, in Chapter Eleven, at how some of the more complex flow 
features such as compressibility and heat transfer are accounted for 
in a simulation, and then by considering, in Chapter Twelve, the 
problem of how to acquire CFD software and hardware in industry 
and how to implement the technology within the design process.  
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2 FLUIDS IN MOTION  

2.1 Some Common Flow Features  

When people use computers they can become so engrossed in the 
computational aspects of their work that everything else is 
excluded. For people who use CFD in an industrial environment 
this can be a disastrous mistake, as the computer hardware and 
software are merely tools to assist our understanding of the ways in 
which fluids flow and of the interaction between this and some 
object that is being or has been designed. Consequently, it is very 
important that everyone concerned with CFD has some 
understanding of the physical phenomena that occur when fluids 
flow, as it is these phenomena that CFD must analyse or predict. As 
this is a book that has been designed to help explain some of the 
mysteries of how we can predict the motion of fluids using 
computer-based tools, we must start by looking at the basic 
processes of fluid flow. These can be extremely complex and the 
computer simulation has to be capable of reproducing this 
complexity. If analysts are aware of these physical realities, they 
can modify their modelling technique to ensure that the best 
possible results for a given situation can be produced.  

Whilst many engineers will have studied fluid mechanics as part of 
their formal education, some readers may not have made such a 
study, and so this chapter attempts to provide some information for 
those who have no formal background in the subject and for those 
who may wish simply to be reminded. The presentation of the 
material is based initially around the features that occur when fluids 
are flowing, that is, it considers what happens to a fluid in motion, 
and thereby develops an intuitive feeling for the subject. Then some 
of the mathematical aspects of the analysis of fluids in motion are 
discussed. This is not intended to be a comprehensive review, but it 
should highlight some of the more important features, giving a base 
for further study.  
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2.1.1 Fluids All Around Us  

When starting to think about the way fluids flow, many people are 
put off by the complexity of the subject. Even the titles of the 
categories by which flows are classified require some knowledge of 
fluid flow if they are to be understood. If you look at some of the 
many textbooks concerned with fluid mechanics it is clear that there 
are many such categories and these include:  

• viscous or inviscid flows  
• incompressible or compressible flows  
• flows in pipes or open channels  
• flows in pumps and turbines  
• water waves.  

The relevance of some of these classifications will become clearer 
as we progress, but it is sufficient to note here that these do serve a 
useful purpose in identifying the types of flow that can be found. It 
is, however, just as important for someone involved with CFD to 
recognise the phenomena that occur for each flow type, as well as 
the classifications themselves.  

We are going to be concerned predominantly with the use of 
computers to simulate flows that are found in industrial situations, 
outside the main stream of aeronautical applications. In many of 
these industrial flows the fluid moves at a low speed and so the 
stickyness, or viscosity, of the fluid produces forces which 
dominate the flow. This is especially true when the flow takes place 
within fixed solid boundaries. In an attempt to give a good intuitive 
feel for this class of flows let us consider some of the common flow 
features of low speed, viscous flows.  

Everyone has seen many examples of the flow features that exist in 
industrial fluid dynamics problems. We see water coming out of a 
tap, litter or leaves being blown about by the wind and water 
flowing in rivers. By making a careful study of such things it is 
possible to understand a great deal about the ways in which fluids 
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behave when they are flowing without reading a single fluid 
mechanics text book. In fact, some of the classical experiments of 
fluid dynamics can be recreated in the home or even experienced 
during a short walk.  

Take, for example, the common tap by a domestic sink. Slowly turn 
the tap on and see that water drips out of the tap. Open the tap 
further to increase the flow rate until a steady column of water 
comes out of the tap. Notice how smooth the water column is, 
appearing crystal clear like glass. Increase the flow rate further and 
the water column surface begins to move slowly before the whole 
column becomes opaque. At this final stage the water flows in a 
direction which is generally downwards, but if we look at one point 
in space in the water column the fluid seems to move in a random 
fashion, a so-called turbulent motion, which is superimposed on the 
general flow. This simple experiment with the flow out of a tap 
demonstrates that two main types of flow can be seen with viscous 
fluids; first a smooth laminar flow, for example where the water 
moves layer over layer giving a clear column of liquid, and a 
randomly fluctuating turbulent flow.  

 

A second set of flow examples can be created with a bath of water. 
Run several inches of water into a bath and let the natural motion of 
the water decay away. Then make sure that the surface of the water 
is illuminated, as, when the water is in motion, shadows will be cast 
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onto the base of the bath and these will give us some clues as to the 
motion of the water and so help our understanding of the flow. 
Now, drag various objects through the water and watch what 
happens. For example, put a circular cylinder such as an aerosol can 
into the water with its longitudinal axis in the vertical position and 
then move the cylinder along. Notice that the water moves so as to 
flow smoothly around the front of the cylinder, but that it does not 
move in a similar way at the back of the cylinder. There, the water 
forms into tight swirls of fluid as shown in Fig. 2.1. Repeat the 
same experiment with a hand. First of all straighten your fingers 
and place them vertically in the water with the fingers arranged 
from left to right. Now move your hand to the left and see what 
happens. Things are much the same as for the cylinder and are 
shown in Fig. 2.2a. Now place your hand at a slight angle to its 
previous position and then move it slowly to the left. Notice the 
new flow pattern as shown in Figure 2.2b. First, the water seems to 
approach your hand from below before splitting into two streams, 
one of which moves along the lower side of the hand and the other 
moves around the forward edge and then down the upper side of 
your hand. A swirl of fluid is left behind at the original position of 
the right hand end of the your hand. Stop moving your hand and 
watch a swirl of water form which rotates in the opposite direction 
to the first swirl. If you perform a quick start-stop action, Fig. 2.2c, 
the two swirling areas of fluid move down together, as each moves 
under the influence of the other.  
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As a final experiment with the bath of water sprinkle some powder 
such as talc on to the water surface, and then place a sheet of card 
or paper in the water and drag it along so that the disturbance is a 
minimum. Note that the fluid nearest the card moves along with the 
card and appears to leave the rest of the fluid behind.  

A common place where fluids flow is a river or stream, and 
particularly interesting effects can be seen at the point where the 
water flows under a bridge or around a bend. This flow will serve 
as our final demonstration. For example, stand on a bridge and look 
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down into the flow. Figure 2.3 shows some of the features that can 
be seen. Observe that, near the bank of the river, any objects such 
as small insects or leaves move much more slowly in the flow than 
do those in the centre of the river. Looking at the figure, near the 
centre of the flow an object might move from position A to position 
B in a given time, but near the bank an object will only move from 
position C to position D in the same time. Also note that near the 
bank objects tend to spin around, in a clockwise direction in the 
case shown in Fig. 2.3, but that they do not spin if they are near the 
centre of the flow. Where there is a pillar in the water, say 
supporting the bridge, look at the swirling areas of fluid 
downstream of the pillar.  

 

2.1.2 The Ways Fluids Flow  

These simple demonstrations, described above, show some of the 
major features that are found to occur when fluids flow at slow 
speeds. In particular it is important to recognise that:  
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• viscous flows can be laminar where the fluid is ordered and 
flows as if it was a series of sheets moving over each other.  

• viscous flows can be turbulent where the flow at one point 
is generally in one direction but that this mean flow has a 
seemingly random, fluctuating component superimposed on 
it.  

• normally a fluid flows cleanly around the front of an object 
but, around the back of an object, the direction of motion of 
the fluid does not stay parallel to the surface and the fluid 
swirls around. The fluid is said to separate from the surface 
and the swirls are called vortices.  

• when a fluid flows over a solid surface, it is slowed down 
by the solid surface. This is due to fluids being sticky or 
viscous. The area of fluid near the surface that is slowed 
down is called a boundary layer. Inside a boundary layer 
the flow velocity changes with distance away from the solid 
surface and so the fluid motion causes objects to rotate. 
Outside the boundary layer this does not happen. Once the 
fluid has moved past a solid surface the effects of the 
surface can still be seen and this region is known as a wake.  

All these features can be found in industrial flow problems and our 
modelling techniques must be capable of reproducing them if they 
exist physically. As a computer can only perform numerical 
operations, it is necessary to describe the motion of a fluid in 
mathematical terms. Then numerical solutions to the mathematical 
problem can be found and so a prediction of the physical flow 
problem can be determined. To help with this mathematical 
formulation, various properties of the fluid must be defined and the 
equations governing their variation in both time and space 
developed.  

2.1.3 Some Properties of Fluids  

Fluids in motion can be described in many ways, but we need to 
find some way of completely describing the state of a fluid. One 
obvious way is to have a description of the velocity of the fluid at 



C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992 

17 

all points in space and time. Note that velocity is a vector quantity 
and so it describes both a size and a direction. One way of 
specifying a velocity vector is to give the components of the vector 
in the three Cartesian coordinate directions. This description of the 
velocity field does not, however, contain enough information to 
define the state of the fluid in full, as other properties of the fluid 
must be known together with the velocity. The question is now: 
"Which properties do we need to describe ?"  

It is common knowledge that fluids can exert forces on objects. For 
example, in a strong wind, people and trees are blown over and 
slates are removed from roofs; and so the air must exert some sort 
of force on these objects. Forces applied by fluids are also used by a 
variety of means of transportation. Ships float on water as the water 
provides a lifting force and aircraft fly quite successfully as the air 
moving over the wings also provides a lifting force. The mechanism 
that creates these forces is that a fluid exerts a pressure on the 
surface of an object, and this pressure acts in such a way that when 
the sum of the pressure on each small section of the surface of the 
object is calculated a net force exists. Pressure is the force per unit 
area (or stress) normal to a surface and can occur if a fluid is 
stationary or moving. For example, a ship floats regardless of its 
speed through the water, but a conventional aircraft must be moving 
for there to be a lifting force on its wings.  

As well as this normal stress, or pressure, there is a stress derived 
from the action of a fluid that can act tangential to a solid surface. 
This stress is caused by the fact that the bulk of the fluid and the 
object are moving relative to each other and so the fluid is sheared. 
Fluids resist this shearing, such that a tangential stress acts in a 
direction parallel to the direction of motion of the fluid taken 
relative to the object. This provides a source of drag on a surface 
which is proportional to the viscosity, or stickiness, of the fluid. If 
the viscosity of the fluid is so small that it can be ignored then the 
flow is said to be inviscid. This never happens in practice, but it can 
be a useful approximation to make when performing calculations. 
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For the majority of the flows considered here the flow will be taken 
to be viscous.  

The other major property of a fluid is its density, which is the mass 
of a unit volume of fluid. When we pump up a tyre the air in the 
tyre is compressed. This is because we force air to occupy a volume 
which is effectively constant and already contains some air. As 
there is now more mass in the same volume, the density of the air 
increases. For most of the situations that we will be considering we 
will assume that the density of the fluid does not change, which is 
true for low speed flows where there are no heating effects. When 
the density remains constant, the flow is said to be incompressible, 
but if the flow speed is increased to a value near that of the speed of 
sound in the fluid, compressibility effects become apparent. This 
will be dealt with in Chapter Eleven as it is an additional feature 
that can be modelled if we make some modifications to the basic 
procedure that we will develop.  

We have now reviewed the important properties that can be used, 
together with the fluid velocity, to describe the fluid flow situations 
that we want to model. These properties are:  

• normal shear stress or pressure  
• viscosity, which enables us to find the tangential shear 

stress (the viscous shear stress)  
• density.  

If we are to calculate these properties, we must determine the 
mathematical relationships that govern the interaction between 
them. This can be done by considering some basic mechanics as we 
shall now see.  

2.2 Equations Describing Fluids in Motion  

Each CFD software package has to produce a prediction of the way 
in which a fluid will flow for a given situation. To do this the 
package must calculate numerical solutions to the equations that 



C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992 

19 

govern the flow of fluids. For the CFD analyst, therefore, it is 
important to have an understanding of both the basic flow features 
that can occur, and so must be modelled, and the equations that 
govern fluid flow. These equations can be found from the 
knowledge that the mass of fluid must be conserved, as must the 
momentum of the fluid. Whilst the equations will not be formally 
derived the underlying philosophy behind their derivation will be 
explained. Once these equations are known it should be a 
straightforward process to produce numerical predictions of all 
flows. This is not the case, however, as various problems arise in 
translating the mathematics into a numerical solution. One problem 
concerns the physics of the flow and how to model turbulence, as 
this complicates matters by having a seemingly random effect at 
each point in a flow. An attempt will therefore be made in this 
section to explain to the ways in which turbulence affects a flow 
and how this turbulence can be modelled. Chapter Three will look 
at some of the other problems concerned with the translation 
process.  

2.2.1 Developing the Governing Equations  

Whenever fluids flow the motion occurs in all three spatial 
dimensions, but, in an attempt to reduce the complexity of the 
problem, we often assume that a flow is two-dimensional. This 
assumption is useful as it reduces the number of variables that need 
to be considered, and so in this section we will also consider only 
two-dimensional problems. Such flows contain all the features that 
are necessary to show the processes used to carry out the derivation 
of the mathematical equations, and the switch to the three-
dimensional form of the equations is a straightforward extension of 
the processes described here.  

To develop the governing equations of a flow, we consider a small 
part of the fluid as shown in Fig. 2.4a. Here, a rectangular, two-
dimensional patch of fluid ABCD is shown together with an 
assumed velocity distribution in terms of the velocity components u 
and v in the x - and y -directions respectively. Then, in Fig. 2.4b, 
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we can see the forces acting in the horizontal direction on the patch 
of fluid caused by a normal stress sigma and a shear stress tau . 
Note it can be assumed that the velocity, normal stress and shear 
stress vary linearly across the patch of fluid, and that their values 
are assumed to be constant over a given edge, or face, of the patch.  

 

First of all, for an incompressible flow, fluid cannot accumulate in 
the patch. This is because the fluid can not be compressed as its 
density is assumed to be a constant. As a result of this 
incompressibility of the fluid, the total mass of fluid flowing into 
the patch must be zero. Across each face the mass of fluid flowing 
into the patch is the product of the fluid density, the area of the face 
and the fluid velocity normal to the face. As the density is a 
constant it is the same for all faces and so can be left out of the 
relationships for mass flow. The net mass flow is given by the sum 
of the masses flowing across each face AB, BC, CD and DA and 
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this is made equal to zero. Considering a positive mass flow to 
occur when the flow is out of the patch, this gives  

 

which can be rearranged to give  

 

or just  

 

This is known as the continuity of mass equation, or simply the 
continuity equation and can be seen to be a function of the velocity 
components alone for an incompressible flow. If the flow is 
compressible the density can change and this has to be accounted 
for by a small modification, as we shall see in Chapter Eleven.  

A second set of equations can be derived by applying Newton's 
Second Law of Motion to find the relationship between the forces 
on the patch of fluid and the acceleration of the fluid. First of all, it 
is necessary to determine an expression for the acceleration of the 
fluid that takes account of the fact that the velocity components 
vary in both time and space. To do this we must consider what the 
total change of the velocity components u or v will be due to the 
changes of u or v with each of the spatial directions x and y , and 
the time t .  
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Let us consider changes of the component u alone, which can be 
found by applying the chain rule for partial derivatives. This gives  

 

which becomes, on dividing by delta t  

 

Now, {delta x} over {delta t} is the velocity component u itself, and 
similarly, {delta y} over {delta t} is the component v , and so the 
relationship becomes  

 

The expression shown in equation 2.4 is the total acceleration of the 
fluid in the x -direction and is known as the substantive derivative 
of the velocity component u . It is made up of two parts, the first 
part consists of two terms which describe the change of the velocity 
component u due to the fluid being being carried along, or 
convected, with the flow and the second part, the third term, 
describes the temporal change of the velocity component. When 
this total acceleration is multiplied by the mass of the fluid in the 
patch, it can be set equal to the total force in the x -direction acting 
on the patch of fluid. This is Newton's Second Law.  

The force on the patch of fluid in the x -direction is a combination 
of the forces due to the normal stresses and the tangential shear 
stresses acting on each of the four faces of the patch. These 
combine to give  
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Relations relating the normal stress sigma to the pressure and 
velocity gradients and the shear stress tau to the viscosity and 
velocity gradients can be derived [3] to give  

 

and  

 

and when these are combined with equation 2.5 the equation that is 
produced in the x -direction is  

 

and in the y -direction is  

 

where mu is the viscosity of the fluid and rho is its density. Note 
that the effects of external forces such as gravity have been ignored 
here, but that they can be included as an additional force term in 
equations 2.5, 2.8 or 2.9 as appropriate. We will do this in Chapter 
Eleven when we look at the effect of buoyancy on hot fluids. Also 
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note that the viscosity mu given above is known as the dynamic 
viscosity, and that there is a another common form of the viscosity, 
the kinematic viscosity nu , which is the dynamic viscosity mu 
divided by the density rho .  

These two equations 2.8 and 2.9, derived from Newton's Second 
Law, describe the conservation of momentum in the flow and are 
often known as the momentum equations or the Navier-Stokes 
equations. They can be seen to be very similar to each other. The 
terms on the left hand side of each of these equations come from the 
acceleration term like that in equation 2.4, the second and third 
terms being the convection terms; whereas the right hand side terms 
come from the pressure gradient in the flow and the effects of 
viscosity.  

An equation similar to the momentum equations can be derived to 
describe the conservation of energy within the patch, and it is this 
equation that is used to account for the flow of heat through a fluid, 
as will be described in Chapter Eleven.  

For low speed flows without heat transfer, the equations governing 
the conservation of mass and momentum can be used to describe 
the flow exactly. That is, it should be possible to describe all 
incompressible flows using these equations. Turbulence, however, 
can make this a difficult task as, when a flow is turbulent, the 
velocity components vary very rapidly in both space and time. 
Consequently, the above equations are used for laminar flows but 
can be used, at present, only for turbulent flows in very simple 
geometries such a rectangular channels. In the latter case, the 
amount of calculation effort required to capture both the temporal 
and spatial variation of the variables is extremely large, as is the 
amount of computer storage required to store all the necessary data 
for the calculation. The reasons for this will become more obvious 
when we look at the numerical solution of these equations in the 
next chapter. Most flows of interest to engineers occur in 
geometries which are far from simple and so, to reduce the amount 
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of calculation effort, the turbulence has to be modelled in some 
simple way.  

2.2.2 Concepts of Turbulence  

For those of you who carried out the experiment with the water tap 
that was discussed at the beginning of this chapter, we noticed that 
at one point in space, within the turbulent jet of water, the general 
fluid motion was in one direction, but that at any one point in time 
the flow direction was a random variation of this. Effectively, we 
saw a mean flow with some randomness superimposed upon it. This 
splitting of a flow into a mean flow and some random fluctuation 
gives us a guide as to how to we can model a turbulent flow. Most 
engineering models of turbulent flow assume that the velocity at a 
given point in space and a given time can be made up of the 
superposition of some mean velocity, which may vary slowly with 
time, and a random component which varies rapidly. 
Mathematically, the instantaneous velocity component u can be 
described as  

 

where U bar is the mean velocity and u prime is the random 
fluctuating component. Substituting this, and the equivalent 
expression for the second velocity component v , into the continuity 
equation 2.2, and then integrating with time gives  

 

which is a time-averaged form of the continuity equation 2.2.  

This simplification arises because the fluctuating components are 
random and so do not show any preferential direction, hence the 
integrals of these fluctuating components over time must be zero.  
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Making a similar substitution into the momentum equations 2.8 and 
2.9 does not produce such a convenient result. The convection 
terms are non-linear terms, that is they are the product of velocity 
components and the derivatives of velocity components. When we 
substitute expressions like the one given in equation 2.10 into the 
momentum equations, the convection terms generate terms for 
some of the the products of the fluctuating components and the 
integral over time of these products is not zero. For example the 
momentum equation in the x -direction, equation 2.8, becomes  

(2.12) 

where the additional terms can be seen. These additional terms, 
which are the last two terms on the right hand side of equation 2.12 
and the corresponding terms derived from substitutions into the 
other momentum equations, are known as Reynolds stresses. If we 
ignore these Reynolds stress terms, the time-averaged momentum 
equations such as equation 2.12 are the same as the original 
momentum equations (2.8 and 2.9) with the mean flow quantities 
now being substituted for the instantaneous quantities in the 
original equations. It is these additional terms that are modelled to 
account for the effects of turbulence.  

2.2.3 Modelling Turbulence  

From our observations of turbulent flows it is clear that these flows 
are extremely complex. This is reflected in the increased 
complexity of the turbulent flow equations such as equation 2.12 
where the additional terms, the Reynolds stresses, appear. When 
modelling these terms we try to produce simple relationships such 
that the final form of the equations that we solve using numerical 
methods is a simplification of the full equations. This means that 
the simplifications that are made can be so large that we reduce the 
accuracy of the mathematical models which provide a description 
of the flow. Several books describe the ways that these 
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approximations can be made when solving engineering flow 
problems [4,5], and Abbott and Basco [11] give a comprehensive 
review of turbulence modeling and CFD. As a starting point these 
books are excellent texts.  

One way of simplifying the equations is to treat the additional terms 
as additional viscous stresses produced by the turbulence in the 
flow. To do this, the Reynolds stresses are assumed to have a form 
similar to the viscous stresses in the momentum equations, hence 
the name Reynolds stress. If we consider equation 2.12, the 
Reynolds stress terms can be described as  

 

where mu sub T is an additional viscosity due to turbulence. By 
substituting this expression into equation 2.12 the momentum 
equation becomes  

 

This equation is effectively identical to the original momentum 
equation 2.8, except that the mean velocity components replace the 
instantaneous components and the viscosity is now enhanced by an 
additional viscosity mu sub T due to the turbulence of the flow. If 
this approach is followed, we can complete the modelling process if 
the turbulent viscosity mu sub T can be found from the other flow 
variables. There are various ways of doing this and these include:  

• mixing length arguments. An analysis of the dimensions of 
the variables shows that the effective turbulent viscosity mu 
sub T divided by the density rho has the same dimensions 
as a length multiplied by a velocity. Hence momentum 
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arguments can be used to show that mu sub T is a function 
of the flow density, a length scale in the flow and the local 
mean flow velocity. Looking at equation 2.7, we see an 
expression for the shear stress tau which can be used to 
obtain the form of an expression for the turbulent viscosity. 
Typically this relationship is given as  

 

where {c sub {mu}} is some constant that needs to be 
determined together with the length scale l . A numerical 
value for {c sub {mu}} and the variation of the length scale 
l can be found be carrying out experiments for various 
simple turbulent flows such as the flow between parallel 
plates and the flow in pipes. These experiments involve 
measuring the velocity components, pressure, laminar 
viscosity and density throughout the flow and then using 
the momentum equations such as equation 2.14 to find the 
effective turbulent viscosity as a function of position. Then 
equation 2.15 can be used to produce values of {c sub 
{mu}} and l by considering numerous positions in the flow.  

• simple partial differential equation models. Equations 
similar to the momentum equations can be derived that 
describe the distribution of the turbulent kinetic energy k 
which is defined for two-dimensional flows as  

 

and of the dissipation rate of k , k dot , denoted commonly 
by epsilon . As these equations describe how the variables 
vary throughout the field due to diffusion and convection 
they are known as transport equations. These equations are 
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complex partial differential equations, but some of the 
terms in the equations are often replaced by constants 
which have to be found from experiments. By doing this 
the equations can be simplified considerably. If the 
turbulent kinetic energy k is found by solving the simplified 
transport equation, the additional turbulent viscosity can be 
found from [11]  

 

which assumes that the mixing length l is known. The value 
of l might be known from experiments and, if it is known, 
then only the equation for k needs to be solved. This 
method is, therefore, known as a one-equation turbulence 
model. If a value for l is not known for the flow being 
considered then the approximate equation for the 
dissipation rate epsilon can be solved and the additional 
turbulent viscosity found from [11]  

 

If both partial differential equations for the turbulence parameters k 
and epsilon are solved then we have used what is known as a two-
equation turbulence model. It is the so-called k-epsilon model that 
is commonly used for most CFD calculations even though it is 
known to be deficient for some flow types. Some five empirically 
derived constants are used with this model.  

Another modelling approach is to try and find values for the 
Reynolds stresses themselves. Again, complex transport equations 
for these stresses have to be derived and solved. The advantage of 
doing this over the methods mentioned previously is that those 
methods give a single additional viscosity, whereas the direct 
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modelling of the stress terms allows the effects of turbulence to 
vary in the three coordinate directions. It is this three-dimensional 
variation that is found when the stresses are measured 
experimentally. One- and two-equation turbulence models are said 
to give isotropic turbulence, which is turbulence which is constant 
in all directions, whereas in the real situation the turbulence is said 
to be anisotropic.  

The two commonest ways of modelling the stresses directly are:  

• algebraic stress models. These use a much simplified, 
algebraic form of the transport equations to describe the 
Reynolds stresses.  

• Reynolds stress models. These use the complete form of the 
transport equations for the Reynolds stresses.  

For the sake of completeness, we mention here the other modelling 
techniques that are used to model turbulent flow. These are at 
present only used for flows in simple geometries, and the 
techniques include:  

• direct simulation. This involves the solution of the 
continuity equation and the momentum equations in their 
simplest form, that is equations 2.2, 2.8 and 2.9. When this 
is done such that the rapid variation in the variables can be 
determined then there is no need for a turbulence model.  

• large eddy simulation. This is very similar to direct 
simulation, but a simple turbulence model is used to 
account for the very small vortices and eddies that cannot 
be modelled due to a lack of spatial resolution in the 
numerical model.  

2.3 Obtaining Greater Understanding of Fluid Flow  

This chapter has provided some background to the motion of fluids 
and the ways in which the motion can be described mathematically. 
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For some readers the description here will be sufficient, but others 
will, hopefully, want to continue their study.  

One of the best ways of increasing your insight into the motion of 
fluids is to watch fluids in motion and to observe what actually 
happens when fluids flow. We have seen some examples of this 
already and there are many more examples easily to hand. A large 
collection of photographs of fluids in motion has been collected and 
produced in one volume [6]. This is an excellent source of 
information as many flow features can be seen clearly. After 
reading this chapter browsing through the photographs in the album 
should reinforce the discussion of flow phenomena that we have 
already made. The photographs are also very enlightening and 
aesthetically pleasing in their own right.  

Another way of gathering information is to explore some of the 
many textbooks that cover the subject area of fluid mechanics. 
These tend to be academic texts and they lead the reader through 
the mathematics that describe the flow of fluids by splitting the 
subject into application areas. When reading the simpler material, 
the concepts behind fluid motion and the phenomena that occur 
should, by now, be more digestible. Amongst the more readable 
texts are those by Duncan, Thom and Young [7], Goldstein [8] and 
Douglas, Gasiorek and Swaffield [9], but excellent texts of a more 
detailed nature are those by:  

• Schlichting [3], which deals with boundary layers and 
viscous flows in general  

• Bradshaw [10], which gives a good introduction to the 
physics of turbulence  

• Abbott and Basco [11], which gives a good survey of 
turbulence modelling  

• Hinze [12], which gives a detailed account of the 
mathematics of turbulence.  

For those who prefer to participate whilst learning, many short 
courses of instruction in fluid dynamics, aerodynamics and even 
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computational fluid dynamics are given by higher education 
establishments. Many of these courses are designed specifically for 
people in industry and should include not only lectures but also 
practical sessions, where the motion of fluids can be investigated, 
either computationally or experimentally. Your local university or 
polytechnic should know the location of the centres of expertise 
that are close to you. Whatever you decide to do, keep your eyes 
and minds open, as you never know what there is of interest just 
around the corner.  
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3 NUMERICAL SOLUTIONS TO PARTIAL 
DIFFERENTIAL EQUATIONS  

We have seen in Chapter Two that the equations governing the 
motion of fluids are partial differential equations. These equations 
are made up of combinations of the flow variables, such as the 
velocity components and the fluid pressure, and the derivatives of 
these variables. Digital computers cannot be used directly to 
produce a solution to these partial differential equations. This is due 
to the fact that computers can only recognise and manipulate data in 
the form of zeros and ones, i.e. binary data. They can, however, be 
programmed to store numbers, to perform simple arithmetical 
operations, such as adding, subtracting, dividing and multiplying, 
and to repeat whole sequences of these operations on the stored 
numbers. Consequently, the partial differential equations have to be 
transformed into equations that contain only numbers, the 
combination of these numbers being described by the simple 
operations.  

Producing the transformation of a partial differential equation to 
what is known as a numerical analogue of the equation is called 
numerical discretisation. In this discretisation process each term 
within a partial differential equation must be translated into a 
numerical analogue that the computer can be programmed to 
calculate. A variety of techniques can be used to perform this 
numerical discretisation and, whilst each technique is based on a 
different set of principles, there are many common features in the 
methods that are used.  

In this chapter we will discuss the background to three of the major 
numerical discretisation techniques; the finite difference method, 
the finite element method and the finite volume method. Each of 
these methods will then be used to transform a simple partial 
differential equation into its numerical analogue. From this simple 
example some of the common features of the three methods and the 
differences between the methods can be illustrated.  
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Having produced a numerical analogue of a partial differential 
equation, the numerical equations must be processed by the 
computer to give a solution. This solution is a description of the 
magnitude of the flow variables throughout the flow field. The 
means of obtaining a solution to a general numerical analogue will 
therefore be discussed, followed by a look at the special problems 
that occur when we solve the numerical equations derived from the 
partial differential equations that govern fluid flow. It is these 
problems that have prevented CFD techniques from being adopted 
as widely as the computational techniques used to calculate the 
stresses and strains within structures.  

As complete textbooks have been written about numerical 
discretisation techniques and the solution of the numerical 
equations, it is impossible to cover all the subtle points in one 
chapter. This chapter should, therefore, be used as a summary of the 
main ideas that are used in numerical discretisation, bearing in mind 
that the aim of this chapter is to impart some understanding of the 
techniques that are used to enable a computer to produce a 
prediction of the behaviour of a fluid. There are many sources that 
can be consulted if you want to study any particular aspect of this 
subject in more depth and several of these are cited in the text.  

3.1 Techniques of Numerical Discretisation  

3.1.1 The Finite Difference Method  

The first technique that we will study is known as the finite 
difference method. This method is based upon the use of so-called 
Taylor series to build a library or toolkit of equations that describe 
the derivatives of a variable as the differences between values of the 
variable at various points in space or time. A comprehensive 
reference to the finite difference method is Smith [13].  
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When dealing with flow problems the partial differential equations 
discussed in Chapter Two show us that the dependent variables are 
variables such as the velocity components or the fluid pressure, and 
that the independent variables are the spatial coordinates and time. 
Imagine that we know the value of some dependent variable, and all 
of its derivatives with respect to one independent variable, at some 
given value of this independent variable, a reference value. Taylor 
series expansions can then be used to determine the value of the 
dependent variable at a value of the independent variable a small 
distance from the reference value. For example, looking at Fig. 3.1, 
the dependent variable U varies with the independent variable, the 
distance x. We can now consider the two points a small distance h 
away from the central point. These points are situated at ( x + h ) 
and ( x - h ) along the x-axis and the Taylor series expansions for 
the variable U at the two points are  

(3.1) 

and  
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(3.2) 

where h is the small displacement in the x-direction, and the 
derivatives of U are taken at the point x.  

By adding or subtracting these two equations, new equations can be 
found for the first and second derivatives respectively at the central 
position x. These derivatives are  

(3.3) 

and  

(3.4) 
EQ (3.4)  

where O({h sup n}) denotes that terms of order n or higher-order 
terms exist. In practice, as the distance h should be small, these 
terms should be very small and so they will be ignored. Note that 
ignoring these terms leads to a source of error in the numerical 
calculations as the equation for the derivatives is truncated.  

Further derivatives can also be formed by considering equations 3.1 
and 3.2 in isolation. Looking at equation 3.1, the first-order 
derivative can be formed as  
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(3.5) 

and similarly, from equation 3.2 another first-order derivative can 
be formed, i.e.  

(3.6) 

These four expressions describe some of the derivatives of the 
variable U at some point x by the values of the variable at the point 
itself, a point just behind it and a point just ahead of it, as shown in 
Fig. 3.1. These expressions are known as difference formulae, as 
they involve calculating derivatives using the simple differences 
between the values of the variable taken at various points. 
Difference formulae are classified in two ways. First, by the 
geometrical relationship of the points and, second, by the accuracy 
of the expressions. Using these classifications equations 3.3 and 3.4 
are central difference formulae and are second-order accurate (i.e. 
the neglected terms are of order h sup 2 or higher). Equally, 
equation 3.5 is a forward difference formula and equation 3.6 is a 
backward difference formula. Both of these two equations are first-
order accurate as the neglected terms are of order h or higher.  

Taken together, these difference formulae form a toolkit for the 
numerical analyst and, with this toolkit, it is possible to produce a 
numerical analogue of each of the terms in a partial differential 
equation. This is done by placing points within the domain under 
consideration. At each of these points, the derivatives can be 
replaced by the appropriate difference formula, giving an equation 
that consists solely of the values of variables at the given point and 
its neighbours. If this process is repeated at all the points, a set of 
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equations for the variables at all the points is formed and these are 
solved to give the numerical solution.  

It is useful to note two things. First, that the domain may include a 
time direction as well as the spatial directions and, second, that a 
partial differential equation that was valid for the whole of the 
domain, i.e. at an infinite number of points, can be translated into a 
finite number of equations that give the relationships between the 
variables at a finite set of points in the domain.  

3.1.2 The Finite Element Method  

The second technique to be discussed is the finite element method. 
In this method the domain over which the partial differential 
equation applies is split into a finite number of sub-domains known 
as elements. Over each element a simple variation of the dependent 
variables is assumed and this piecewise description is used to build 
up a picture of how the variables vary over the whole domain. 
Intuitively the discretisation process is more complicated than that 
of the finite difference method, but simple examples can be used to 
point out the main features of the process. A good introductory text 
to the finite element method is Reddy [14], but the standard 
reference used by finite element practitioners is Zienkiewicz and 
Taylor [15].  

As a historical note, the reader should be aware that the general 
finite element method that we will discuss emerged from 
computational techniques used to predict the stress and strain in 
solid structures. In this area of structural engineering the finite 
element method is now the standard computational technique used 
by nearly all the commercial software packages, and so many 
people assume that the method is only used for the solution of such 
problems. Now that the method has been developed into a more 
general computational technique, it can be used to solve a wide 
variety of partial differential equations and so it is suitable for the 
solution of many other physical problems. This confusion has led to 
many books being written which have the words Finite Element 
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Method in their title but which deal solely with structural problems, 
and so these books may have little relevance to the solution of more 
general problems such as those derived from the equations 
governing fluid flow.  

Let us now consider how the finite element method is used to 
transform a partial differential equation into its numerical analogue. 
First of all let us consider the element shown in Fig. 3.2. On this 
element the variable U is assumed to vary in a simple fashion over 
the length of the element. In the figure the variation is linear, but it 
could equally be a quadratic or cubic variation or a variation of 
even higher order. If the variation is linear we can describe the 
value of U at any point along the element as a function of the length 
along the element x and the values of U that are known at the end-
points of the element. These positions, which are used as reference 
positions on the element, are known as the nodes of the element. If 
the variation of the variable was assumed to be quadratic then we 
would need to know the value of U at three nodes placed at, for 
example, the end-points of the element and the middle of the 
element.  
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With the linear variation shown, the first derivative of U with 
respect to x is simply a constant and the second derivative cannot 
be defined. This can be a problem as many partial differential 
equations have terms which include second derivatives. To 
overcome such problems high-order derivatives can be transformed 
into lower-order derivatives using the following technique. First, 
the partial differential equation is multiplied by an unknown 
function, then the whole equation can be integrated over the domain 
in which it applies. Finally the terms that need to have the order of 
their derivatives reduced are integrated by parts. This is known as 
producing a variational formulation.  

As an example, let us consider Laplace's Equation in two 
dimensions, where some variable PHI is described as a function of 
the spatial coordinates x and y. This equation is written as  
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(3.7) 

To start the production of a variational formulation we multiply this 
by some function v and integrate it over the domain of interest 
denoted by OMEGA to give  

(3.8) 

Looking at equation 3.8, each term can be seen to include second 
derivatives of the variable PHI and so both terms must be integrated 
by parts to give  

(3.9) 

where GAMMA denotes the boundary of the domain OMEGA and 
n sub x and n sub y are the components of the unit outward normal 
vector to the boundary GAMMA. Note that the terms which contain 
the second-order derivatives in PHI have now been transformed 
into terms which are the products of first-order derivatives in both 
PHI and v. This reduction in the order of the derivatives is what we 
want to achieve so that a lower-order variation of the variables can 
be used on a element, but we can see that there is a penalty in doing 
this as terms on the boundary on the domain have appeared in 
equation 3.9, and so these must also be accounted for.  
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Equation 3.9 is known as the variational form of the partial 
differential equation 3.7 and it is this that is used to produce a 
discrete form of the partial differential equation for each element of 
the domain. The discrete form is produced by considering the 
variation of the variable over the element which, as we have seen, is 
a function of position within the element and the nodal values. We 
assume that the variation can be written as  

(3.10) 

where nn is the number of nodes on the element. The N sub i terms 
are known as the shape functions and are a function of the position 
within the element, and the phi sub i terms are the nodal values of 
PHI. For example, for the two-noded linear element shown in Fig 
3.2, the shape functions can be found from the form of U which is  

(3.11) 

This can be rewritten in the form of equation 3.10 to give  

(3.12) 

Hence, by comparing equation 3.12 to equation 3.10, the shape 
functions can be seen to be  
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(3.13) 
and 

(3.14) 

Looking at these two expressions we can see that if the value of x is 
set to be x sub 1 then N sub 1 is unity and N sub 2 is zero. 
Similarly, if the value of x is set to x sub 2 then N sub 1 is zero and 
N sub 2 is unity. This property is an obvious consequence of the 
form of equation 3.10 and can be used as a check on the algebraic 
expressions for a shape function regardless of whether the element 
is in one, two or three dimensions.  

Now that we know the variation of a variable over an element, the 
derivatives of the variable at a point can be found. For example, to 
approximate the first derivatives of the variable PHI, equation 3.10 
can be differentiated to give  

(3.15) 

It should be noted here that the phi sub i terms are not differentiated 
as they are constants, being the values of PHI at the nodes.  

At this stage we need to know how to describe the function v. If 
there are two nodes on an element we need to know two functions 
for v. This allows us to generate the same number of equations as 
there are unknown values on the element. In practice there are many 
suitable forms for v and the standard way of specifying v is to let it 
be the same functions as the shape functions for each node. If this 
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definition of v is used the method is known as a Galerkin method, 
but other methods of specification for v can also be used.  

Finally the discretisation is completed by substituting equation 3.10 
for the variables, equations similar to equation 3.15 for the 
derivatives and equations similar to equations 3.13 and 3.14 for v 
into the variational form and then integrating to give a series of 
equations for the values of the variables at the nodes of the element. 
For every sub-domain or element in the problem, several equations 
will be generated, and these equations can be collected together and 
then solved to find a solution.  

3.1.3 The Finite Volume Method  

The third, and probably the most popular, numerical discretisation 
method used in CFD is the finite volume method. This method is 
similar in some ways to the finite difference method, but some 
implementations of it also draw on features taken from the finite 
element method. The finite volume method was developed 
specifically to solve the equations of heat transfer and fluid flow 
and is described in detail by Patankar [16].  

Essentially the governing partial differential equations are 
converted into numerical form by a physically-based transformation 
of the equations. For example, the momentum equations 2.8 and 2.9 
can be considered as a series of fluxes into a volume of fluid 
together with a source term which is the pressure gradient. The 
most informative way of seeing how the process works is to 
consider the transformation of a typical equation and we will do this 
in the next section.  

3.2 Numerical Discretisation of a Simple Equation  

To see how these three discretisation techniques are used, we will 
consider the discretisation of the time dependent diffusion equation:  
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(3.16) 

which consists of a first derivative in the time direction t and a 
second derivative in the space direction x. This is a parabolic partial 
differential equation that can be used to model the temporal 
changes in the diffusion of some quantity through a medium. As an 
aside, there are three classifications of partial differential equations 
[13]; elliptic, parabolic and hyperbolic. Equations belonging to each 
of these classifications behave in different ways both physically and 
numerically. In particular, the direction along which any changes 
are transmitted is different for the three types. Depending on the 
flow, the governing equations of fluid motion can exhibit all three 
classifications. For example, the incompressible Navier-Stokes 
equations, equations 2.8 and 2.9, are parabolic when time-
dependent as information on changes to the flow is signaled 
everywhere in space but only forward in time; they are elliptic 
when the flow speed in low and steady as the changes are signaled 
everywhere; but the equations become hyperbolic if the flow speed 
is above the speed of sound in the fluid and the changes are 
signaled along specific directions in space.  

Having said this we can see that the equation 3.16 could be 
regarded as a model of the momentum equations that govern an 
incompressible, viscous flow.  

3.2.1 Using Finite Differences  

To solve the above equation using finite differences we must first of 
all decide what the domain of the problem is. For example, equation 
3.16 could be a description of the diffusion of a gas into a semi-
conductor of a given length and this length would then be the extent 
of the domain in the x-direction. In the time direction, however, it is 
usual to have positive time, that is we start the time at t=0, but the 
extent of the domain in the positive time direction is not known as 
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the calculation could proceed for an infinite period of time. Such a 
domain is said to be semi-infinite. Once we know the domain we 
can place points within it, and it is at these points that we perform 
the discretisation of equation 3.16. The simplest way of placing the 
points within the domain is shown in Fig. 3.3, where we can see 
part of the grid of points in the x-t plane. Note that there is a 
constant spacing delta x or delta t between each of the points in 
both the x-direction and in the t-direction. Each of the points is 
labelled using an i,j indexing system and this denotes the position 
of the points in the x- and t-directions.  

 

Having produced the grid we can now choose the difference 
formulae that we wish to use to produce the discrete form of 
equation 3.16. There are various combinations of formulae that can 
be used for this equation, but the simplest form of the numerical 
analogue is generated if we use the forward difference formula 
(equation 3.5) for the time derivative that appears on the left hand 
side, and the central difference formula (equation 3.3) for the spatial 
derivative on the right hand side. Taking the spatial derivative to be 
formed at the j'th time level and to be centered on the i'th point in x, 
and taking the time derivative to be at the i'th x-position and the j'th 
time level looking forward to the j+1'th time level, the discrete 
equation can be written  

(3.17) 
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which can be rearranged to give  

(3.18) 

This equation may be considered to be a molecule, similar to those 
found in chemistry, where the four points are like atoms and are 
linked as shown in Fig. 3.4a. It can be clearly seen from this that the 
value at position i,j+1 depends only on the three values at the time 
level j. Consequently, if we know the values of U at time level j, the 
values of U at time level j+1 are easy to calculate. To start the 
calculation we must, therefore, know the values of U at all the 
positions in x at time t=0. These are known as the initial conditions.  
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Another formulation for equation 3.16 can be obtained by taking 
the same expression for the time derivative together with a 
weighted average of the spatial derivatives at the two time levels j 
and j+1. This gives  
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(3.19) 

where theta and ( 1 - theta ) are used to weight the derivatives and 
theta must be in the range 0<=theta<=1.0.  

Equation 3.19 shows that there is a relationship between the three 
values of U at time level j+1 and the three values of U at time level 
j and so the computational molecule has changed for this case to 
that shown in Fig. 3.4b. Note that when theta is zero equation 3.19 
is reduced to equation 3.17. When one unknown value of a variable 
can be found directly from known values of the variable, the 
computation is known as an explicit scheme (for example, equation 
3.18 and Fig. 3.4a). However, if the discretisation produces an 
equation where several unknown values are related to several 
known values, for example in Fig. 3.4b and equation 3.19 with theta 
not zero, then the computation is known as an implicit scheme. To 
produce a solution with an explicit scheme each unknown value of 
U can be easily calculated, but to produce a solution with an 
implicit scheme a set of simultaneous equations must be solved to 
find the unknown values of U.  

At first sight it appears that the implicit schemes require more 
computational effort to produce a solution, and so we might ask 
ourselves the question 'Why use an implicit scheme when it 
involves more computational effort than an explicit scheme ?'. The 
answer to this lies in the difference in the stability of the two 
schemes. A stable solution is taken to be, in this case, one which 
progresses from time level to time level in a realistic way. An 
analysis of the stability [13] shows that for this problem, if equation 
3.18 is used as the numerical analogue of the partial differential 
equation 3.16, then the value of the parameter delta t / delta x sup 2 
must be less than or equal to one half for the computational scheme 
to be stable. This means that where the values of delta x are small 
the time step delta t must be considerably smaller, and so with an 
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explicit scheme these is a restriction on the size of the time step. 
This can mean that the time step must be very small even if the 
changes in the variables from one time level to the next are very 
small. Implicit schemes overcome this restriction for some values 
of theta, and a commonly used implicit scheme uses a value of theta 
equal to one half. This is known as the Crank-Nicholson scheme 
and is stable for all sizes of time step. Using such an implicit 
scheme allows a larger time step to be used than could be used with 
an explicit scheme, and so the computational effort for an implicit 
scheme can be less than that for an explicit scheme.  

If we now consider the computational molecules and the grid 
together, it is possible to see that we still cannot solve the whole 
problem as we do not, as yet, have enough information. Looking at 
Fig. 3.5 we can see an x-t grid of a domain. There are six points in 
the x-direction and two time levels are shown. Now let us assume 
that we shall use an explicit formulation, and so from the known 
initial conditions we can use our computational molecule to 
calculate the values of the variable at some points at the next time 
level. Given the way in which information flows from level to level, 
the values at the points (2,2) to (5,2) inclusive can be calculated, but 
we cannot use the computational molecule to find the values of the 
variable at the boundary points (1,2) and (6,2). To find these values 
we must have a knowledge of the boundary conditions of the 
problem.  
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For many physical problems, boundary conditions are usually given 
in one of two forms:  

• Dirichlet Boundary conditions. Here the values of the 
variable on the boundary are known constants. This allows 
a simple substitution to be made to fix the boundary value. 
For example, if U is a measure of gas concentration, we 
might want to assume that it is fixed at the left hand end of 
the domain shown in Fig. 3.5, and will have a value of 10.0, 
say. It is easy to apply this boundary condition as we just 
set the value of U at the point (1,2) to 10.0.  

• Neumann boundary conditions. Here the derivatives of the 
variable on the boundary are known, and this gives an extra 
equation which can be used to find the value at the 
boundary. For example, we might assume that the 
derivative of U is zero at the right hand end. Then if we use 
a first order difference for the derivative the value of U at 
point (6,2) will equal the value of U at point (5,2) to satisfy 
this boundary condition.  

Once we know both the initial conditions and the boundary 
conditions, we can proceed with the calculation. Using the known 
values at the first row of points the values of the variables at the 
internal points at the next row are found using an explicit scheme. 
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Then the boundary conditions are applied to get the values at the 
boundary points. This gives us a second complete row of points 
where we know all the values of the variable. These can be used as 
a new set of initial conditions and so the process can be repeated to 
give the next row and so on.  

With implicit schemes the handling of both fixed-value boundary 
conditions and derivative boundary conditions involves adding the 
extra equations to those already generated from the partial 
differential equation. With these extra equations the number of 
equations should match the number of unknowns and so the full set 
of simultaneous equations can be solved.  

3.2.2 Using Finite Elements  

Finite element methods were originally developed to deal with 
steady state problems, but they can also be used to deal with time 
dependent problems. We need to do this for the problem under 
consideration as equation 3.16 has a term which is a function of 
time on the left hand side. This term is dealt with first by using the 
forward difference formula, equation 3.5, to produce the following 
equation  

(3.20) 

Here, the superscripts n and n+1 refer to the values of U at the n'th 
and n+1'th time level respectively.  

Now, a variational form of equation 3.20 can be produced. This is 
done as was shown in Section 3.1.2, by multiplying by a function v, 
integrating over the domain and then integrating some terms by 
parts, where necessary, to remove any second derivatives. This 
procedure gives:  



C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992 

53 

(3.21) 

which becomes, on integrating the second derivative on the right 
hand side by parts  

(3.22) 

This is the variational form of the equation and is also known as the 
weak form of the equation. In the original equation 3.20 the 
variable U had to be capable of being differentiated twice as there is 
a second derivative of U in the equation. Now only first derivatives 
of U are required, and so we say that the continuity requirement for 
U has been reduced from second- to first-order and is therefore 
weakened. This variational form must now be transformed into a 
numerical analogue, and this is done for a typical element of the 
domain. In this case the domain can be taken to be a series of lines 
from x=0 to x=L at various time levels. Hence each element is 
effectively a one-dimensional line element similar to the one we 
looked at in Section 3.1.2.  

Now equation 3.22 can be transformed into the numerical form 
using the Galerkin approach, where the multiplier v is the set to be 
the same as the shape functions of an element. On each element the 
variation of U is described by:  

(3.23) 
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where nn is the number of nodes on the element and the N sub i 
terms are the shape functions, and so we can substitute for the 
multiplier v, for the values of U at the two time levels and for the 
spatial derivatives of U at the n'th time level to produce an explicit 
form of equation 3.22. This is  

(3.24) 

Here the i,j suffices refer to the summation in equation 3.23, and 
not to some position within a mesh of points as was the case with 
the finite difference method example. Note that the boundary term 
has not been discretised, as this so-called flux can be taken to be a 
known value that needs to be added later. On the faces of most 
elements the flux term is ignored, as we assume that the fluxes 
cancel out across those faces that are internal to the domain. This is 
an equilibrium condition. It is only on the boundaries of the domain 
that the flux terms need to be added. If the fluxes are not added, 
they will be calculated by the method as being zero, and because of 
this they are known as natural boundary conditions. If we specify 
the value of U at a boundary then the flux term is not required, just 
as with the finite difference method, and this is known as an 
essential boundary condition.  

For simple elements the shape functions N sub i are simple 
functions of the coordinates, say x, and so equation 3.24 can be 
integrated exactly over each element, but for more complex 
elements this integration has to be performed numerically. If we use 
simple one-dimensional elements that have two nodes, as we did in 
Section 3.1.2, then the above equation can be integrated to yield 
two separate equations for each element in terms of the nodal 
values of U at the n+1'th time level, if the values at time level n are 
known. This equation can be expressed as a matrix equation as 
shown in Fig. 3.6a, where the terms a sub {ij} are functions of 
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position derived from the integration of the first term on the left 
hand side of equation 3.24, and the terms f sub i come from all the 
other terms in equation 3.24. This matrix equation is, in fact, part of 
a larger matrix equation for all the unknown values of U. Once all 
the equations for each element, the so-called element equations, are 
known then the full set of equations for the whole problem has to be 
produced. This is shown in Fig. 3.6b where two elements are shown 
together with an expanded version of the element equations. These 
expanded equations are formed by relating the local node on an 
element to its global node number. For example, on element 2 the 
local node numbered 1 is global node number 2. Combining the two 
expanded equations produces a global matrix equation, and the 
process of combination is known as assembling the equations. This 
is done by adding all the element equations together as shown. The 
structural origins of the finite element method are apparent as the 
names of the matrices are taken from those that would be formed if 
a force acts on a set of springs. These names are, for the matrix on 
the left hand side, the stiffness matrix and, for the matrix on the 
right hand side, the load vector.  
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Once these global matrices have been created, the fixed value 
boundary conditions are imposed on the matrices and the equations 
can be solved. Again the solution of the original partial differential 
equation 3.16 has been reduced to the solution of a set of 
simultaneous equations. This may seem strange as the solution 
scheme is an explicit one and so should not require such a solution. 
For this case the left hand side of the global equations can be 
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diagonalised using a technique known as mass lumping [15], and so 
the solution can then be found without solving the simultaneous 
equations.  

3.2.3 Using Finite Volumes  

Now that we have looked at the use of both finite differences and 
finite elements, we can turn our attention to the finite volume 
method. In practice this can be seen as a combination of the two 
other methods. As a first step in the transformation process, the 
forward difference in time is used to transform the left hand side of 
equation 3.16, just as we did with the finite element method. Then 
we form a finite volume in the x-direction. For simplicity, we will 
only look at the values at the n'th time level. A typical finite 
volume, or cell, is shown in Fig. 3.7. In this figure the centroid of 
the volume, point P, is the reference point at which we wish to find 
a numerical analogue of the partial differential equation.  

 

Directions in the domain about the reference point are denoted by 
the points of the compass and so the neighbouring volumes are said 
to have their centroids at W and E, i.e. to the West and East of P if 
we consider the top of the figure to be North. As the one-
dimensional finite volume is centered on P, it will have one 
boundary face placed mid-way between the points W and P at the 
points labelled w, and another boundary face between P and E at 
the point e.  
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The spatial derivative is dealt with by noting that the second 
derivative of a variable at P can be taken as the difference of the 
first derivatives of the variable that are calculated at the volume 
faces, which gives  

(3.25) 

Here, the subscripts refer to the positions at which quantities are 
either calculated or known. Similarly, the first derivatives at the 
volume faces can be taken to be the differences in the values of the 
variable at the neighbouring volume centroids, to give  

(3.26) 
and 

(3.27) 

Now that we have these three expressions for the various 
derivatives, they can be used to produce the numerical analogue of 
equation 3.16 at the point P. This analogue can be formed using any 
suitable version of the weighted average technique that we used 
with the finite difference transformation, giving either an explicit or 
an implicit scheme. Then the same techniques can be used to 
proceed once the initial and boundary conditions are known. When 
using finite volumes, all that is different is the philosophy behind 
the discretisation procedure.  
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3.3 Comparison of the Discretisation Techniques  

From our short study of the application of these three numerical 
discretisation methods to a simple partial differential equation, we 
can see that there are several common features. These features are 
that each method:  

• produces equations for the values of the variable at a finite 
number of points in the domain under consideration.  

• requires that we know at set of initial conditions to start the 
calculation for this time dependent problem.  

• requires that we know the boundary conditions of the 
problem so that we can find the values of the variables at 
the boundaries.  

• can produce explicit or implicit forms and, if an implicit 
form is produced, then a set of simultaneous equations must 
be solved.  

There are, however, several differences between the three methods 
and these include:  

• the finite difference method and the finite volume method 
both produce the numerical equations at a given point based 
on the values at neighbouring points, whereas the finite 
element method produces equations for each element 
independently of all the other elements. It is only when the 
finite element equations are collected together and 
assembled into the global matrices that the interaction 
between elements is taken into account.  

• the finite element method takes care of derivative boundary 
conditions when the element equations are formed and then 
the fixed values of variables must be applied to the global 
matrices. This contrasts with the other two methods which 
can easily apply the fixed-value boundary conditions by 
inserting the values into the solution, but must modify the 
equations to take account of any derivative boundary 
conditions.  
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When looking at the simple example of a time varying problem in 
one spatial dimension the domain in space has been extremely 
simple. Consequently, one problem that we have not addressed is 
how each of these discretisation techniques is used to produce 
numerical equations for two- and three-dimensional spatial 
domains. Fortunately, our discussion of this simple example can 
shed some light on this.  

Finite difference methods are based on the substitution of difference 
equations for the partial derivatives in partial differential equations. 
These difference equations link the values of variables at a set of 
points to the derivatives and so a grid of points is used throughout 
the spatial domain. In the example we have just discussed the grid 
was a line of points evenly spaced throughout the domain at various 
time levels. The difference formulae can be easily extended to cater 
for a spacing that is not even throughout the domain, and the partial 
differential equations can be transformed to cater for other 
coordinate systems that are not Cartesian. The finite difference 
method requires, however, that the grid of points is topologically 
regular. This means that the grid must look cuboid in a topological 
sense. This will be explained in greater detail when we discuss 
mesh and grid generation in Chapter Six.  

If distributions of points with a regular topology are used, then the 
calculation procedure carried out by a computer program is likely to 
be extremely efficient and hence very fast. This is because the 
programmer can take advantage of the fact that the topology of the 
grid is always the same. The grid indexing system is extremely 
simple, say i,j,k in three dimensions, and is based on a set of local 
axes through the grid. Hence, when it is required to produce 
equations at some reference point, the program can determine the 
location of data at the neighbouring points simply from the 
maximum values of i,j,k. For example, if the grid is two-
dimensional and has five points in the x-direction and ten points in 
the y-direction it will be as shown in Fig. 3.8. There the grid is 
labelled both with the values of the indices i and j and the storage 
position of the variables in a one-dimensional array. For example, 
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the value of the variable at position i=2 and j=4 will be stored in 
array location number 14. This assumes that the computer array 
stores points in the vertical direction first. From this it is easy to see 
that the neighbouring points to a reference point in the y-direction 
will be one array location either forward or back from the reference 
position, and in the x-direction they will be ten points forward or 
back. An example of this is that from the value stored in array 
location 14 the value at the neighbouring point in the positive x-
direction is stored at location 24. From this we see that simple 
arithmetic based on the topology of the grid is all that is required to 
find the location of the necessary values.  

 

Finite elements, on the other hand, produce the numerical equations 
for each element from data at known at points on the element and 
nowhere else. Consequently, there is no restriction on how the 
elements are connected so long as the faces of neighbouring 
elements are aligned correctly. By this we mean that the faces 
between elements should have the same nodes for each of the 
adjoining elements. This flexibility of element placement allows a 
group of elements to model very complex geometry as we shall see 
later in Chapter Six.  

Algorithms that have been developed using the finite volume 
method have tended to use a regular grid to take advantage of the 
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efficiency of computation, just like the grids used with finite 
difference methods. Recently, however, to enable calculations to be 
carried out in complex geometries, algorithms have been developed 
with the finite volume method that can utilise irregular, finite 
element-like meshes. It is the concept of the inter-volume flux 
across a face that enables this to be done. Both finite element and 
irregular-mesh finite volume programs pay a computational 
overhead for this geometrical flexibility, as look-up tables have to 
be used to find the geometrical relationships between the elements 
or volume faces, and this often involves finding data from the disk 
store of the computer. This overhead slows the programs down 
considerably.  

One final advantage that the finite element method has is that the 
programs are written to create matrices for each element, which are 
then assembled to form the global equations before the whole 
problem is solved. Finite volume and finite difference programs, on 
the other hand, are written to combine the setting up of the 
equations and their solution. The decoupling of these two phases, in 
finite element programs, allows the programmer to keep the 
organisation of the program very clear and the addition of new 
element types is not a major problem. Adding new cell types to a 
finite volume program can, however, be a major task involving a 
rewrite of the program and so some finite volume programs can 
exhibit problems if they have multiple cell types.  

3.4 Producing A Solution From The Discrete Equations  

Now that we have seen that discrete numerical equations can be 
formed from a partial differential equation using the three 
discretisation methods that we have discussed, the next step is to 
solve these discrete equations to obtain a set of values for the 
variables at points in the domain. The ways that we use to do this 
must produce results that are both realistic and accurate. We talk of 
the methods converging and being stable. Also, if we use an 
implicit scheme, we must be able to solve sets of simultaneous 
equations. These subject areas are in the realm of the applied 
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mathematician, and the discussion of them can be difficult to 
follow. However, the following texts do contain readable accounts 
of the techniques that are used, and these are Smith [13], 
Zienkiewicz and Taylor [15] and Hirsch [17]. The last of these 
three books contains much useful information about numerical 
discretisation methods that is relevant to CFD.  

When using CFD tools that have been written by someone else, we 
must hope that the software has been programmed to have a reliable 
means of producing a solution. However, CFD programs are so 
general that the user must intervene in the solution process and so 
some knowledge of the techniques that are used is necessary. In the 
following sections, some of the terminology and the techniques 
associated with a solution are discussed.  

3.4.1 Convergence and Stability  

Convergence and stability are two concepts that are often confused. 
In the strict mathematical sense convergence is the ability of a set 
of numerical equations to represent the analytical solution to a 
problem, if such a solution exists. The equations are said to 
converge if the numerical solution tends to the analytical solution as 
the grid spacing or element size reduces to zero. Equally, a process 
is stable if the equations move towards a converged solution such 
that any errors in the discrete solution do not swamp the results by 
growing as the numerical process proceeds.  

In practice, however, these terms are used in less specific ways. For 
example, a numerical process is often said to converge if the values 
of the variables at the points in the domain tend to move towards 
some fixed value as the solution progresses. This use of the term 
convergence arises because in most physical problems that we wish 
to solve with CFD there is no analytical solution to compare our 
numerical solution with. A process is said to be stable if this 
happens in such a way that the intermediate results of the process 
are reasonable. As was mentioned when we produced a numerical 
analogue of a partial differential equation using finite differences in 
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Section 3.2.1, the explicit solution scheme is only valid if the time 
step is sufficiently small. If the time step is too large, the values of 
the variables oscillate violently and become extremely large. This is 
an unstable process and it does not converge.  

3.4.2 Solving The Simultaneous Equations  

In most cases the discrete equations produced from partial 
differential equations are given in an implicit form. These implicit 
schemes are used because explicit schemes are less stable 
numerically, as we have discussed, and explicit schemes can 
produce results which diverge from physically realistic values as 
the solution progresses.  

When implicit schemes are used a set of simultaneous equations is 
generated, consisting of many individual equations and these must 
be solved in some way. There are many ways of doing this, and 
each software package will have its own way of producing a 
solution. In terms of computational effort the setting up of the 
equations might typically take half of the total computer time and 
the solution of the equations might take the other half. As the 
solving of the equations consumes a large amount of computational 
effort, there are great benefits to be gained from using fast methods 
of solving the simultaneous equations.  

The solution of any set of simultaneous equations can be seen as the 
process of finding a vector x that satisfies the matrix equation  

(3.28) 

where bold A is an operator on the vector of variables x, and b is a 
vector of known values. The solution can be found by finding the 
inverse of the matrix bold A and then premultiplying both sides of 
equation 3.28 by the inverse. This gives  
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(3.29) 

If there are only a few equations in the set of simultaneous 
equations then the inverse of the matrix bold A can be found easily 
and exactly. The methods used to do this are known as direct 
methods and, usually, they are versions of a method called bold L 
bold U decomposition as described by Zienkiewicz and Taylor [15]. 
In this method the matrix bold A is described by two other matrices 
in the following way  

(3.30) 

where bold L is a lower triangular matrix and bold U and an upper 
triangular matrix. Once the matrix bold A has been decomposed 
into bold L and bold U the solution is easy to find. If the matrix is 
large these direct methods require a lot of computer effort to 
produce a solution. This is the traditional way that finite element 
programs have produced their results. One way of reducing the 
computational effort is to use iterative methods of solution for large 
systems of equations. These take some guess for the values of the 
solution vector x and then produce a more accurate guess from the 
vector x and the coefficients of the matrix bold A and vector b.  

A variety of iterative schemes are commonly used and some of 
these are discussed by Smith [13] and Hirsch [17]. It helps when 
considering the solution of equation systems to think of a simple 
case. For example, if equation 3.28 is a system of three equations it 
could be rewritten as:  
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(3.31) 

if the individual equations are listed separately. Using this we can 
start to identify some of the common iterative schemes such as:  

• Jacobi and Gauss-Seidel methods. In these two methods the 
equations are rewritten as  

(3.32) 

from which we can see that the diagonal terms of matrix bold A, i.e. 
the terms a sub {ii} , cannot be zero if these methods are to work. 
The Jacobi method takes the right hand side of equation 3.32 to be 
the known values at the n'th iteration and the left hand side to be the 
new values at the n+1'th iteration, giving  
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(3.33) 

and the Gauss-Seidel method takes advantage of the fact the once a 
new value is known at the n+1'th iteration it can be used on the 
right hand side of the equations giving  

(3.34) 

Both of these methods require that an initial guess to the solution is 
made which can then be used during the first iteration.  

• point relaxation methods. At any stage in the iteration 
procedure there will be a finite error in the solution vector 
x. One way of classifying this error is to use equation 3.28 
to find what is known as the residual error which is defined 
as  

(3.35) 
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This residual should become ever smaller as the iterations proceed 
and it can also be used in the iteration procedure. To do this we take 
the equations of the Gauss-Seidel method (equation 3.34) and both 
add and then subtract the terms {x sub i} sup n to the right hand 
side. This gives  

(3.36) 

In these equations the expressions in square brackets are the terms 
of the residual r. As we know that these should tend to zero as the 
iteration progresses there is no reason why we should not try and 
accelerate the process by multiplying the residual by some factor 
omega, which is known as a relaxation factor. This gives  

(3.37) 
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and for most systems of equations the value of omega can be set to 
somewhere between the values of one and two. Hence the method 
is known as a successive overrelaxation method. If omega is unity 
the method becomes the original Gauss-Seidel method.  

• line relaxation methods. The methods above generate a new 
estimate for the solution vector x one term at a time, which 
is very similar to the explicit methods we have already 
discussed. Sometimes it is possible to speed up the process 
if a small sub-set of the terms are found simultaneously. 
This is an implicit way of proceeding and involves the 
direct solution of a smaller set of equations. The 
commonest way of doing this is to take the solution at a 
whole line of points in a regular grid describing a spatial 
domain and solve line by line rather than point by point. 
Equally, if a regular three-dimensional grid is used, a 
rectangular slab of points could be calculated directly in 
one step of the iteration process.  

• more advanced methods. As further research into the 
iterative solution of simultaneous equations takes place 
more methods of solution emerge. This is driven by the 
need to reduce the computational effort required to solve 
the large systems of equations on supercomputers where the 
effort is still excessive for many engineering problems. 
These advanced methods include Stone's strongly i1/ 
mplicit procedure and preconditioning methods which can 
be seen as matrix manipulation procedures, and multigrid 
methods which calculate the solution on a series of coarse 
and fine grids in space, swapping between the grids in such 
a way that any errors are smoothed out.  

As users of CFD software our concern with the solution of the 
simultaneous equations that are generated will usually be restricted 
to providing some of the controlling parameters for the solution 
methods built-in to the software. It should be noted here that if the 
solution method is an iterative one the exact values of the vector x 
may never be found, but that after a few iterations the error in x 
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should be very small. Also, as we shall discuss later, the fluid flow 
equations are non-linear and possibly time dependent, and so we 
will require the solution procedure to find successive 
approximations to the flow variables regardless of whether we solve 
the equations themselves in a direct or iterative way. This means 
that the solution to the simultaneous equations generated need only 
be approximate, giving some improvement in the values of the 
variables.  

3.5 Solving The Coupled Set of Fluid Flow Equations  

In this Chapter we have considered the discretisation of general 
partial differential equations and the solution of the numerical 
analogue. Now it is time to look at the numerical solution of the 
partial differential equations that govern fluid flow. These equations 
were presented in Chapter Two and they can be discretised using 
any of the three discretisation techniques that we have already 
discussed. The numerical analogues of the original partial 
differential equations then have to be solved. For reasons that we 
will now discuss the equations governing fluid flow are particularly 
difficult to discretise and solve using numerical techniques.  

3.5.1 Non-Linearity and Time Dependence  

For a two-dimensional flow problem we have to solve two 
momentum equations and the continuity equation. That is we have 
three equations which we can use to find the three flow variables 
which are the velocity components u and v of the fluid and the fluid 
pressure p. The two momentum equations are time dependent and 
they are also non-linear. The non-linearity comes from the 
convection terms for the velocity components that are derived from 
the acceleration of a patch of fluid. These two factors of time 
dependence and non-linearity increase the complexity of the 
solution.  

Dealing with time dependence is handled in the same way that it 
was handled for the simple parabolic partial differential equation 
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discussed earlier in Section 3.2. We must know the initial 
conditions of the problem to enable our solution to begin, and from 
these the solution at the next time level is found. This means that 
are solution procedure proceeds via a series of iterations in time.  

At each time step the equations are non-linear and so we must 
linearise them so that a solution can be found to a set of 
simultaneous equations which look like the form we have just 
discussed, i.e.  

(3.38) 

but where the matrix bold A and the vector b are functions of the 
flow variables. The linearisation is carried out by discretising the 
derivative that appears in the convection terms as normal and taking 
the current value of velocity at a point or in a volume or element as 
the velocity multiplier. For example  

(3.39) 

if the central difference equation 3.4 is used for the derivative and u 
bar is found from the current solution for U. For example, u bar 
would be u sub {i,j} if we were using a finite difference method. 
Once this linearisation is carried out the set of simultaneous 
equations can be produced and then solved to update the values of 
the flow variables. The linearisation and solution procedure is then 
repeated until the values of the flow variables have converged, and 
only then can the whole solution be progressed to the next time 
level.  
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From this we can see that there are several levels of iterative 
process taking place within the solution algorithm. Figure 3.9 
shows these levels schematically. There we can see that there is an 
outer time iteration loop that moves the solution from one time 
level to the next. Then there is an inner loop that resolves the non-
linearity in the equations by repeatedly forming sets of linear 
simultaneous equations. This loop might itself contain a further 
loop where iterative methods are used to solve the simultaneous 
equations that are generated.  
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When running steady state fluid flow examples the time iteration 
loop can be left out of the process. However, the absence of the 
time terms in the momentum equations can cause numerical 
problems as the fluid acceleration is not modelled in the same way 
as it would occur for a physical flow. This can lead to a common 
problem where the numerical solution will not be stable and so it 
will diverge from reality. As the non-linearity of the problem forces 
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us to use an iterative solution scheme, there is no real advantage to 
be gained by leaving the time terms out. Consequently, many CFD 
programs use a time-dependent algorithm even for steady-state 
cases and this enhances the stability of the method.  

3.5.2 Obtaining the Pressure Solution  

Having looked at the overall solution process that must take place 
to solve the governing equations, we must now look in more detail 
at how to obtain the solution. If we look at the three equations that 
govern two-dimensional incompressible fluid flow, we can see that 
the two momentum equations contain all three flow variables, but 
that the continuity equation contains only the velocity components. 
As most of the terms in the momentum equations are functions of 
the velocity components it is natural to use these equations to 
produce the solutions for the velocity components. This then leaves 
a problem in that the continuity equation does not contain terms that 
include the fluid pressure.  

One way of overcoming this problem is to discretise the three 
equations in such a way that they can be solved together. This leads 
to a solution vector that contains all three variables and so is three 
times longer than it need be, but it does allow the pressure to be 
calculated. Finite element programs have been developed in this 
way for some time, but as this approach produces larger matrices 
than would be generated if each variable was solved for in turn a 
larger amount of computer effort is required to produce the 
solution.  

An alternative approach is to discretise the momentum equation in 
the x-direction so that the u-velocity component can be found and 
similarly find the v-velocity component from the momentum 
equation in the y-direction. Then a modified form of the continuity 
equation has to be developed so that the pressure can be calculated. 
This is done by noting that the velocity components that are found 
from the momentum equations do not satisfy the continuity 
equation and that they should satisfy this equation when the 
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solution is converged. If the variables are split into two parts, the 
values that satisfy the momentum equations (starred) and the 
corrections that would ensure that continuity is satisfied (dashed), 
we can write:  

(3.40) 

As during the solution procedure we have to ensure that the 
continuity equation, equation 2.2, is satisfied, we can take that 
equation  

(3.41) 

and then substitute into it the expressions in equation 3.40 to give  

(3.42) 

In this equation the derivatives of the correction velocity 
components depend on the derivatives of the velocity components 
that satisfy the momentum equations. Now when the momentum 
equations 2.8 and 2.9 are discretised they can also be written in 
matrix form as  

(3.43) 



Chapter 3. Numerical solutions to partial differential equations 

76 

and 

(3.44) 

where bold A, ~bold B, ~bold C and bold D are matrices, and u sub 
j, v sub j and p sub j are vectors of the variables at grid points or 
nodes. These equations can be rewritten if the variables are split 
using equation 3.40, to give  

(3.45) 
and 

(3.46) 

When we solve the momentum equations we are in effect solving 
the following two equations  

(3.47) 
and 

(3.48) 

and so these can be subtracted from the matrix equations 3.45 and 
3.46 giving  

(3.49) 
and 

(3.50) 
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It is these two equations that are the expressions that enable the 
correction quantities for the velocity components to be found, as 
they can be rewritten to give  

(3.51) 
and 

(3.52) 

Using these two forms of the equations we can find the pressure 
from the continuity equation. This is done by substituting them into 
the modified continuity equation 3.42, to produce an equation for 
the correction pressure {{p sub j} sup '} which has on its right hand 
side the imbalance in the continuity of the flow after the momentum 
equations have been solved. Once the correction pressure p sup ' 
has been found, so u sup ' and v sup ' can be formed using equations 
3.51 and 3.52. Finally equations 3.40 are used to find the corrected 
velocity components and pressure. At this stage in the solution the 
velocity components satisfy the continuity equation and a new 
value of pressure has been calculated, but the velocity components 
do not satisfy the momentum equations. To resolve both the 
solution of the momentum equations and the non-linearity, the 
momentum equations are used again to produce further 
simultaneous equations which are solved, followed by the 
calculation of the correction pressure and the correction velocities. 
It is this process of using the momentum equations then the 
continuity equation that forms the inner loop in Fig. 3.9 and 
iterative methods are used to solve all three sets of simultaneous 
equations within each inner iteration.  

Algorithms such as this are known as SIMPLE (Semi-Implicit 
Pressure Linked Equations) algorithms and there are many variants 
of the algorithm described above where small modifications are 
made to the procedure.  
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Having found a way of obtaining the pressure solution, there is only 
one remaining problem to solve. This concerns the numerical 
solution of the equations. Looking at the momentum equations 2.8 
and 2.9 we can see that the pressure variable only occurs in a first-
order spatial derivative. The conversion of these derivatives to 
numerical form can lead to problems, as the use of central 
differences can produce values for the pressure variable at a given 
point which are not related to the pressure variables at neighbouring 
points. This, in turn, can lead to a pressure solution oscillating in 
what is known as a chequerboard pattern. There are ways of 
overcoming this and many programs use a grid which is staggered 
from the grid for the velocity components to find the pressure. 
Effectively, the pressure is stored at the centroid of a volume and 
the velocity components are stored at the volume faces [16]. More 
recently several programs have turned to storing all the variables at 
volume centroids using the transformation of Rhie and Chow [18] 
to prevent chequerboarding.  

3.5.3 The Convection Operator  

One other problem that has had to be addressed by researchers is 
that of producing numerical forms of the convection operator. 
Problems occur when this operator is discretised using central 
differences, equation 3.4, for the first derivative of the velocity. For 
example, take the equation  

(3.53) 

where u bar denotes the known velocity that is being used to 
linearise the equation. Using central differences for both the first 
and second derivatives in this equation gives  
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(3.54) 

which can be rearranged to give  

(3.55) 

where Pe is the Peclet number, or local cell Reynolds number, 
given by  

(3.56) 

From equation 3.55 we can see that the value of the Peclet number 
has an important effect on the numerical equation. When the Peclet 
number is less than two both terms on the right hand side have 
positive coefficients but when the Peclet number is greater than two 
the first term on the right hand side becomes negative. This 
negative term causes problems in that it can lead to unrealistic 
solutions. Consequently, there is a restriction on the Peclet number 
if we want to get realistic values.  

One way around this is to use a first-order accurate difference 
equation to model the first derivative in equation 3.53 instead of the 
second-order accurate difference equation used above. However, 
the reduction in accuracy can lead to a poor solution. Typically the 
use of lower-order accuracy schemes gives results which are the 
results for a flow which has more viscosity than the one we are 
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trying to model. Despite this such schemes are in common use 
together with more accurate schemes. Usually commercial CFD 
packages will have one of the following options for the 
discretisation of the convection operator:  

• an upwind scheme, where the convection term is formed 
using a first-order accurate difference equation equating the 
velocity derivative to the values at the reference point and 
its nearest neighbour taken in the upstream direction. This 
can give very inaccurate solutions but they are easy to 
obtain as they converge readily.  

• a hybrid scheme, where the upwind scheme is used if the 
Peclet number is greater than two, and central differences 
are used if the Peclet number is two or less. This is more 
accurate than the upwind scheme but does not converge on 
some grids of points.  

• QUICK, which is a quadratic upwind scheme and is more 
accurate than the two schemes described above. For 
complex geometries the shape of the volumes can lead to 
numerical problems in obtaining the solution.  

• power-law schemes, which are derivatives of QUICK but 
are more accurate.  

A good review of this topic is given by Abbott and Basco [11].  

3.5.4 Boundary Conditions For Fluid Flow Problems  

When solving any system of partial differential equations it is the 
boundary conditions, together with the initial conditions, that 
determine the exact solution. The form of the boundary conditions 
that is required by any partial differential equation depends on the 
equation itself and the way that it has been discretised. Some 
common boundary conditions are, however, met when solving fluid 
flow problems with computers. These can be classified either in 
terms of the numerical values that have to be set or in terms of the 
physical type of the boundary condition.  
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Looking at the variables, we need boundary conditions for the 
following variables:  

• for the velocity components, which will affect the 
momentum equations. These conditions are usually given 
by specifying the velocity components and if this is not 
done then the derivatives of the velocity components 
normal to the boundary are usually zero.  

• for the pressure and possibly mass flow, which will 
influence the continuity equation if a SIMPLE-like 
algorithm is being used. Usually, the fluid pressure needs to 
be specified at a minimum of one point in the flow.  

• for the turbulence variables such as the turbulence kinetic 
energy k and the rate of dissipation of k i.e. epsilon.  

These conditions have to be applied at a variety of boundaries such 
as:  

• solid walls. Many boundaries within a fluid flow domain 
will be solid walls, and these can be either stationary or 
moving walls. If the flow is laminar then the velocity 
components can be set to be the velocity of the wall. When 
the flow is turbulent, however, the situation is more 
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complex. This complexity is due to the velocity of a flow 
varying extremely rapidly near a wall if the flow is 
turbulent. To capture this rapid variation which occurs in a 
direction away from the wall, many grid points would be 
required in this direction near the wall, and this increases 
the amount of computational effort required to produce a 
solution. One way of reducing the effort is to specify the 
velocity near a solid wall using experimental data for 
boundary layers which shows that the velocity variation 
should be logarithmic with the distance from the wall at 
points more than a known distance from the wall. This can 
be seen in Fig. 3.10 where the velocity in the boundary 
layer is plotted against distance away from the wall. Both 
the velocity and distance have been transformed to non-
dimensional quantities as shown. Looking at the figure 
three regions can be seen. Near the wall there is a viscous 
sub-layer where the effects of turbulence are damped out by 
the wall itself. Then there is a log-law region where the 
velocity is a logarithmic function of the distance from the 
wall, and finally there is an outer layer which is where the 
boundary layer and the external flow merge. If the mesh is 
built so that the first point where the velocity is calculated 
is in the log-law region then the very rapid variation near 
the wall will not need to be modelled. Similar methods can 
be used to specify the values of both the turbulence 
variables k and epsilon.  

• inlets. At an inlet fluid enters the domain and so the fluid 
velocity might well be known for the problem being 
simulated. In some programs the pressure equation needs to 
know the mass flow at an inlet. Also, the fluid carries with 
it other quantities such as k and epsilon and so these must 
be specified as well. We say that variables are convected 
into the domain.  

• outlets. Where the fluid leaves the domain is known as an 
outlet. Normally, the pressure is set to zero at an outlet and 
the velocity components and any turbulence variables are 
left to find their own values which will have a zero spatial 
derivative in a direction normal to the boundary. If the flow 
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is swirling through the outlet then a pressure gradient is 
required to provide the necessary centripetal force to the 
fluid and so a constant pressure boundary condition will be 
invalid. To overcome this iterative procedures are used 
which start by specifying a constant pressure at the outlet 
but then try to find the pressure that matches the velocity of 
the swirling flow.  

• symmetry boundaries. When the flow is symmetrical about 
some plane there is no flow through the boundary and the 
derivatives of the variables normal to the boundary are 
zero.  

• cyclic or periodic boundaries. These boundaries come in 
pairs and are used to specify that the flow has the same 
values of the variables at equivalent positions on both of the 
boundaries. In Fig. 3.11 two examples of periodic 
boundaries are shown. In the first (Fig. 3.11a) a mesh 
which is topologically cuboid has been wrapped around 
onto itself. On the shaded boundary and the boundary 
facing it the fluid variables must be set to be equal at the 
corresponding points. The other example concerns the 
cascade of aerofoils shown in Fig. 3.11b, where a set of 
identical aerofoils are stacked vertically. Rather than take 
the domain as including several aerofoils it is simpler to 
take the domain to be that shown in Fig. 3.11c where the 
domain is rectangular and includes a single aerofoil. To 
make the flow within this domain consistent with the full 
domain we must set the flow variables on the boundary AB 
to be equal to the flow variables at corresponding points on 
boundary DC.  
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4 COMPUTER-BASED ANALYSIS 
PROCEDURES AND TOOLS  

In the last two chapters we have looked at the ways in which fluid 
dynamics problems can be described mathematically and at how the 
governing equations can be transformed to give a numerical 
analogue. To produce a solution from the numerical analogue many 
equations have to be calculated and this in turn requires vast 
numbers of repetitive calculations to be carried out. Computers are 
the ideal tool for this numerical processing as they can be 
programmed to perform all of these calculations without 
intervention. We saw in Chapter Three that the numerical solution 
process is specific to the equations that are solved and not to the 
actual flow problem being simulated. It is the boundary conditions 
and the initial conditions that are applied that determine the flow 
problem.  

Within a given class of flow problems, say for example those that 
have a flow which can be taken to be viscous and incompressible, 
general computer software can be written to produce solutions to 
the governing equations and this software is not problem-specific. 
Many industrial organisations require information on flow 
situations and so they either write their own CFD simulation 
program or they buy one of the software packages written by a 
specialist software company. As there is a growing commercial 
market for these programs there are several available.  

Not only can the software be general to a flow type, but also the 
analysis process that is followed can be general too. This means 
that regardless of the software being used there is a clearly defined 
set of stages that make up the analysis process. The first main 
section of this chapter defines this process by looking at the 
material that we have already discussed in the last two chapters and 
then determining what the key stages of the CFD analysis process 
are. Here only an overview of the process is given but in subsequent 
chapters we will discuss each stage of the process in detail. This is 
followed by a series of examples that show the process at work.  
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As the analysis process centres on computational procedures, the 
analyst has to use a wide variety of hardware and software tools and 
again these can be classified into sets of standard types. So the 
second section of this chapter looks at the types of hardware 
installation that can be used to run a CFD problem. This is followed 
by a section on the use of the hardware and then the final section 
discusses the CFD software tools that are available. In all of this 
there is a recurring theme of the universality of the analysis process 
and the tools that are used in carrying it out.  

4.1 The Analysis Process  

We have seen in Chapter Two that a mathematical analysis of fluid 
flow can be made and that this leads to a series of partial 
differential equations that govern the flow. In Chapter Three we 
saw that these partial differential equations can be discretised to 
produce a numerical analogue of the equations. When boundary 
conditions and initial conditions that are specific to the flow 
problem being simulated have been applied to these equations, they 
can be solved using a variety of direct or iterative solution 
techniques producing a numerical simulation of the given flow 
problem. Many of the numerical aspects of the flow simulation are 
handled by the CFD computer programs that have been written, but 
the user of the programs must provide several pieces of information 
to the program in order that a successful simulation can be made.  

From our study of the ways in which it is possible to produce 
numerical solutions to the governing partial differential equations 
we have found that the following are required if a solution is to be 
produced:  

• a grid of points, or a set of volumes or elements, at which to 
store the variables that need to be calculated  

• boundary conditions that enable the boundary values of the 
variables to be calculated  



C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992 

87 

• initial conditions that define the initial state of the flow for 
a transient problem or define the first guess to the variables 
for a steady state problem  

• fluid properties that appear in the equations such as density 
and viscosity and perhaps some turbulence quantities  

• control parameters that affect the numerical solution of the 
equations  

and it is the provision of this information that dictates the stages of 
the analysis process. Given that the analyst has the necessary 
hardware and software tools, the stages of the analysis process that 
must be carried out to generate this information and then produce 
the results of the flow simulation are:  

• initial thinking. As with many analytical or computational 
problems it is worth thinking about the physics of the 
problem for a while before committing pen to paper or 
fingers to keyboard. In this first stage the analyst should 
consider the flow problem and try to understand as much as 
possible about it. This might involve a considerable amount 
of liaison with any other people involved in the project such 
as design engineers and technicians, but it is important that 
all sources of relevant information are explored.  

• mesh generation. In this stage the analyst has to calculate 
the grid of points or mesh that sub-divides the flow domain. 
A series of coordinates for the points in the mesh have to be 
calculated and sometimes these points must be related to 
define the volumes, also known as cells, and elements. It is 
the distribution of the points in the flow domain that 
defines the positions where the flow variables are 
calculated.  

• flow specification. Once a mesh exists the boundaries of the 
computational domain can be found and the necessary 
boundary conditions, determined in the initial phase, 
applied. These conditions, together with the initial 
conditions and some fluid parameters, specify the actual 
flow problem that is to be solved.  
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• calculation of the numerical solution. Now the CFD 
software can be run to calculate the numerical solution to 
the flow problem, but first the user must provide the 
information that will control the numerical solution.  

• results analysis. When some results have been obtained 
they must be analysed, first to check that the solution is 
satisfactory and then to determine the actual flow data that 
is required from the simulation.  

It is possible to perform an analysis by taking each stage in the 
order given above, so that the required results are generated. This 
would only happen in an ideal situation as the simulation of flow 
problems can be extremely difficult. The governing equations are 
complex, as they are non-linear and highly coupled, and can be time 
dependent. This means that the possibilities for some error creeping 
into the solution procedure are great, leading to a simulation that 
will not converge or to a set of results that are not very good. These 
problems can be reduced by a combination of user experience and 
good practice during the analysis. By good practice we mean that 
the analysis should be carried out extremely carefully so that the 
analyst makes sure that each stage is completed successfully before 
proceeding to the next stage.  

Working in this way will usually mean that the analyst makes a 
series of checks during each stage. The necessary checks will be 
described in the subsequent chapters but if they show that the 
simulation is not progressing well then it may be necessary to 
repeat one or more of the stages. By doing this the computer model 
can be modified in an attempt to improve the simulation. As 
computers are being used the refinement of the computer model is 
not too difficult to perform, as, usually, information stored on 
computers can be accessed and changed both quickly and easily. 
This interaction between the stages of the analysis process should 
enable reliable results to be achieved, given the constraints of the 
hardware and software. Some of these interactions are shown in the 
flowchart of the process given in Fig. 4.1. There the importance of 
careful analysis of the results can be seen. By looking at the results 
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produced it is possible to see if a simulation is a good one. If it is 
not then the flow specification might be incorrect, or the mesh 
might not be suitable for the flow being modelled or there could 
have been a conceptual mistake made at the beginning of the 
analysis process.  
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4.2 Computer Hardware For CFD  

4.2.1 Computers  

As we have seen, we need computers to perform the repetitive 
calculations that produce the solution to the numerical equations. 
As computer technology changes at an alarming rate the 
supercomputers of one era becoming the desktop calculators of the 
next and, consequently, we need to be wary of reviewing the state 
of the art in computer technology. Even so we can still produce a 
series of classifications that describe the generic hardware types 
that are available.  

In the world of engineering computation it is common to classify 
computers by their performance in terms of some measure of 
calculation speed. Speed can be measured in units based on the 
number of instructions that a processor can execute per second or 
the number of floating point operations that a system can handle per 
second. Common units are mips or millions of instructions per 
second and MFLOPS or millions of floating point operations per 
second. These measures can give a user some idea of the 
throughput of a machine but they say nothing about the ways in 
which the systems operate with a particular numerical software 
package. This is very important when we consider the CFD analysis 
process as the execution of calculations is only one part of the 
process of producing a final solution. Other features such as the 
speed of access of data are equally important to the overall speed of 
the calculation.  

If we consider the operational characteristics of the computers that 
are used to perform CFD calculations we can divide the computer 
types into the following five categories:  

personal computers These are standalone systems containing a 
central processor, some random access memory (RAM) and some 
disk storage. Usually they have single-user operating systems.  
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• workstations. These are machines that have a central 
processor, local RAM storage, and multi-user operating 
systems. These are packaged together with a high 
resolution graphics display. They are often part of a 
network of machines that can include a central data storage 
system such as several disks attached to a file server which 
is a computer that is dedicated to the task of providing 
datafiles to the other machines in the network. The network 
can also be used to gain access to high speed computers and 
a variety of peripherals. Some workstations also have their 
own local disk storage.  

• mini-computers. These are machines with a central 
processor, large amounts of RAM storage and a central data 
storage system. They have multi-user operating systems 
and are used by several people simultaneously who gain 
access to the system by using terminals.  

• mini-supercomputers. These are effectively super-
workstations, with very good graphics performance and 
near-supercomputer numerical performance. Again they are 
usually part of a network.  

• supercomputers. Designed to handle numerical data in the 
fastest possible way, these machines are dedicated to the 
task of running numerical simulations. They are large high-
technology devices often with multiple processors and 
extremely large amounts of RAM storage to reduce the 
need for the machine to communicate with slower storage 
devices when carrying out calculations. To enable good 
graphics facilities to be used, supercomputers are often 
networked to workstations.  

Figure 4.2 shows the configurations of the machines types in this 
list, but this is clearly not a full list as other types of machine are 
available. In particular machines that have a large number of 
processors such as transputers have a great potential to carry out 
numerical calculations extremely quickly. At the time of writing 
(1991) the CFD calculations that are carried out on these machines 
use specialist programs adapted to take advantage of the internal 
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architecture of the hardware. Commercial programs are rarely 
available on these machines, but no doubt this will change.  

 

As computer power increases and the technology advances, the 
boundaries between the machine types are becoming blurred and in 
some cases they are being made invalid. For example, again in 
1991, the distinction between a personal computer and a low 
performance workstation is becoming smaller and smaller, as is the 
difference between a mini-supercomputer and a supercomputer. 
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Equally, the power of the highest performance workstations is 
coming close to that of mini-supercomputers or even 
supercomputers.  

4.2.2 Peripherals  

When operating or specifying computer hardware it is not only the 
computer that has to be considered. In carrying out the tasks that are 
part of a CFD analysis, the availability of various peripheral devices 
is either a necessity or can be of great assistance to the analyst, 
making the analysis process easier to carry out. These peripherals 
include:  

• secondary data storage devices. When a program is running 
the processor accesses data from the RAM storage which is 
the primary data storage device. As we shall see later CFD 
programs generate large amounts of data and this data 
needs to be accessed by the CFD program during the 
solution of the numerical equations and by a variety of 
other programs both before and after the solution. The data 
can only be stored in the RAM storage during program 
execution and so it is also stored on secondary storage 
devices such as hard disks. Secondary storage is also used 
if the RAM capacity is not sufficient to hold all the data 
during the execution of a program and as the access of the 
data held on a secondary store is much slower than the 
access of data held on a RAM store this can slow the 
execution down.  

• backup devices. To protect the data that CFD programs 
generate from loss due to a failure of a disk drive or a 
disaster like a machine-room fire, it is necessary to make 
regular copies of the data onto some form of backup data 
store. These can be demountable hard disks, magnetic tapes 
or other devices which can be removed to a safe storage 
area. Often, this is done automatically, or is handled by the 
administrator of the computing system.  
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• high resolution graphics displays. CFD analyses generate 
so much data that, quite often, the only way of analysing 
the data over the whole domain is to use some form of 
graphical representation. High resolution graphics display 
devices are used to show the necessary pictures and these 
devices include the screen of a workstation or a dedicated 
graphics terminal. Typically the resolution of these devices 
is 1000 x 1000 pixels, where a pixel is a dot on the screen, 
although useful work can be done at lower resolutions such 
as 600 x 400 pixels. The addition of colour can also be 
extremely helpful in clarifying the pictures produced from 
large CFD-generated databases.  

• hardcopy devices. As with most engineering activities 
report writing is a necessary evil and so a means of 
obtaining a hardcopy of the pictures generated on a 
graphics device is necessary. These copies can come from a 
laser printer which will produce black and white copies or 
from a colour plotter which uses ink-jets or heated waxes to 
produce a coloured image.  

4.3 Using the Hardware  

When we simulate fluid flow problems with a computer the 
analysis process has three main requirements that have an impact 
on the computer hardware. We saw in Chapter Three that the 
solution process consists of calculations that are carried out at a 
large number of points in the domain under consideration and that 
these calculations are part of an iterative process in which 
individual calculations have to be repeated many times before the 
solution is obtained. Consequently, the numerical calculation phase 
of the simulation requires both a large amount of data storage and 
considerable computer processing power if real-life engineering 
problems are to be solved. Further, the large amount of data that is 
generated has to be analysed graphically and so the computer 
system must support the production of graphical data as well.  
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Now, by referring to these requirements of data storage, processing 
power and graphics capabilities, each of the computer 
classifications that we listed earlier can be analysed in turn. It can 
be seen that  

• personal computers do not have the processing power or 
data storage capacity to enable large simulations to be run. 
These machines might be used for training problems, where 
the size of the problem is very small and the speed of 
analysis is unimportant.  

• workstations have all the necessary computing power, data 
storage and graphics capabilities for some problems. 
However, the largest problems may require extra 
computing power such as that provided by a mini-
supercomputer or a supercomputer.  

• mini-computers tend to perform like workstations but they 
sometimes have less graphics capability.  

• mini-supercomputers can used for most problems, 
including the largest simulations, if the turnaround time of 
the numerical analysis is not too important.  

• supercomputers are especially useful for the largest 
problems where results are required quickly. They tend to 
be linked to workstations, or mini-computers, to enable the 
graphics tasks of the analysis to be carried out on a smaller 
machine, leaving the raw computing power and large data 
storage for the numerical applications that need them.  

This situation is summarised in Table 4.1. It should be emphasised 
that useful CFD analyses can be carried out with a limited amount 
of hardware and so it is not necessary to have access to a 
supercomputer to start using CFD. Situations do exist, however, 
where access to a supercomputer might be the required if 
simulations are to be achieved in a reasonable time scale. 
Guidelines for the specification of hardware are given in Chapter 
Twelve, but it is worth noting here that the length of time taken for 
a simulation will be dependent on both the hardware and the 
software used.  
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4.4 Commercial Software Packages Used For CFD  

Each software package aimed at the CFD market has to assist the 
user in carrying out the tasks that form the analysis process. This is 
done by providing, typically, three main pieces of software:  

• a pre-processor  
• a solver  
• a post-processor  

together with a variety of utility programs. The use of all these 
programs will be explained below.  

4.4.1 Pre-Processing Programs  

All the tasks that take place before the numerical solution process is 
started are called pre-processing. This includes the first three phases 
of the analysis process that we have discussed, thinking, mesh 
generation and flow specification and the part of the fourth phase 
that defines the numerical control parameters. Whilst the first phase 
needs considerable thought, and considerable engineering 
judgement, if the physical flow problem is to be translated into a 
problem that is solvable by the CFD software; it does not involve 
any computing. It is only when this first phase has been completed 
that the computing starts.  
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To assist in the computational part of the pre-processing phase, 
most software packages have a pre-processing program that can be 
used to carry out the following operations:  

• define a grid of points and perhaps volumes or elements.  
• define the boundaries of the geometry  
• apply the boundary conditions  
• specify the initial conditions  
• set the fluid properties  
• set the numerical control parameters.  

In carrying out these tasks the user has to interact with the computer 
in some way and so the pre-processing program usually has a 
graphical interface, so that parameters can be set, and the resulting 
changes seen quickly. This is particularly important when the mesh 
is being built. Also, datafiles can be read that contain lists of 
commands so that repetitive sets of instructions, say for a similar, 
but not identical problem, do not have to be typed too often.  

Usually, the most difficult task in the pre-processing phase is the 
generation of the grid of points or mesh. Quite often this task can be 
simplified by using software that has been especially designed to 
carry out mesh generation. One example of this is the use of 
programs written to produce meshes suitable for the finite element 
analysis of structural problems. Such software is commonly 
available and can interface with computer-aided design systems. 
This allows the analyst to access computer models of objects, the 
surface data of which can form the basis for the geometry around 
which the mesh for a CFD simulation can be built.  

4.4.2 Solving The Equations  

Each package has a program that solves the numerical equations for 
the problem under consideration. This program must be given all 
the relevant data that has been defined by the pre-processor. To 
transfer the data between the programs, the pre-processor writes out 
datafiles that the solver program can read. These files can also be 
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moved, if necessary, between computers. This is extremely useful 
as it means that the solver program can run on a machine 
specifically designed for high-speed numerical work such as a 
supercomputer, while the interactive tasks are carried out on a 
smaller machine. This splitting of the tasks between machines 
enables the hardware to be used in the most efficient manner, 
keeping graphics-intensive and so-called number-crunching 
activities separate.  

Once the datafiles are in place, the solver program is activated and 
the required solution process carried out. At the end of this phase, 
further datafiles will be available, which may have to be transferred 
back to the machine where the pre- and post-processing programs 
are run.  

Although the solver program is the core of any CFD software 
system, the user sees little of its operation.  

4.4.3 Post-Processing Programs  

As large numbers of points have to be created within the flow 
domain if reasonable simulations are to be obtained and as several 
variables are stored at these points, computer graphics is often the 
only means of assessing the data written by the solver program. The 
post-processing program is used to display the results, and, as with 
the pre-processor, this program is interactive and so usually run on 
the same machine as the pre-processor.  

Typical pictures obtained with the post-processor might contain a 
section of the mesh together with vector plots of the velocity field 
or contour plots of scalar variables such as pressure. These pictures 
enable global trends in the data to be seen.  

4.4.4 Utilities  

Several utility programs are sometimes provided that do not form 
part of the above system of software. These programs can be used 
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to convert the datafiles written by one system into a format that can 
be read by another system. This is common for files containing 
mesh and results data.  

Using these utilities the data can be transferred between engineering 
software systems and this can be extremely useful if an organisation 
has the use of commercial mesh generation software, such as would 
be provided with a finite element structural analysis program. These 
programs can be used to build a mesh that can then be accessed by 
the CFD analysis system. The files that are transferredare often 
referred to as neutral files, as they can be read using the standard 
text editors of many systems or by small programs that are written 
locally.  
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5 DESCRIBING FLOW PROBLEMS IN 
ENGINEERING  

Producing a computer simulation of a flow problem requires the 
analyst to provide a large amount of data to the solver program. It is 
the quality of this data, in terms of both suitability and accuracy, 
that may well determine the quality of the results of the simulation. 
Because of this, users of CFD software must be very familiar with 
the flow problems that they wish to simulate. When using 
computers there is a strong temptation to start computing as soon as 
possible, but in this case it is much better if considerable thought is 
given to the problem before starting to use a computer, and so the 
urge to compute before thinking must be resisted.  

As an aside, if you are considering having an analysis undertaken 
using CFD then please be aware of the following. At times the 
analyst will use hard information which will be gleaned from a 
variety of sources. This sort of information includes a lot of 
information that is not controversial and is well known. At other 
times, however, the analyst must rely heavily on the experience of 
running similar fluid flow simulations when deciding how to model 
the problem. This is because the CFD analysis will sometimes 
demand information that does not exist or the software may not 
model exactly the situation that is required. In such circumstances 
the quality of the analyst can be crucial to the simulation being 
successful.  

The key to a sound analysis is the production of a specification of 
the flow problem. This is a clear exposition of the reasons why the 
simulation is being carried out and of what the physical flow 
situation is. Once it has been produced it can be translated into the 
set of data that is required by the simulation package. This chapter 
looks at how such a specification is built up and then looks at an 
example of a specification for a realistic flow situation that will be 
simulated in Chapter Ten.  
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5.1 Producing a Specification  

A specification for a flow problem must be sufficiently detailed so 
that the analyst can obtain from it all the information necessary to 
define the flow problem to a CFD solver program. This information 
comes from a good understanding of the flow problem which the 
analyst must obtain be talking with the people who require the 
results of the simulation. In particular the analyst must know three 
things:  

• why it is that the simulation is required  
• what the geometry of the problem is, in broad terms  
• what the possible flow behaviour might be.  

5.1.1 Knowing What Is Required of the Analysis  

Carrying out the analysis of a fluid flow problem is an expensive 
business. If someone wants to commission a computational analysis 
of a flow problem considerable expense will be involved as access 
to computer hardware must be achieved, the necessary software 
must be found and the labour costs in either time or money are not 
insignificant. Consequently there must be good reasons for carrying 
out the analysis and the analyst must therefore explore these 
reasons first, by talking to the people that need the results of the 
simulation such as design engineers. At this stage the analyst should 
also be able to decide if a CFD simulation will give the required 
results.  

The reasons for an analysis being carried out are many and varied 
but they often include such things as the determination of the forces 
and moments on a body so that the motion of the body can be 
predicted or analysed, the prediction of the pressure throughout a 
flow or the prediction of the ways in which the fluid moves over or 
through a system. Sometimes the analyst will have to work out the 
form of the results that the simulation should produce from a vague 
description of an engineering problem. For example, the work done 
in pumping a fluid at a given flow rate through a series of passages 
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of an engineering device might be too great and the reasons for this 
may not be known. A computational model of this problem would 
show what happens to the fluid as it passes through the passages 
and it will also give an prediction of the fluid pressure everywhere 
in the device. From this information the areas where the fluid 
pressure is lost can be identified, as usually this will occur where 
the flow is separated. With this information the computer model 
could be altered so that a prediction is made of the flow through a 
modified geometry that should reduce the regions of separated 
flow. The results of the prediction should show whether the 
modification of the geometry would lead to a reduction in the 
pressure losses in the physical flow.  

Once the analyst knows the reasoning behind the flow problem it is 
easier to plan ahead so that the computational model produces the 
necessary information. One further benefit of this discussion 
between analysts and their clients is that they get to know each 
other and their respective problems. Such an understanding can 
help the analysis process to be brought to a successful conclusion, 
especially if things do not quite go as planned.  

At the end of this initial part of the specification phase the analyst 
should have a list of the data that the computational model must 
produce. This could include the change in pressure through a 
system, the local pressure field, the local flow velocities, the time 
variation of a variable at a given point or many other pieces of 
information. Once this list has been compiled an assessment of the 
suitability of CFD in giving reasonable results should be made. We 
need to be aware at this stage that CFD cannot produce sensible 
results for all physical fluid flow problems, and we will discuss 
why this is in Chapter Ten after we have looked at the results of 
some simulations. If the analyst concludes that CFD is not a 
suitable tool to use in obtaining the required results, whatever the 
reasons for this, then the analyst must highlight these problems to 
those who want the results and suggest that the analysis is not 
carried out with CFD. There is no point in running a simulation if it 
is likely that the results will be of poor quality. This would only 
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frustrate those who need the information and give the use of CFD a 
bad name. Everyone should always be aware that sometimes it is 
easier and cheaper to perform a physical experiment rather than a 
computational one, and sometimes it is more accurate too.  

5.1.2 Specifying the Geometry of the Problem  

Once the reasoning behind the analysis is known the actual 
specification of the problem can be prepared. When looking at any 
flow problem it is important to be able to describe the physical 
boundaries that contain the fluid. This is particularly important for 
engineering flow problems where it is usual for at least some part of 
the boundary to be a man-made object and it is a prediction of the 
effect of this object on a flow that is required from a CFD analysis.  

When we solve the equations governing fluid flow using a 
computer, we need to have mesh of points at which the flow 
variables can be stored as we saw in Chapter Three. These points 
have to be created both on and within the bounding surfaces of the 
flow and so some means of describing the geometry of these 
surfaces is required.  

Various sources of geometrical data can be available and these can 
be used by the analyst to describe the bounding surfaces. For 
example, this data might come from:  

• analytical descriptions of shapes in two dimensions given 
by such things as points, lines, arcs and splines  

• engineering drawings  
• databases created by computer-aided design (CAD) systems  
• measurements taken from existing hardware.  

From such sources most of the bounding surfaces of the flow 
domain may be determined precisely. When building the mesh of 
points inside the flow domain we will use this the precise 
information (see Chapter Six), but during the specification stage it 
is sufficient to know roughly where these surfaces are in relation to 
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each other and how they fit together. A simple sketch might help to 
show this. It is also worth remembering that when we build the 
computational model a complete description of the bounding 
surfaces is required, and that some of these surfaces might not be 
physical surfaces. For example, the non-physical surfaces could be 
the flow inlet or outlet or the boundary of an external flow problem 
that is effectively at infinity (the far-field boundary). These non-
physical surfaces will need to be created later, but the sketch should 
at least draw attention to where they are.  

5.1.3 Defining the Flow  

Once the geometry of the problem is understood the analyst must 
think about the flow itself and try to visualise what is happening to 
the fluid within the bounding surfaces of the flow. The initial step 
in defining the flow is to know which fluid is to be studied. This 
could be air, water or any other fluid and the values of the density 
and viscosity of the fluid need to be found. Once the density and 
viscosity are known a calculation can be made of a parameter 
known as the Reynolds number. This is a non-dimensional number, 
often designated by Re , which is defined as  

(5.1) 

where V sub {ref} is a reference velocity such as the inlet velocity 
and D is a characteristic length which might be something like the 
length of an object or the width of a duct. This parameter is useful 
in determining whether a flow will be laminar or turbulent, as we 
shall see, and is one of a number of non-dimensional parameters 
that are used in fluid mechanics to characterise flows. We will 
discuss several more in Chapter Eleven when we look at other types 
of flow.  
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Next, the production of the main part of the specification can be 
tackled. As we have already stated the CFD solver must be aware of 
the boundary and initial conditions that are appropriate for the flow 
under consideration. The investigation of these conditions can be 
started by building up a picture of the flow structure that might 
occur. This is done by thinking about the physical boundaries of the 
problem that were identified in the previous part of the specification 
process. From our sketch of the location of the boundaries we 
should be able to identify those surfaces where the fluid enters or 
leaves the geometry and those surfaces which are the solid surfaces. 
This information can then be used to gain some idea as to the flow 
structure within the geometry. The flow structure might include 
such things as the direction of the flow, the location of vortices, 
areas of separated flow, boundary layers and wakes. The existence 
of these features within the flow can then be added to the sketch 
that we are building up.  

As part of the physical flow structure, areas where the flow 
variables such as velocity have large gradients, for example in 
boundary layers and wakes, will be identified and this information 
can then be used when the mesh is built so that sufficient points are 
placed within the mesh in these regions. Also the flow structure will 
help to identify the type of boundary condition that should be 
applied to each of the boundaries and the initial state of the flow 
variable. Remember that it is the flow information on the 
boundaries of the geometry, the boundary conditions, and the state 
of the flow variables at the beginning of a time dependent problem, 
the initial conditions, that determine the numerical solution to a 
particular set of equations. By now the sketch should have most of 
the information about the boundaries on it and this needs to be 
translated into the form needed by the analysis. This is done by 
looking at each boundary in turn.  

Some common specifications that need to be made at boundaries 
are:  
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• to fix the velocity (at an inlet or a wall where the flow is 
laminar)  

• to activate a log-law velocity profile (at a wall where the 
flow is turbulent)  

• to activate appropriate functions for the turbulent kinetic 
energy and its dissipation rate (at a wall where the flow is 
turbulent)  

• to fix the turbulent kinetic energy and its dissipation rate (at 
an inlet of a turbulent flow)  

• to fix the pressure (at an outlet)  
• to do nothing (at a symmetry plane where the velocity 

gradients normal to the plane are zero)  
• to specify a pair of cyclic boundaries where the flow 

variables are the same at corresponding points on the two 
boundaries.  

If we wish to solve a steady state problem the flow should now, in 
theory, be completely specified, but if we wish to solve a flow with 
a time variation which is either real or assumed in the solution 
procedure then the initial conditions must also be specified. These 
are the values of all the flow variables at the start of the calculation 
and they need to be defined at every point in the flow domain. 
Often the values are not known exactly and so some sensible values 
have to be assumed. Even if the problem is to be solved as being 
steady in time we must sometimes specify some initial conditions. 
Many programs will assume an initial set of values for the flow 
variables, but it can help to give a better guess as less computational 
effort might be used in reaching the final solution.  

5.2 An Example of a Flow Specification  

So that the above specification process can be illustrated, we will 
now take a flow situation and consider how a specification can be 
produced by this process. The example that we will use is that of a 
two-dimensional slice of the flow of air over a saloon car when it is 
placed in a wind tunnel. This is one of the examples that will be 
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used as a demonstration example in the chapter of case studies, 
Chapter Ten.  

First, we must think about the reasons for carrying out the 
simulation. Let us imagine that we are working for a vehicle 
manufacturer and ask ourselves the question, 'What does the 
company want to find out from the simulation of the flow over a car 
?'. Cars are tested in a wind tunnel for a variety of reasons that 
include the search for information about the forces and moments on 
a vehicle that can be used to predict the vehicle's fuel economy, its 
top speed and its acceleration and its response to gusts of wind 
hitting the vehicle from the side. The data that is extracted from 
these wind tunnel tests includes:  

• the drag on the car when the car is at various angles to the 
flow  

• the lift on the car at the same set of angles  
• the side force on the car at the same angles  
• the rates at which the cooling system of the car can extract 

heat from the engine  
• the rate of cooling of the brakes.  

If we carried out a three-dimensional simulation of the flow around 
a vehicle we could obtain values for the force and moments on a 
basic body shape, but none of the above information can be found 
from a two-dimensional calculation. This is simply because the 
two-dimensionality of the calculation will make the results 
meaningless, however the procedures are just the same as those 
used for three-dimensional calculations and so this example can be 
seen as a reasonable test case to pursue. In Chapter Ten there will 
be a discussion of the use of CFD in calculating the three-
dimensional flow over a vehicle after the two-dimensional 
calculation has been made.  

Let us imagine that we wish to run this simulation to investigate the 
flow structure around the vehicle, which can give some pointers to 
the three-dimensional flow. Consequently we will want to be able 
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to plot the velocity vectors around the vehicle at the end of the 
simulation. Having decided this we can move to the second step in 
the specification process, that is the sources of data for the 
geometry and the arrangement of the boundaries must be found. For 
the car the shape might be defined as a set of engineering drawings 
or as a set of surfaces stored in a CAD system, but the shape of the 
wind tunnel must also be decided. Most tunnels comprise of a 
parallel working section placed between a contraction and a 
diffuser. To simplify this problem the tunnel can be taken to consist 
of a straight floor and roof which are placed at the correct 
elevations relative to the car, and a vertical inlet upstream of the car 
and a vertical outlet some way downstream of the car. This 
simplification can be made as the main effect of the tunnel on the 
car is to constrain the flow around it and this is done by the working 
section immediately around the car. The fact that the working 
section has been extended away from the car should have little 
effect on the flow around the car, but it does simplify the 
computation considerably. In particular, the outlet needs to be far 
downstream of the car to reduce the influence, on the flow around 
the car, of the approximate pressure boundary condition that will be 
specified at the outlet. All this information is summarised in a 
sketch of the geometry which is shown in Fig. 5.1. The shape of the 
car comes from a set of two-dimensional curves in space that are 
derived from the three-dimensional data discussed in Chapter Ten.  

 

Having specified the geometry the fluid can be defined. In this 
problem the fluid is air which has the following properties (at a 
temperature of 288 K and a pressure of 760 mm of mercury):  
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• density 1.225 kg / m sup 3  
• viscosity 1.79 x 10 sup {-5} kg / ms  
• kinematic viscosity 1.46 x 10 sup {-5} m sup 2 / s  

Then the Reynolds number can be found by taking V sub {ref} to 
be the inlet velocity of 28 m/s and the typical length dimension to 
be the vehicle length of 4.165 m , giving  

(5.2) 

From this calculation we can assume that the flow will be turbulent 
as the Reynolds number is so high.  

Now the boundaries of the problem can be analysed and from Fig. 
5.1 it can be seen that the boundaries can be listed as:  

• the car surface  
• the tunnel floor  
• the tunnel roof  
• the tunnel inlet  
• the tunnel outlet  

and each must be considered in turn.  

The effect of the car surface is simple to understand. At this 
boundary the flow will be turbulent and the surface will retard the 
flow. Boundary layers will be created on the vehicle surface. In 
terms of boundary conditions a log-law profile condition for the 
velocity will have to be imposed here together with suitable 
conditions for the variables of the turbulence model. Similarly the 
tunnel floor will act in the same way and will require similar 
boundary conditions to be imposed. On all these surfaces the mesh 
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will have to be built such that several points are placed near to the 
surface in a direction normal to the surface.  

The tunnel roof is an interesting boundary in that it will act like the 
tunnel floor and have a boundary layer on it. However, as it is some 
way from the car, this boundary layer is unlikely to have a major 
effect on the flow over the car and so the roof can be taken to be a 
symmetry boundary so that no flow goes through the surface. This 
is of benefit to the simulation as the mesh does not need to be very 
fine near a symmetry boundary, whereas it does need to be fine 
where there is a boundary layer so that the variation in velocity near 
the solid surface is captured. By making this approximation for the 
roof the number of mesh points in the domain can be reduced.  

At the tunnel inlet the fluid enters the domain in the horizontal 
direction at a speed of 28 m / s and so, as both the magnitude and 
direction are known, the velocity can be specified there. Being 
carried in with the flow is a natural level of turbulence and this 
must be specified at the inlet as well. However, at the tunnel outlet, 
we do not know the speed of the flow at all positions as there is a 
boundary layer on the floor of the tunnel and a wake behind the car 
that is generated by the boundary layers on the vehicle surface. We 
can deal with this boundary by assuming that the velocity does not 
vary in the horizontal direction at the outlet and so the derivative of 
the velocity in the horizontal direction is zero. Further, we can 
impose a fixed pressure at the outlet as it sufficiently far from the 
vehicle that this boundary condition will not affect the results we 
want to obtain. Normally we set the outlet pressure to zero.  

In terms of the flow structure the analysis of the boundaries gives 
us a picture of what is happening in the flow. Fluid enters through 
the inlet, is retarded by the tunnel floor and the vehicle surface, 
forming boundary layers there. From our knowledge of fluid flow 
we know that the flow will separate somewhere towards the rear of 
the vehicle forming an area of fluid that has a reduced speed behind 
the vehicle. This is the wake of the vehicle. At the roof of the tunnel 
the flow is constrained to move horizontally, and the fluid leaves 
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the domain at the outlet. All of this information can be added to the 
sketch as shown in Fig. 5.2.  

 

As a last step we must decide upon the initial conditions. For this 
problem a sensible way to approach things would be to set the 
horizontal component of velocity to the speed of the inlet velocity, 
to set the vertical component of velocity to zero and the pressure to 
zero. Turbulence values can be set to be the inlet values as well. 
Now the specification is complete and we can turn to the building 
of the actual computational model.  
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6 BUILDING A MESH  

Once the specification of the flow problem is known we can turn 
our attention to building a computer model. The first part of this is 
to build a mesh of points throughout the flow domain and perhaps 
produce the necessary volumes or elements. When modelling a 
simple problem this process takes very little time, but when 
modelling a complex problem such as the flow inside a series of 
passages, say the coolant flow in a internal combustion engine, the 
process can take several man-months to complete. Often it is this 
phase of the analysis process that determines the total time required 
to obtain results from a simulation, as all the other phases, including 
the actual computation of the results, can be carried out quite 
quickly. Similarly, the overall cost of the analysis can be totally 
dominated by the costs of the labour required to build the mesh.  

In this chapter we will discuss the reasons for building a mesh, the 
requirements that a mesh must satisfy if it to give satisfactory 
solutions and the types of mesh that can be built. Then we will 
discuss how a mesh can be built by using a variety of software 
tools. Finally, we will look at ways in which a mesh can be 
modified in the light of the results of a flow simulation such that 
better results are achieved.  

6.1 The Need For A Mesh  

In Chapter Three we looked at various ways of discretising the 
governing partial differential equations of fluid flow so that 
numerical equations were produced. Regardless of which of the 
three discretisation techniques is used; the finite difference method, 
the finite element method or the finite volume method; a mesh of 
points has to be produced within the volume of the fluid. This can 
be considered as the discretisation of the space in which the flow 
takes place. If we use the finite difference method then the values of 
the variables at the points are used to produce equations for the 
variables that enable a solution to be determined. This involves a 
grid of points. However, if we use the finite volume method then 
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the points are arranged so that they can be grouped into a set of 
volumes and the partial differential equations can be solved by 
equating various flux terms through the faces of the volumes. Also, 
if we use the finite element method then the points are grouped to 
define elements within which the numerical analogue to the partial 
differential equations can be set up. In both the latter cases the 
structure of the mesh does not depend on the discretisation method.  

As a consequence of this we can see that although we need a mesh 
to solve CFD problems regardless of which of the three 
discretisation techniques has been used, the mesh itself will be 
influenced by the discretisation technique. This is not the only 
influence as the expected variation of the flow can also have an 
effect on the way in which the mesh is built.  

6.2 Creating A Mesh For A Given Flow  

Every flow problem will contain a wide variety of flow features in 
the domain. That is things such as vortices, boundary layers, 
regions of rapid fluid velocity and pressure change and separation 
regions occur, and all of these need to be modelled by the CFD 
simulation. If we are to have a mesh that is capable of modelling 
these features, where the gradients in space of the flow variables are 
high, then we must be aware of where these features might occur. 
This shows the importance of the sketches that we developed as 
part of the specification process, as these can be used to highlight 
the positions of the critical regions in the flow.  

In the critical regions we need to have a large number of points 
within the mesh. To see the reason for this we must refer back to 
Chapter Three. There we saw that all the numerical methods 
assume that the flow variables vary in some simple way between 
the points or within an element or volume. This variation is usually 
linear but, for finite element codes, a quadratic or even higher-order 
variation is sometimes used. Consequently, if the flow varies 
rapidly in space, as it does in the critical regions of the flow, a fine 
grid will be needed to describe the variation accurately.  
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We can see this clearly in Fig. 6.1 where a one-dimensional 
variation in a variable U is assumed to occur in the x-direction. Let 
us assume that some numerical method has given us a set of values 
for U which is exact at a number of points in the x-direction. This 
will never happen in practice but it is the best that a numerical 
method can do. If we take the numerical prediction of U to be the 
straight lines between these points, then several sources of error in 
the variation can be seen. First, if the values are obtained at only a 
few points which we will call a coarse mesh, then the solution is not 
an accurate representation of the variation. We can see that in the 
region of x=1, the numerical value of U is too small and, in the 
region of x=0, the numerical approximation to the derivative dU/dx 
is too small. If we know the values of U at more points, that is on a 
finer mesh, then we can see that numerical description of the 
variation is much more accurate.  

 

This is extremely important as we must have accurate values of the 
variables and their derivatives if we are to simulate the governing 
equations accurately. Any error in either the variable U or its 
derivative dU/dx can lead to the numerical solution of the equations 
being in error. A typical example of this is that flow separation on 
the surface of an object may not be predicted if the mesh is too 
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coarse near the surface of the object. There is an example of this in 
Chapter Ten.  

Even though we know that the mesh must be very fine in the critical 
regions we still have the problem of knowing where these regions 
are and how fine the mesh should be. Along solid surfaces there 
will be a boundary layer and so there must be several points close to 
the surface in a direction normal to the surface. This allows the 
numerical solution to model the rapid variation in velocity through 
the boundary layer. This is an example of the geometry of the 
domain influencing the way in which the mesh must be built. 
Another example is where a surface has a large amount of curvature 
causing a rapid variation in pressure in the flow direction. However, 
large flow gradients also exist in areas of the flow away from the 
solid surfaces, say in the wake of an object or, if we are modelling a 
compressible flow, near a shock wave. Creating a suitable mesh in 
these areas is more difficult as the exact location of the critical areas 
is difficult to determine. One way of proceeding is to assume the 
position of the critical areas and build a mesh taking this into 
account. Then, once the simulation has been run, the actual results 
of the simulation may help us to determine the actual positions of 
the regions of high flow gradients. So we see that information 
obtained from the results of a simulation can be used to modify the 
mesh and the technique is known as adaptive meshing. We shall 
discuss this further in Section 6.5.  

6.3 Mesh Structures  

6.3.1 The Basic Parts of a Mesh  

Given that a mesh must be suitable for the discretisation technique 
and also for the flow, we will now look at the different types of 
mesh that can be built. A first step in this is to determine what the 
basic parts of a mesh are. From our discussions in Chapter Three, 
we already know that a finite difference mesh will consist of a set 
of points, that a finite volume grid will consist of points that form a 
set of volumes and that a finite element mesh will consist of sub-
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domains known as elements on which the variables are found at 
fixed points known as nodes. These then are the basic parts from 
which meshes are built:  

• points, sometimes called nodes  
• volumes, also known as cells in some documentation  
• elements  

but which of these parts are needed for a mesh depends on the 
discretisation method being used. In all the discussion that follows 
we will use the terms volume, cell and element to mean a sub-
domain without implying that a particular discretisation technique 
is being used.  

Various mesh structures which are made up of these parts can be 
built and we shall look at this in the next section, but it is useful to 
note here the range of sub-domains, be they volumes or elements, 
that are used. In structural finite element programs a wide range of 
element types can be used and these are classified by the shape of 
the sub-domain and the placement of nodes in the domain. With 
CFD programs a much more restricted set of volumes or elements is 
available at present. By far the most common volume or element, 
for use in three-dimensional meshes, is a hexahedron with eight 
nodes, one at each corner, and this is known as a brick element or 
volume. For two-dimensional applications the equivalent element is 
a four-noded quadrilateral. Some finite volume programs have now 
been released which have the ability to use tetrahedra in three 
dimensions or triangles in two dimensions. Most finite element 
CFD codes will allow these elements to be used together with a 
small range of other element types. Figure 6.2 shows some of the 
commonly used sub-domains.  
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6.3.2 Types of Structure  

Now that we know what the constituent parts of a mesh are, we can 
think about how to arrange them through the domain. This 
arrangement is known as the structure of the mesh or the topology 
of the mesh. When using the finite difference method the points are 
the positions in space where the variables are calculated and they 
are arranged in what looks like a grid of cells. In contrast to this, 
when using the finite element method, the points are the nodes of 
the set of elements used to split up the fluid volume and the 
elements can be arranged in any way, providing that the faces of the 
elements are aligned correctly. We are able to do this as the 
calculation on any one element requires information from that 
element alone. The interaction between the elements takes place 
when the element equations are added together to form the global 
equations. With the finite volume method the actual implementation 
of the numerical solution will determine which scheme of volume 
placement can be used. Some programs demand that the volumes 
are placed in the same way as they would be for a grid of finite 
difference cells and others allow a finite element-like placement.  



Chapter 6. Building a mesh 

118 

From this we can see that there are two ways in which the mesh 
structure can be arranged. These arrangements are:  

 

• a regular structure or topology, where the points of the 
mesh can be imagined as a grid of points placed in a regular 
way throughout a cuboid (also known as a shoebox). These 
points can then be stretched to fit a given geometry and this 
is shown in Fig. 6.3. Note that when the mesh is stretched 
the connections between the points does not change. The 
stretching takes place as if the mesh were made of rubber, 
and the so-called topology, or form, of the mesh remains 
the same. Consequently, if we consider any point in the 
mesh it will be connected to the same neighbouring points 
both before and after the stretching process. Sometimes 
these meshes are called structured meshes as they have a 
well defined structure or mapped meshes as they can be 
seen as a cuboid mesh that has been mapped onto some 
other geometry. When considering these meshes it is useful 
to think of a local coordinate system within the mesh. This 
is enables the orientation of the cells relative to each other 
to be determined, and so before the mesh is transformed the 
axes of this system are the edges of the cuboid. Once the 
transformation into the actual coordinate system being 
used, the global coordinate system, is carried out the the 



C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992 

119 

local coordinate system axes become dependent on the 
position within the mesh. This is shown in Fig. 6.3.  

• an irregular structure or topology, where the points fill the 
space to be considered but are not connected with a regular 
topology. Figure 6.4 shows a two-dimensional example of 
this type of mesh formed with triangular elements. Note 
that the cell faces do not overlap. We can see from the 
magnified section of the mesh that element number 1 has 
the three nodes labelled a, c and d at its corners, and that 
element number 2 has the nodes labelled a, b and c at its 
corners. The fact that any particular node is attached to an 
element cannot be known from the form of the mesh, and 
so a numerical table must exist that describes the 
arrangement of the mesh by listing which nodes are 
attached to each element. This contrasts with the regularly 
structured mesh where a knowledge of the location of a cell 
within the mesh enables the labels of the points at its 
corners to be found implicitly. A mesh with an irregular 
structure is often referred to as an unstructured mesh or a 
free mesh.  
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Relating the mesh structure to the numerical method; finite 
difference programs require a mesh to have a regular structure and 
finite element programs can use a mesh with an irregular structure. 
In theory finite volume programs could use a mesh with an irregular 
structure, but many implementations insist that the mesh has a 
regular structure.  

As we mentioned in Chapter Three, when a mesh with a regular 
structure is used there is an advantage in that the solver program 
should run faster than if a mesh with an irregular structure is used. 
This is due to the implicit relationship that exists between the 
number of a cell or a point and the number of its neighbours in a 
regular mesh, which enables data to be found easily. No such 
relationship occurs for meshes that have an irregular structure and 
so when trying to find the values of flow variables in neighbouring 
volumes there must be a computational overhead. This often takes 
the form of a look-up table which relates the faces to the cells or the 
nodes to the elements.  

Many flows that are of interest to engineers take place in or around 
the complex geometries whose boundaries are man-made objects. 
With some ingenuity on the part of the analyst, it is possible to fit a 
mesh with a regular structure to some of these geometries, but with 
many geometries this is not possible. This is where meshes with an 
irregular structure can be used to great advantage, as these meshes 
can be used to describe the most complex of geometries due to 
there being no restriction on the structure of the mesh. This can 
make the mesh generation process much easier and in some cases it 
is a pre-requisite for producing a simulation. Another advantage of 
using irregularly structured meshes is that they can be created by 
automatic mesh generation algorithms, some of which are described 
in Section 6.4.5. These algorithms generate meshes which are 
unstructured using elements such as tetrahedra.  

With some CFD programs it is possible to have several meshes 
which have a regular structure combined together. Programs use 
these meshes in an attempt to gain the speed advantage that comes 
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from using a regular mesh whilst retaining the flexibility to model 
complex geometry. This combination of meshes is called a 
multiblock mesh as it can be seen as a series of blocks built 
together. There is, of course, a restriction on the way that these 
meshes are built to ensure that the cell faces do not overlap at block 
boundaries.  

As a final point on the structure of a mesh it is worth mentioning 
two terms that are often met when dealing with regular meshes. In 
Chapter Three we looked at some examples where each of the 
discretisation techniques was used. In these examples the domain 
geometry was simple and the partial differential equations were 
discretised directly in terms of the Cartesian coordinates. When 
meshes are built for more complex geometries, the partial 
differential equations are sometimes transformed into a general cell-
based coordinate system. This is especially true when dealing with 
finite difference methods and finite volume methods which require 
a regular mesh, as the local coordinate system can be used. This 
transformation of the equations enables a regular mesh to be used 
even though it is not rectangular. In some transformations of the 
equations the mesh of points is required to be orthogonal, which 
means that the sub-region faces must meet at right angles to each 
other. If these meshes are used fewer terms are required to produce 
the transformation of the partial differential equations and so less 
computational effort is required to compute the solution. If the 
mesh is non-orthogonal, then the extra terms have to be 
programmed and the solution requires more computational effort. 
Sometimes progams which should use an orthogonal mesh can be 
run with non-orthogonal meshes but the results that are produced 
are less accurate.  

6.4 Building Meshes  

6.4.1 Defining the Geometry  

In the specification stage of the process that we discussed in 
Chapter Five we saw that we need to determine the sources of 
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geometrical data and to produce sketches of the positions of the 
bounding surfaces of the flow domain. Now we must use the 
sources of geometrical information, be they sketches or engineering 
drawings or computer models, and ensure that we can find the 
location of the bounding surfaces in terms of the coordinates say x 
and y and, possibly, z.  

For two-dimensional problems we can create the bounding surfaces 
using points to define a series of lines and curves. These curves 
might be defined as circular arcs, simple polynomials or splines. All 
of these constructions are described by equations that define the 
relationship between the coordinates of points that make up the 
curve. For example, we all know that a line can be described by the 
relationship  

(6.1) 

where m is the gradient of the line and c is the value of y when x is 
zero. By substituting for the gradient in terms of two known points 
on the line, equation 6.1 becomes  

(6.2) 

where the suffices refer to the two known points. These equations 
describe a line which is infinite in length, but we will only use lines 
of finite length to describe the geometry of the flow domain. This 
means that we need to know the endpoints of the line.  

Similarly, a circle can be described by  
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(6.3) 

where the centre of the circle is at x=a, y=b and the radius is r. A 
part of this circle is a circular arc and three points can be used to 
define it. Usually these points are taken to be the two endpoints of 
the arc and a point on the arc somewhere between them. This 
enables both the limits of the arc to be defined and the unknown 
constants in equation 6.3, namely a, b and r, to be calculated.  

Splines are more complex curves, but they are also defined by 
points in space. Usually four or more points are used, but they do 
not have to be on the curve itself. Note that there is a hierarchy 
being formed here in terms of the numbers of points required to 
define a curve. Two points define a line, three points define an arc 
and four points or more define a spline.  

In three-dimensional problems the geometry might be defined by 
similar three-dimensional constructions in the form of a so-called 
wire-frame model. In these models the edges of each surface are 
defined and, sometimes, the form of the various surfaces is known 
as well. Often these surfaces have a simple form such as a plane or 
part of a sphere or cylinder, but they can also have a more complex 
form. Another type of computer model is known as a solid model, 
where the computer stores not only geometric information but 
things such as the mass of an object. When using a solid model the 
geometry of an object is defined in ways similar to those used by 
wire-frame models.  

Typical ways of describing the more complex surfaces are:  

• numerous simple patches. Here the surface is discretised 
into a series of patches which are usually triangular or 
quadrilateral in form. This is the way that a surface would 



Chapter 6. Building a mesh 

124 

be described by the faces of a mesh of linear elements or 
cells.  

• Coons patches. These are patches over which the 
coordinates of points on the surface are determined from 
the bounding curves alone. Consequently, once the 
boundaries of a surface are determined the surface itself is 
defined. Three or four curves in space which form a closed 
loop are often used in define the boundaries. Note that an 
infinite number of surfaces will be able to fit through a 
given set of boundaries but the Coons patch description 
defines only one surface. The assumption is made that the 
patches are sufficiently small so that a good approximation 
to the surface is given. This can lead to problems if a 
surface is highly curved and only a few Coons patches are 
used to model it. In this situation each patch will be too 
large and the surface definition will not have the required 
curvature.  

• Bezier surfaces. These are surfaces which are described by 
a set of Bezier polynomial curves. Each curve is defined by 
four points, the two end-points of the curve plus two 
interior points which need not be on the curve. By moving 
the two interior points the curve can be manipulated to have 
a wide range of shapes. Bezier surfaces give an improved 
description of a surface when compared to a Coons patch 
description as information from within the boundaries is 
used to define the surface. This helps to lock a surface in 
space and so the number of surfaces that could fit the 
description is reduced. These surfaces were developed for 
Renault, the French vehicle manufacturer, as they had a 
requirement for computational surfaces that could be 
manipulated interactively when modelling new vehicles in 
the styling studio.  

• non-uniform rational B-spline surfaces (NURBS). These 
are similar to Bezier surfaces, but the curves that are used 
to define them are based on different points to the Bezier 
curves. The end-points of the curves are only approximated, 
but the points that are used to define the polynomials ensure 
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that the spatial derivatives of the first- and second-order are 
continuous at the end-points.  

Such is the complexity of these curves and surfaces that a computer 
has to be used to manipulate the data. For our purposes of building 
a mesh for use in a CFD analysis, it is not necessary to understand 
the mathematics behind the descriptions, but the analyst should 
have some knowledge of the variety of types of surface that exist. 
For those who are interested, several books describe the ways in 
which these computer descriptions of objects are handled in 
computer-aided design (CAD) systems [19,20,21,22].  

When we know that the geometry data exists we can start to build 
the mesh as we know that we can find the coordinates of any point 
on the bounding surfaces of the domain.  

6.4.2 Determining The Mesh Structure  

Having made sure that the geometry description is complete the 
next step is to decide the type of mesh structure that will be used. 
Sometimes this might be dictated to us by the CFD software that is 
to be used, as some programs only allow a certain structure, or the 
structure might be decided by the geometry of the domain. As a 
mesh with a regular structure is simpler to create and should enable 
the CFD solver to be computationally more efficient, we might 
attempt to fit, mentally at least, such a mesh to the geometry. If this 
fails then we must use a mesh with an irregular structure. Although 
this will lead to some extra work, the effort can be reduced by 
trying to build a mesh that has a regular structure for much of the 
domain, only using an irregular structure where absolutely 
necessary.  

Having decided on the mesh structure, a mesh layout can be 
determined and an estimate made of the number of cells that will be 
required. To do this requires considerable user-experience, and both 
the layout and number of cells will depend on the flow that is 
assumed to take place within the domain.  
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Once these preliminaries are finished we can think about actually 
building the mesh. First we must decide upon the means of creating 
the mesh, and this will depend upon the software tools that are 
available to us. For simple geometries a short computer program 
could be written to produce a mesh, but often we will need to find a 
solution to flow problems in more complex geometries. Some CFD 
packages have a mesh generator built into the pre-processor 
program and this may well be suitable for some problems. Also, 
there are other commercial packages that can be used. Usually, 
these will be commercial finite element pre-processors, but other 
programs do exist as we shall see later. It is important to note that 
every organisation will have different tools available, and the 
analyst must find out what these are.  

6.4.3 Building a Simple Mesh With a Regular Structure  

Many problems can be solved by using a mesh that has a simple 
regular structure. This is made easier by the fact that many CFD 
packages, if they require a mesh to have a regular structure, allow 
some cells to be declared as what are known as dead cells. This is 
an extremely useful feature that enables a variety of blocks of 
regular cells to be used to model some complex geometries. For 
example, the car problem described in Chapter Five can be thought 
of as nine two-dimensional blocks arranged as shown in Fig. 6.5. 
The flow domain consists of blocks 1, 2, 3, 4, 6, 7, 8 and 9, and 
block 5 is obviously inside the vehicle surface. It is, therefore, the 
cells in block 5 that are declared as dead cells. It should be noted 
that even when dead cells are declared the appropriate number of 
cells must be created as it is the existence of these cells that keeps 
the book-keeping of the analysis program correct. This book-
keeping is essentially the management of the data storage in arrays, 
and leads to efficient solutions.  
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One common way of producing a regular mesh on each block is to 
use the hierarchy of entities as shown in Fig. 6.6. In this figure we 
consider the hierarchy for four-noded two-dimensional cells or 
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eight-noded three-dimensional cells. We can see that at the bottom 
of the hierarchy is the basic geometrical entity which is a point, 
several of which can be linked to form lines (from 2 points), arcs 
(from 3 points) or splines (from 4 points or more). By combining 
adjoining lines, arcs and splines the third level entity, the edge, can 
be created. If four edges form a closed loop they can be seen to be 
the boundaries of a surface and six surfaces can be used to bound a 
volume. This set of relationships is determined by the elements 
being considered as, once the surfaces for a two-dimensional 
problem or the volumes for a three-dimensional problem are 
defined, the cells can be formed. This is done by mapping the 
surfaces into a square, and by mapping the volumes into a cube. 
These squares and cubes are used to define a local coordinate 
system in which the cells can be created before being transformed 
back to the global coordinate system which defines the real domain. 
Whilst commercial software packages use such a hierarchy to 
produce a mapped mesh, often it is useful to think in terms of this 
hierarchy even if the mesh is to be produced by some other means 
such as a simple computer program.  

Returning to the car example, Fig. 6.5, each block can be seen to be 
a surface with four edges. The mapping of a mesh onto this surface 
is fairly straightforward and will be discussed in Chapter Ten. The 
mesh can be created with the cells unevenly spaced so that more 
cells are placed in critical regions of the flow. This is done by using 
a geometrical progression to bias the positions where the points are 
created. Such a progression creates points with the distance 
between neighbouring points being governed by a simple ratio. For 
example each cell may be 0.8 times the length of the previous one.  

Finally, before creating a mesh, the node and cell numbers have to 
be calculated within each block. This is done by allocating the 
number of cells in the local coordinate directions for each block, 
remembering that the number of cells in the two or three local 
coordinate directions must be consistent with a regular mesh. For 
the car example a sensible number of cells might be as shown in 
Fig. 6.7 where the cells within each block are shown for a region 
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close to the vehicle surface. This mesh has been created by placing 
several cells in the direction normal to the solid surfaces so that the 
boundary layer region can be predicted more accurately.  

 

Fig. 6.7 A mesh around a car. 

6.4.4 Using Commercial Mesh Generation Software  

Commercial mesh generation packages have been around for some 
time now and are aimed at the finite element structural analysis 
market. The meshes that they produce can also be used for CFD 
calculations, providing that they are built with the special 
requirements of the CFD solver program in mind. As structural 
finite element work involves many different element types and the 
use of many materials, these mesh generation packages are 
extremely general in their capability. This generality is a great 
strength but it can also make the packages slow to use for CFD 
applications, as the database of the package is often very large and 
so stored on the secondary storage media of a system, usually disks. 
This can make data access slow. Another inefficiency can arise 
when the programs ask for information that is not relevant for CFD 
applications. Often this involves the definition of material 
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properties for every block in the mesh. In structural calculations the 
properties may well vary form block to block as different materials 
are used, but in flow problems it is usual to have only one fluid.  

Commercial mesh generation packages usually have the following 
components:  

• a geometry creation routine, where two- or three-
dimensional geometrical data can be created in the form of 
points, lines, arcs, splines and, sometimes, surfaces. An 
interface to extract similar data from CAD systems is a 
common feature as well.  

• a domain definition routine. This allows the creation of 
surfaces, in two dimensions, or volumes, in three 
dimensions.  

• a mapped-mesh generation routine. This enables a mesh 
with a regular structure to be created within the domains. 
These domains must be topologically consistent with the 
element type being used. For example, if four-noded 
quadrilaterals are being used to mesh a two-dimensional 
domain, then a four-edged domain must be used.  

• a free-mesh generation routine. This enables a mesh 
without a regular structure to be created within the 
domains. In this case there is no restriction on the form of 
the domains, and so they can be either surfaces bounded by 
any number of edges (for two-dimensional problems) or 
volumes enclosed by a set of these surfaces (for three-
dimensional problems).  

When using commercial mesh generation software, hierarchies such 
as that shown in Fig. 6.6 are used. Usually, this does not cause a 
problem, but there is one area where errors in the modelling of a 
geometry can occur. Coons patches are an obvious choice for 
defining the geometry of a surface within the hierarchy, as the 
edges are used to define the surface. As we discussed in Section 
6.4.1 such a representation of a surface may not be adequate if the 
patch is too large for the curvature of the surface. One way of 
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overcoming this problem is to define smaller surfaces, but this 
involves much more work on the part of the analyst. Another way is 
to use more accurate surface descriptions, say Bezier surfaces or 
NURBS, derived from a CAD model of an object. Many 
commercial finite element pre-processors can read these more 
accurate surfaces from the database of a CAD system. Then, a set of 
edges can be used to define a Coons patch surface. Once this has 
been done, the user can tell the pre-processor to calculate the mesh 
points on this surface by first calculating the coordinates of the 
points on the Coons patch and then recalculating the coordinates so 
that they are positioned on the more accurate surface.  

As has already been stated, when using mesh generators aimed at 
producing meshes for finite element structural analysis problems 
extra information has to be provided during the mesh generation to 
define the structural properties of the elements as they are created. 
This not only slows down the mesh generation, but it also means 
that we have to be selective when extracting the data required by a 
CFD analysis. At this stage in the CFD analysis process all that is 
required is a simple definition of the mesh that can be read by the 
CFD pre-processor. This minimum set of information is restricted 
to two items:  

• a list of the positions in space of all the nodes in the mesh, 
usually this will be a list of x-, y- and z-coordinates.  

• a list of the element numbers, together with their type and 
the numbers of the nodes that are attached to them. This 
known as the connectivity list.  

Most mesh generation packages can write this data to a file which 
has then to be read by the CFD pre-processor. Some pre-processors 
will read the mesh information file from a small number of the most 
common commercial mesh generators. If the pre-processor does not 
do this, then the data has to be translated into a suitable format. This 
is done by a small computer program which must be written by, or 
for, the analyst. It is worth noting that each pre-processor reads the 
mesh data in a different format, and that this can depend on the 
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needs of the software. For example, programs that only use a 
regular mesh need only read the nodal coordinates, provided that 
they are given in a pre-defined order, as the connectivity list is 
implicit in the regular mesh structure. Conversely, programs that 
can use an unstructured mesh will read both the nodal data and the 
connectivity list in their own pre-defined format.  

6.4.5 Some Automatic Mesh Generation Algorithms  

For simple geometries it is easy to see how a mesh can be built, but 
when the geometry becomes more complicated the meshing process 
is more difficult. Several techniques have been developed that can 
take complex two- and three-dimensional geometries and then 
automatically produce a mesh that models the geometry. Typically, 
the mesh will have an irregular structure. As we said at the 
beginning of this chapter, mesh generation is a costly part of the 
CFD analysis process because of the large amount of manpower 
that can be required to build the mesh for a complex geometry. Any 
savings in the time taken to build a mesh could make CFD a more 
attractive solution for some engineering design problems, and so 
these automatic mesh generation techniques are being actively 
researched.  

The first method that we will discuss is Delaunay Triangulation 
[23,24,25]. Figure 6.8 shows this algorithm at work for a two-
dimensional case where triangular elements are to be created. The 
algorithm is easily extended to three dimensions where tetrahedral 
elements would be formed. In Fig 6.8a we can see that the basic 
technique is started by producing nodes on the boundary of the 
domain and nodes inside the boundary. In this case there are twelve 
nodes on a square boundary and one node inside the domain. To 
ensure that the final triangulated mesh has no gaps in it, three extra 
nodes are then created that define a super-triangle. From Fig. 6.8b 
we can see that these extra nodes have to be placed so that they 
define a super-triangle which encloses all of the original nodes of 
the problem. This super-triangle is taken to be the first element and 
then one of the original nodes is used to split this element into three 
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new elements (Fig. 6.8c). Now an iterative element creation 
procedure can begin. One by one each of the remaining nodes is 
considered and the mesh modified. To do this a circle is created for 
each element such that it passes through each of the three nodes of 
that element. Looking at Fig. 6.8d we can see the circles of the 
elements and we will consider node number 2. This node lies 
outside two of the circles and inside the other. The triangulation 
algorithm states that if a node lies inside a circle then the element 
that the circle is attached to should be deleted. Once all the 
necessary elements have been deleted, new elements can be created 
that include the node being considered. This is shown in Fig. 6.8e 
where the lower element of Fig. 6.8c has been deleted and three 
new elements have been created which are joined at node number 2. 
Then another node is considered and the process continues. 
Eventually, a final mesh is created such as that in Fig. 6.8f. This can 
then be modified so that only the original domain, in this case the 
square, is modelled. This is done by deleting all the elements which 
are attached to the nodes that formed the super-triangle. Finally, the 
shape of the remaining elements is checked and, where necessary, 
the elements are modified to be as near to equilateral triangles as 
possible. This produces a mesh which does not have elements with 
a very distorted shape as these elements could cause numerical 
problems when the solver is run.  
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The second method is based on the use of the Quadtree and Octree 
methods [26,27]. These methods take a domain and place it inside 
four squares, if it is a two-dimensional problem, or eight cubes, for 
a three-dimensional problem. These are then sub-divided until the 
required definition is acquired. Hence the name Quadtree refers to 
the structure of the elements in two dimensions and Octree refers to 
the three-dimensional method. Looking at Fig. 6.9a we can see an 
example of a two-dimensional domain that is to be meshed. Four 
squares are placed over the domain, as shown in Fig. 6.9b, and a 
node created where the squares are joined inside the domain. Each 
square can then be sub-divided into four more squares and more 
internal nodes created. Two further sub-divisions are shown in Figs. 
6.9c and 6.9d. Once the element size for the bulk of the mesh is 
small enough, only the elements that cover the domain boundary 
are sub-divided. This selective sub-division is shown in Fig. 6.9e, 
where the shaded circles denote the nodes that are external to the 
domain but are attached to elements that cover the domain 
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boundary, and the other circles denote internal nodes. This selective 
sub-division can be continued as required, but it leaves a mesh that 
is a stepped representation of the domain. To overcome this the 
external nodes are moved so that they are on the surface of the 
domain. Finally triangular elements can be created to link all the 
nodes.  

 

Specialised software is available to perform mesh generation using 
forms of Delaunay triangulation and Quadtree/Octree methods, but 
commercial finite element mesh generation software can also be 
used to generate a mesh with an irregular structure in an automatic 
way. This is often done by meshing the surface of the domain, 
using triangular elements. Then the volumes that have been defined 
by the surfaces can be meshed using tetrahedral elements formed 
from the elements on the surface. At first sight this might appear to 
restrict such free-mesh generation methods to only using tetrahedra. 
These can, however, be easily converted to eight-noded brick 
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elements as shown in Fig. 6.10. There a single tetrahedral element 
is taken and new nodes formed at each of the mid-sides of the 
element edges, at the centroids of each face of the element and at 
the centroid of the whole element. These can then be joined as 
shown to produce four eight-noded brick elements.  

 

All of these techniques are still in their infancy when it comes to 
their application to CFD problems. Much research has still to be 
done before meshes that are suitable for CFD problems can be built 
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quickly and with a minimum of user intervention. Some people 
would even claim that this situation will never be achieved.  

6.5 Modifying An Existing Mesh To Give A Better Solution  

Once a mesh has been built it is possible to modify it in such a way 
that the CFD solution that is produced on the modified mesh should 
be a better one. This modification can take place before a solution 
to the flow problem is found or afterwards. Some CFD pre-
processors can take a mesh with a regular structure and smooth it, 
such that the cells form an orthogonal mesh. This can reduce the 
computing effort required to produce a solution and increase the 
accuracy of the solution, as we saw in Section 6.3.2. These 
smoothing routines are based on the solution of a series of partial 
differential equations that describe the variation in the grid 
coordinates [28]. In this process the original mesh is used as the 
first guess in an iterative solution procedure.  

Other mesh modification techniques can be applied after a CFD 
solution has been produced on an initial mesh. These techniques are 
used to modify the mesh in the light of the results achieved on it 
and so the dependence of the quality of the results on the user's 
experience is reduced. These modification procedures require that 
an initial analysis is made using a crude but realistic mesh of points 
in the flow domain. From the results of this initial analysis the mesh 
is recreated such that the density of the mesh points is greatest in 
areas of the domain where the fluid variables change rapidly or 
where the error in the numerical equations is found to be large [15, 
see Chapter 14]. The mesh is said to be adapted to take account of 
the results generated. Two types of mesh modification are 
commonly used:  
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• mesh enrichment, where additional points are placed within 
the domain at the locations where they are needed as shown 
in Fig. 6.11. In this figure a mesh is required to model a 
boundary layer. The original mesh of triangles has a regular 
spacing but the enriched mesh has additional nodes and 
elements in it so that there are more elements near the solid 
surface. This techniques is usually applied to meshes that 
consist of triangular cells or elements in two dimensions 
and tetrahedral cells in three dimensions. Such meshes 
allow additional points to be created in the mesh and then 
the Delaunay Triangulation method, or similar methods, 
can be used to create a new set of elements.  

• mesh adaption, where the topology of the mesh stays the 
same but the mesh points are moved so that the density of 
points increases where required as shown in Fig. 6.12. 
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Here, a boundary layer is again modelled. Note that the 
number of nodes and elements remains the same in the 
adapted mesh. Only the node positions are changed. This 
movement of the points can be brought about by using 
modified forms of the partial differential equations that are 
used in some grid generation methods as was discussed at 
the beginning of this section.  

By using these smoothing or adaption techniques the accuracy of 
the solution can be increased, but there is a penalty in that extra 
computational effort is required.  



Chapter 7. Setting the fluid flow parameters 

140 

7 SETTING THE FLUID FLOW 
PARAMETERS  

We have seen in Chapter Six how to build a mesh. This is the first 
computational task of the pre-processing of a CFD analysis. Now 
that the mesh data can be read by the CFD pre-processor, the 
specification that was determined during the thinking phase of the 
analysis, Chapter Five, has to be translated into terms that the pre-
processor can understand.  

This specification of the flow problem tells the CFD software the 
exact problem that is to be solved, and it is achieved by performing 
the following tasks:  

• specifying the fluid properties such density and viscosity  
• determining which flow-related variables have to be 

calculated  
• specifying the boundaries of the geometry as sets of cell 

faces  
• applying appropriate boundary conditions to each set of 

faces  
• defining the initial conditions for the simulation.  

Note that the geometrical locations within the flow, such as an inlet 
or a wall, have to be defined as sets of cell faces or even cells. This 
is because the CFD solver knows nothing of the real geometry of 
the problem, it only has information on the mesh of the flow 
domain.  

This stage of the analysis process is carried out by giving 
commands to the pre-processor program of the CFD package. 
These pre-processor programs are usually interactive programs, 
where the commands can be entered using many of the input 
devices available to the user such as the keyboard and a mouse. 
This allows the specification of the flow to be built up in small 
stages. It is useful to enter the commands in groups that relate to 
one particular part of the specification. For example, these groups 
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might be commands specifying the boundaries of the domain or the 
numerical control parameters. Examples of the ways that this 
happens in practice are given in Chapter Ten where some 
simulations will be performed using commercial software. To assist 
the user, the status of the specification can be checked at any time 
by asking the pre-processor to show some part of the data.  

Sometimes when entering the data for a series of similar fluid flow 
problems, interactive input can become a boring and repetitive 
process and so most of the CFD pre-processors allow a user to 
create a datafile with a text editor. This datafile contains the 
necessary input for the pre-processor. Some programs will even 
write such a file from the data that has already been entered and this 
is extremely useful as the file of commands should be error-free. 
Using such files of commands can save a large amount of data 
preparation time.  

7.1 Specifying Fluid Properties  

Fluids possess a variety of properties, as we saw in Chapter Two, 
and the solver program must be given some way of calculating the 
values of these. When solving problems with CFD two of the most 
important properties are the density and laminar viscosity of the 
fluid.  

For simple problems, where the fluid is assumed to be laminar and 
incompressible with no heat transfer effects, the density and 
viscosity are taken to be constants. These constants are given to the 
software by simply entering the appropriate value. One possible 
mistake is to confuse the two ways of stating a fluid's viscosity. The 
standard viscosity mu, also known as the dynamic viscosity is the 
constant that links the shear of a fluid to the shear stress, and the 
kinematic viscosity nu is the ratio of viscosity to density, rho, i.e.  
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(7.1) 

For air, where the density is about 1 kg/m sup 3, any mistake is 
unlikely to be found from the results, but for liquids like water, 
where the density is 1000 kg/m sup 3, the result of a mistake could 
lead to large errors in the calculated solution. As a check, the units 
of viscosity are kg/ms and the units of kinematic viscosity are m 
sup 2/s. For the common fluids, tables of the density and viscosity 
values have been drawn up [29,30].  

If the flow is known to have significant variations of temperature, 
perhaps due to heat transfer, then the viscosity will vary as a 
function of the temperature. The pre-processor may well allow the 
user to specify the relationship or, at least, allow the user to switch 
on some standard variation of viscosity. A common variation that is 
used is a power law form [3]:  

(7.2) 

which can be seen to be a non-dimensional relationship. Here the 
subscript refers to a reference value of viscosity or temperature and 
omega is a constant which has the value of 0.76 for air. Also the 
Sutherland formula can be used [3]:  

(7.3) 

where S is a constant and has a value of {110 sup o} ~K for air.  
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The same is also true of density, where various gas laws can be 
used to find the density from the pressure and temperature of a gas 
[31]. For example, we could use  

(7.4) 

which is the isentropic relationship for processes which are 
reversible and adiabatic (where gamma is the ratio of the specific 
heats and k is a constant}, or  

(7.5) 

which is the ideal gas relationship, where T is the gas temperature 
and R is the gas constant.  

When the viscosity and density vary, the flow problem is more 
complex than that of a simple incompressible, viscous flow. Some 
discussion of how these problems are solved using CFD is given in 
Chapter Eleven.  

Finally other properties may have to be defined, but which 
properties these are will depend on the problem. Some examples of 
these additional properties are the thermal conductivity of a fluid 
which is needed if we are simulating heat transfer problems, or an 
effective turbulent viscosity which is needed for the simplest 
turbulence models.  

7.2 Determining the Variables That Need To Be Calculated  

Once the fluid properties have been defined we need to determine 
which variables are to be calculated. The variables that are needed 
depends on the way in which the governing equations have been 
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discretised and the algorithm set up to solve them. With the 
standard SIMPLE-like algorithms, the pressure has to be calculated 
together with some of the velocity components. In one dimension 
only a single component, say u, has to be found; whereas in two or 
three dimensions u and v or u, v and w have to be found 
respectively. When we discussed the governing equations in 
Chapter Two, we saw that these variables completely define a 
laminar, incompressible flow, and could define a turbulent 
incompressible flow, if only we had the computer power to solve all 
the equations with sufficient time resolution.  

As, usually, there is not sufficient computer power available to 
resolve the effects of turbulence, these effects have to be modelled. 
This means that a set of variables that are part of the turbulence 
model has to be calculated. Exactly which variables are required 
depends on the turbulence model that is to be used, and some of the 
models were reviewed briefly in Chapter Two. The simplest 
turbulence model is to specify a single value of the additional 
viscosity mu sub T due to turbulence. This quantity, can be 
regarded, in effect, as a property of the fluid and its specification 
has already been mentioned. Other common ways of calculating the 
additional viscosity due to turbulence are:  

• to find it from a mixing length which has to be specified for 
a boundary layer or wake. When using this turbulence 
model, no additional partial differential equations have to 
be solved but the pre-processor has to be used to give the 
solver some way of calculating the mixing length and an 
expression for converting this to the additional viscosity. 
This model is normally only used for very simple 
geometries as this makes it easy to specify the mixing 
length in terms of the geometry.  

• to find it from a set of auxiliary partial differential 
equations where one, two or even more equations are 
required. The industry-standard method is the two-equation 
model that uses turbulence kinetic energy k and the rate of 
dissipation of k, denoted by epsilon. Despite the fact that 
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this turbulence model can produce poor flow predictions in 
some circumstances, it still gives usable results for many 
flow situations. As we saw in Chapter Two there are other 
relationships that could be used, and these include algebraic 
stress models and Reynolds stress models.  

For problems that involve heat transfer the fluid temperature, or 
perhaps the fluid enthalpy, must be calculated. The equations to do 
this are similar to those for momentum transfer. For example, in 
equation 2.8 the variation of the scalar variable, the velocity 
component u, is described, and the other variables can be treated as 
just additional scalar variables. Chapter Eleven looks at how the 
effects of heat transfer are modelled and also reviews some other 
flow types such as compressible flow. In both of these cases the 
density can vary throughout the flow field and so the fluid density 
might be an additional variable that needs to be calculated. Equally, 
as the flow types become more complex so other variables will 
need to be calculated.  

7.3 Finding the Boundaries  

To calculate the required variables, the governing partial 
differential equations must be solved and so the boundary 
conditions for each equation must be specified. When the flow 
specification was produced the boundaries were defined in terms of 
the geometry of the flow domain, and now we must find these 
boundaries in terms of the mesh that is being used. This involves 
defining the boundaries as a collection of cell or element faces.  

7.3.1 Boundaries for Meshes With A Regular Structure  

If the mesh has a regular structure, a knowledge of the local 
coordinate system (see Section 6.3.2) can be used to define a set of 
indices i,j,k. These indices denote the position of a cell within the 
mesh structure and range from unity to the maximum number of 
cells in each of the local coordinate directions. The local coordinate 
system can also be used to define the faces of a cell within the 
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mesh. Looking at Fig. 7.1 we can see a mesh with a regular 
structure shown in terms of its local coordinate system. Each cell of 
the mesh has six faces and a typical cell is shown with its faces 
labelled with the points of a compass. Hence the faces are named 
North (N), South (S), West (W), East (E), Top (T) and Bottom (B). 
The first four names are fairly standard,being used by a wide range 
of CFD programs, but the last two are also known as High (H) and 
Low (L) in some programs. For example, the face of the cell that is 
at the most positive local x-direction position, in the direction of 
increasing the index i, is the East face and the one at the most 
negative local x-direction position is the West face.  

 

We can also see, by looking at Fig. 7.2, that any plane of cells will 
have a constant value of either i, j or k, and that the extent of the 
plane can be defined by knowing the limits the other two indices. 
The patch of cells shown in Fig. 7.2 has a constant value of the 
index i and the limits are defined by jmin, jmax, kmin and kmax. 
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Also the faces of the cells in the patch shown are in the positive 
local x-direction and so they are all East faces. By using this 
notation a set of patches can be defined on the boundaries of the 
mesh. These patches have to be defined for all the surfaces where 
the boundary conditions are not automatically specified by the 
solver program.  

It is worth remembering that when defining a patch of cell faces on 
a boundary, it is sensible to define patches that will have only one 
boundary condition type applied on the patch for each partial 
differential equation. This means that the whole patch might be an 
inlet or an outlet, but not both. By doing this it is simple to specify 
the boundary condition that applies on a patch by a single 
command.  

 

7.3.2 Boundaries for Meshes With An Irregular Structure  

When a mesh has an irregular structure the problem of defining the 
boundaries becomes much more difficult. Actually finding the cell 
faces that are the boundaries of the mesh is quite straightforward, as 
we shall see. It is the collecting of the various cell faces into groups 
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that are suitable for the addition of the same boundary condition 
that is difficult.  

Two pieces of information help us to find the cell faces that are on 
the boundary of the mesh. First, each face of a cell is uniquely 
defined by the nodes that are on the face and, second, the faces on 
the boundary of the mesh can only be associated with one cell, 
whilst those internal to the mesh must be associated with two or 
more cells. This is shown in Fig. 7.3, where it is clear that the 
internal face is common to the two cells and that the external faces 
are only related to one of the two cells.  

 

The process of finding the faces that are on the boundary of a mesh 
is called a free-face check. The algorithm used to do this is shown 
in Fig. 7.4, from which it can be seen that each cell is considered in 
turn. Then each face within a cell is found in terms of the numbers 
of the nodes attached to it. A unique label for each face on the cell 
is then found from these node numbers. Each of these face labels is 
then checked against a list of the face labels stored in a database. 
This database is created as the process is carried out and records the 
number of cells that a given face is attached to. If a face label does 
not exist in the database then an entry recording the new face label 
is made in the database and the count of occurrences of the face set 
to unity. If the face has been listed before the count is increased so 
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that it reflects the number of elements associated with the particular 
face. Once all the faces on a cell have been processed then a new 
cell is chosen, and after all the cells have been processed the 
database will be complete. By checking the database, a list can be 
made of all those faces that are attached to only one element. These 
must be the faces on the boundary of the mesh, and the list of faces 
is known as a free-face list.  

 

Once the free-faces have been identified, they can be grouped into 
the required sets of faces for the different types of boundary 
conditions. This is usually done by displaying the faces in the free-
face list on a graphics screen in a variety of ways. These include:  
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• a hidden-line display, where the user sees the faces just as 
they would be seen if they existed physically. That is, faces 
that are behind other faces, as seen be the viewer, are 
hidden from view.  

• a display of the faces within a given volume.  

Once the displays of the bounding faces of the mesh have been 
produced the pointing device of the terminal or workstation can be 
used to pick out the faces. This can be done either face by face, or 
whole sets of faces can be picked by placing a window on the 
screen and noting the faces that are within the window. This is 
illustrated in Fig. 7.5 where we can see a simple mesh with an 
irregular structure. The flow inlet consists of the nine faces labelled 
in the left hand view. These faces could be picked manually using 
the cursor on the display screen, but, by changing the view of the 
mesh to that shown on the right hand side of the figure, a 
rectangular window can be defined using two corner points as 
shown. Then all the faces that are wholly within the window, the 
nine required faces, can be labelled by the pre-processor as being 
boundary faces. This windowing method has great advantages when 
dealing with large numbers of boundary faces.  
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7.3.3 Grouping Faces Together  

Regardless of whether the mesh has a regular or an irregular 
structure, the boundary faces must be grouped together into sets of 
faces using the methods we have just described. Each set of faces 
can then be given an index that will allow the set to be related to a 
boundary condition. Sometimes, the boundary condition on a set of 
faces will be unique to that set, however, in some cases, the same 
boundary condition may well be applied to several sets of faces. In 
this latter case, each of the sets can be given the same index and 
then the index can be linked to the given boundary condition.  

Finally, it is useful to know that some CFD solvers will find all the 
cell faces on the boundary of the mesh. This list of faces can then 
be compared to the boundary faces that have been specified by the 
user. It is common for any unspecified boundary faces to be 
assumed to be solid walls. This can save a great deal of effort for 
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the user if the mesh is for a flow problem such as a complex 
internal flow. These meshes can have multiply connected passages, 
the boundary faces of which can be very difficult to view. By 
considering all unspecified faces to be solid walls, the user does not 
have to specify these faces and the saving in effort is large if this is 
done.  

7.4 Defining the Boundary Conditions  

Now that we know where the boundaries of the mesh are, in terms 
of the cell faces, and now that we have grouped them appropriately, 
we have to consider which boundary conditions should be applied. 
For each partial differential equation that has to be solved, the 
numerical method that is used determines which boundary 
conditions can be specified. In some cases one particular boundary 
condition must be specified, such as the specification of the velocity 
or pressure. In other cases, certain conditions at a boundary will 
happen naturally if nothing is specified there. Often, the software 
will predict a flow which has the derivatives of the velocity normal 
to a boundary calculated as zero if no other specification is made. 
Of course, if the analyst wishes, such conditions at the boundary 
can be changed by specifying the appropriate values.  

In most CFD problems several different types of boundary 
condition are usually applied. Boundary conditions were discussed 
in Section 3.5.4, but a summary of the possible types is given here 
for completeness. When using a SIMPLE-like algorithm the 
common boundary conditions that are applied come from:  

• the momentum equations, where the velocity components 
can be specified on a boundary. If this is not done then the 
derivatives of the velocity components in a direction 
normal to the boundary will be automatically set to zero. As 
this is the required condition at a plane of symmetry, and is 
often the required condition at an outlet, this automatic 
specification is extremely useful.  
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• the pressure correction equation. This requires that the mass 
flow through a boundary is specified or it will be given as 
zero; and it also requires that the pressure is specified at 
some point in the flow domain. This latter requirement 
comes from the nature of the pressure correction equation, 
which can only relate the derivatives of the pressure, not 
absolute values of pressure. Consequently, if the value of 
pressure is not specified at some point then the pressure 
solution is singular and cannot be found. A further 
complication in specifying the pressure is that at places 
where it is specified the continuity equation does not hold. 
This comes about because the continuity equation is not 
enforced at a point if the pressure is fixed at the point, as 
the specification of the pressure overwrites any information 
about the continuity equation at that point. If the continuity 
of the flow is not strictly enforced then fluid can leak into 
or out of a system through a point where the pressure is 
specified.  

Whilst these are the main boundary conditions that come from the 
partial differential equations, flow problems are often not described 
in such terms. For example, during the initial specification of the 
problem, discussed in Chapter Five, we might have decided that the 
boundaries should show the following characteristics:  

• a solid wall with a turbulent flow over it. To model this 
accurately requires many points through the boundary layer 
as the shear at a solid wall in a turbulent flow is much 
greater than that for a laminar flow. The computational 
effort required to do this can be reduced by assuming that 
the flow velocity varies in a logarithmic fashion through the 
boundary layer, as found in experiments. This was 
discussed in Chapter Three. Then empirical approximations 
to the values for the velocity at points just away from the 
wall can be used. Similarly, the boundary conditions for the 
additional turbulence parameters, such as the turbulent 
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kinetic energy and its rate of dissipation, can be set in an 
automatic way to some empirically-derived values.  

• a free surface. Here, the fluid pressure is fixed but the fluid 
velocity and the shape of the boundary are not known. 
These surfaces occur, typically, when we model the surface 
of a liquid in contact with air, for example when calculating 
the flow around a ship. Special CFD programs can handle 
these boundaries, but if the surface shape does not have 
need to have the effects of waves modelled then we can use 
a symmetry plane as an approximate model of these 
boundaries.  

• moving walls, such as a piston in an internal combustion 
engine, where a solid surface moves in the flow.  

• an inlet with a turbulent flow coming through it. Here the 
turbulence parameters are convected into the fluid flow 
domain and the levels of the variables that are brought in 
must be specified.  

Some examples of the application of boundary conditions will be 
given when we look at the case studies in Chapter Ten. There we 
will see that it is usual for the common boundary condition types to 
be pre-programmed options of the software.  

At all the boundaries, it is possible that a given boundary condition 
may apply for only a fixed amount of time. This could be the case if 
the problem is time dependent, for example when modelling the 
opening or closing of a valve. In these cases, for each patch of cells 
or each boundary index, the CFD pre-processor can be used to 
assign the appropriate boundary condition and the duration of its 
application.  

7.5 Defining the Initial Conditions  

Many solution algorithms require that some form of initial flow 
field is specified for the solver. This could be due to the flow 
actually being time dependent, where the initial state of the 
variables is required to start the calculation, or it could be due to the 
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CFD solution algorithm using a quasi-time-varying solution 
algorithm to calculate a steady state solution. Equally, the non-
linearity of the problem will demand some initial guess for the 
variables which will have to be supplied either as a series of default 
values or by the user. Chapter Three discusses these factors.  

In all cases any initial flow field must be specified for every cell in 
the flow domain. Usually, the specification of the initial conditions 
is fairly straightforward, as some simple flow field can be given 
such as the flow being at rest with zero pressure everywhere or 
some uniform fluid motion could be specified such as that 
calculated from a potential flow solution. Such a solution is an ideal 
flow solution which would occur if a fluid had no viscosity and 
could not be compressed. Sometimes the initial conditions are 
specified for groups of cells with a constant value of a variable 
being set within each group.  

If turbulence variables such as k and epsilon are being used then 
they are usually set to a small positive value or to some realistic 
value. This is done to prevent an error occurring during the 
calculation procedure where the program attempts to divide by zero 
when these variables are being used. Ways of calculating the size of 
the initial magnitude of these variables will be discussed in Chapter 
Ten when some simulations are performed.  

7.6 Using User-Generated Subroutines To Influence The 
Simulation  

Each pre-processor will allow the user to specify the properties, 
boundary and initial conditions for a wide variety of flow problems. 
This is usually sufficient for most CFD simulations that will be 
calculated. However, there will always be an exception to this and 
sometimes the user will want to define some information that is not 
standard. To allow this, some CFD software systems allow users to 
write their own computer programs which can influence the 
workings of the solver.  



Chapter 7. Setting the fluid flow parameters 

156 

One common way of doing this is for the user to write some 
FORTRAN subroutines that are linked into the solver program, or 
lines of FORTRAN code can be written into some general access 
subroutine that is provided by the CFD software supplier. This 
subroutine is then compiled and the object code linked with the 
main solver program libraries to provide a new, modified solver 
program.  

This might sound straightforward but in reality it is very difficult, 
as the user has to find out so much about the way the solver has 
been written. Users should be extremely familiar with CFD 
simulations before they embark on writing their own software and 
embedding it into the solver. This is a technique for the expert in 
the use of CFD.  
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8 OBTAINING A SOLUTION  

As we have now created a mesh to describe the geometry of the 
flow domain (see Chapter Six) and also specified the properties of 
the fluid and the boundary and initial conditions of the problem (see 
Chapter Seven), the actual flow problem is completely defined. 
This means that the CFD software should have all the information 
that it requires about the flow. We are nearly ready to run the solver 
program and obtain a solution.  

This chapter looks at the final preparation of the data and the 
running of the solver. In particular we will discuss:  

• how to set up the data for the solver. As the simulation is 
achieved by a numerical transformation of the governing 
equations, we must specify the information that is required 
to control the numerical solution algorithm. Further, 
administrative information such as the form of the output of 
the solver program must be specified.  

• running the solver and then analysing the output to identify 
any problems that have occurred. These can then be 
rectified before running the solver again to obtain a better 
solution.  

We mentioned in Section 4.1 that the whole analysis process cannot 
be carried out by just executing a list of tasks one after the other. 
Sometimes we must run the solver, check the results and then 
rebuild the computer model so that the simulation is improved. 
Often, the production of a good simulation will be a continuing 
process of trial and error.  

8.1 Final Data Preparation  

8.1.1 A Note On Iterative Processes  

When using a CFD package the details of the numerical solution 
process will usually be hidden from the user. However, some 
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features of the process are common to all packages and the controls 
that have to be used are often similar, even though the values of the 
control parameters may be algorithm- or problem-specific or both. 
In particular, as we saw in Chapter Three, the non-linearity of the 
equations forces the solution process to be iterative, regardless of 
whether the problem is time dependent or not. This means that an 
initial solution, normally a guessed solution, is required at the start 
of the solution process, and then the numerical equations are used 
to produce a more accurate approximation to the numerically 
correct solution, which is one in which all the variables satisfy the 
governing equations. This new approximation, the updated solution, 
is then used as the new starting solution and the process is repeated 
until the error in the solution is sufficiently small. Each repetition of 
the solution process is known as an iteration.  

Sometimes during an iterative process the updated solution at the 
end of one iteration can be very different from the solution at the 
start of the iteration. If we consider Fig. 8.1 we can see a graph of 
velocity against time. Let us imagine that we have a numerical 
scheme that predicts the velocity V sub {new} at some time 
DELTA t ahead of the current time by using values of the current 
acceleration a and the current velocity V sub {old} in the following 
way:  

(8.1) 

or  

(8.2) 
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which is a first-order method in time. If we know both the current 
acceleration and velocity then we can predict the new velocity, and 
so given the new acceleration and velocity we can march forward in 
time finding the velocity-time relationship. Looking at the figure 
we can see the actual velocity-time relationship and two 
approximations bases on the above equations. In both of these the 
initial acceleration is used to predict the velocity. It is clear from 
this that if the time interval is small, say DELTA t sub 1, then the 
error epsilon sub 1 between the predicted velocity and the actual 
velocity is small, but if the time interval DELTA t sub 2 is large 
then the error epsilon sub 2 is large. Similar errors can occur when 
carrying out a CFD simulation and if the error gets ever larger 
during the solution we will have a very inaccurate flow solution and 
convergence of the solution will not be achieved (see Section 
3.4.1). So that we can see whether or not this is occurring we need a 
measure of the error of the solution.  
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Fortunately, the numerical equations that we wish to solve can also 
be used to find such a measure of error. These measures of error can 
be used to see if a solution process is converging, and they are 
known as residual errors or residuals. At the end of each iteration, 
the latest solution can be used to generate all the terms in the 
various partial differential equations. For example, if all the terms 
in the momentum equation, equation 2.8, are placed on the left hand 
side of the equation and the individual components of the equation 
formed from the solution for the velocities and pressure, then these 
terms can be summed and the sum should be zero. As the solution 
is only an approximation to the required values of the variables, the 
sum will not be zero. It is this sum that is the residual error.  

As the solution process progresses from iteration to iteration, the 
residual errors from each equation should reduce. If they do reduce 
then the solution is said to be converging. If the residuals become 
ever larger then the process is said to be diverging. Most CFD 
solvers write the residuals to a datafile or even to the terminal 
screen at the end of each iteration. This enables a quick check on 
the progress of the solution to be made.  

If the solution scheme is time dependent or quasi-time dependent 
then the solution at the end of each time step needs to be converged 
before moving to the next time step. This can mean controlling 
several iteration procedures. As we saw in Section 3.5.1, one 
iterative procedure might solve the simultaneous equations 
generated by linearising the partial differential equations, the 
second iterative procedure finds a solution at one time step and 
accounts for the non-linearity of the problem and a final iteration 
procedure, if required, moves the solution through the different time 
levels. All of these iteration processes need to be controlled.  

8.1.2 Controlling The Iterative Processes  

To prevent the whole solution process from diverging, when the 
residual errors become larger from iteration to iteration instead of 
becoming smaller, we must control all the iterative processes in 
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some way. In Section 3.4.2 we discussed the use of iterative 
solution algorithms to provide solutions to a set of simultaneous 
equations. If these are used by the CFD solver program then the 
controls are often built-in to the program, but occasionally it may 
be necessary to provide values for the number of iterations that are 
to be performed in solving the simultaneous equations as well as 
values for the relaxation factors. In CFD calculations it is always 
important to ensure that the velocity field, used in the momentum 
equations, satisfies the continuity equation. This means that when 
using a SIMPLE-like algorithm more iterations are used to solve 
the pressure correction simultaneous equations than are used to 
solve those from the momentum equations.  

Turning to the control of the other iterative procedures, two 
methods are commonly used. For steady state problems the terms in 
the equations which contain the time variation are often left out, 
and so the solution generated by this type of algorithm has to be 
controlled by using relaxation parameters. These take the solution 
calculated during the current iteration and scale it so that the 
solution used in the next iteration is not too different from the 
solution at the start of the current iteration. This is done by using a 
relaxation factor omega and the scaling of a variable phi can be 
calculated from  

(8.3) 

Here, phi sub old is the value of a variable at the start of the current 
iteration and phi sub calc is the value of the same variable 
calculated at the end of the iteration. The relaxation process given 
in equation 8.3 uses these two values of phi to produce a value of 
phi , i.e. phi sub new , which is between phi sub new and phi sub 
old. The solution phi sub new then becomes phi sub old for the next 
iteration. This scaling uses values of omega which are between zero 
and unity and is known as under-relaxation. Note that if omega is 



Chapter 8. Obtaining a solution 

162 

unity there is no relaxation and that if omega is zero then the 
solution does not change at all. Intermediate values of omega 
provide scaling between these extremes and enable the user to 
prevent divergence of the solution process. Looking at Fig. 8.1 
again, a reduced value of velocity obtained by iteration and 
relaxation would be more accurate if the time step was too large. 
Note that the scaling is carried out for every value of a given 
variable, that is at each node or cell.  

In CFD simulations where relaxation factors are required to control 
the overall iteration process, the factors are usually applied to all 
the variables, with omega normally being set in the range 0.1 to 0.3 
for the pressure solution and in the range 0.5 to 0.9 for to the 
velocity solutions. If the k-epsilon turbulence model is used then 
the omega values for these two equations are set to be the same as 
those used for the velocity solutions or to lower values. If a mesh is 
complex and the cells are not near-cuboid in their shape then the 
relaxation factor applied to the turbulence variables might have to 
be much smaller, say up to ten times smaller, than the relaxation 
factor applied to the velocity variables.  

The second means of controlling the overall solution process is to 
use a time dependent solution scheme, even if the flow is known to 
be steady. Such a scheme mimics the physical changes that a flow 
would undergo if it were changing with time, as the modelling of 
the time variation smooths out the way in which the solution 
changes from one iteration to the next. With time dependent 
schemes the main controlling factor is the value of the time step. 
This is set to give as small a number of time steps as possible whilst 
maintaining a smoothly converging solution. For steady state 
problems, only the converged solution, after what is effectively an 
infinite period of time, is required and so the time step can be large, 
but for transient problems, when the time variation is of interest, the 
time step must be small enough to model accurately the temporal 
changes in the flow variables.  
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It is difficult to give specific rules for calculating a value of the time 
step that will always give a converging solution, as the stability 
criteria of the Navier-Stokes equations cannot be found analytically. 
A time step of the order of the residence time t sub res of a fluid 
particle in a cell is often used. This is the time it would take a fluid 
particle to move through a cell. For example, if a fluid particle 
moves in the x-direction, the residence time is given by:  

(8.4) 

where DELTA x is the length of the cell in the x-direction and U is 
the fluid velocity in the x-direction. These values are found for 
some typical cell in the flow field. This works well for the 
momentum equations which calculate the velocity components, but 
the time step may have to be reduced by a factor of, say, one 
hundred for the other transport equations such as those for the 
turbulent kinetic energy k and its rate of dissipation epsilon when 
the standard two-equation turbulence model is used.  

8.1.3 Other Solution Control Information  

Having decided how to control the iteration processes that take 
place, we can now use the pre-processor to build up the remaining 
information that is required by the solver. As well as the iteration 
control information that includes the relaxation and time step 
parameters, we must give the solver some or all of the following:  

• the number of time steps to run. This will be one step if the 
solver is to produce a steady state calculation.  

• the number of iterations to carry out within each time step 
whilst resolving the non-linearity of the problem.  

• the number of internal iterations required in solving the 
simultaneous equations (if iterative methods are used to do 
this).  
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• limits on the residual errors. Using these limits prevents 
computing effort being wasted in trying to compute the 
solution to some ridiculous numerical accuracy. Once the 
all the residuals fall below this limiting value the 
calculations are stopped.  

• the form of the discretisation of the convection operator in 
the momentum equations. Various methods were discussed 
in Section 3.5.3. For CFD calculations that involve 
complex geometry it is best to start the calculation with a 
discretisation which will be likely to produce a converging 
solution. This can often mean that the solution will be 
inaccurate due to the diffuse nature of the discretisation, as 
was explained in Section 3.5.3.  

• the data that the solver should store in files or write to the 
screen. This data should include all the values of the 
variables that are calculated so that they can be analysed 
with the post-processing program and also read again by 
the solver program if the calculation has to be continued. If 
the solution is time dependent several sets of solutions at 
various times might be required. Also we will want to 
check the residuals of all the variables and so these are 
written to a file. As a further check on the convergence of 
the solution, most programs allow the user to specify a 
location in the mesh, say one cell or node, at which the 
program will write the values of the variables at each 
iteration or time step.  

• the destination of the data that is to be produced. Some of 
this data will be written to datafiles, some will go to the 
screen. The location of the files, perhaps a directory on a 
disk of the computer, will need to be known by the 
software.  

Once these choices have been made, the specification process is 
completed by entering the values using the pre-processor. In some 
cases the CFD software as supplied will not write or even calculate 
some of the required data itself. In these cases the user has to write 
computer program subroutines that can be linked in to the solver. 
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These subroutines are used to produce the required data from the 
information stored by the solver, and some ways of doing this were 
mentioned in Section 7.6. It should be remembered that this is the 
realm of the CFD expert.  

When all the data has been prepared, the pre-processor can be 
instructed to write the datafile or files that will be accessed by the 
solver program and the solver can be run.  

8.2 Running the Solver and Troubleshooting  

The way in which the solver program is run will vary from package 
to package. It is common, however, for a small set of computer 
operating system commands to be written that will automate the 
process. This can be done by either the user or the supplier of the 
software. These commands make sure that the correct datafiles are 
accessed, possibly copying them to another machine if the solver 
and preand post-processors run on different machines. They also 
run the solver program and then they return the results files to the 
user-specified location if this is required.  

At the start of any analysis, the user should instruct the solver 
program to perform only a few iterations. This enables the user to 
perform convergence checks on the solution process by looking at 
the values of the residuals either on the screen or in a datafile and 
seeing if they are reducing or increasing. After running something 
like ten iterations the initial trends in the residuals should be clear. 
If they are reducing the solution process is clearly converging and 
this is the desired situation, whereas if they are increasing further 
thought is required before the convergence properties of the 
solution can be determined. Some typical graphs of the residual 
value for one of the flow equations plotted against iteration number 
are shown in Fig. 8.2.  

Often, there is a large increase in the residual value in the first two 
or three iterations, but this is nothing to worry about if the residuals 
fall after this, as shown in Fig. 8.2a. However, if the residuals are 



Chapter 8. Obtaining a solution 

166 

still increasing after ten iterations then the differences in the 
residuals from iteration to iteration need to be examined. If the 
difference is increasing from iteration to iteration, the process is 
diverging (Fig. 8.2b), but if the differences are reducing then the 
process is probably converging (Fig. 8.2c) and it is likely that the 
residuals will start to reduce in value if the solver is run for more 
iterations.  

 

When the process is seen to be converging then the pre-processor 
can be used to increase the number of iterations, to say 100, and the 
simulation continued. At this point the solver must also be told to 
use the last solution that was calculated as the new initial solution. 
Hopefully, this solution was stored in a datafile at the end of the 
first run of the solver program. As this prevents computer time from 
being wasted, do not use the initial values that were set before the 
solver was run. When the latest values of a solution are used as the 
initial solution, the calculation is known as a restart calculation.  

If divergence occurs, then the first remedy is to check the computer 
model for obvious errors. This can be done by reading any of the 
input data that has been written by the solver program and by 
meticulously checking the data stored by the pre-processor. The 
computer model should reflect the original specification that was 
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produced at the beginning of the analysis. If nothing obvious is 
found then the next step is to change the relaxation factors or the 
time step. When using relaxation factors, if the value of omega for 
pressure is already about 0.1, then the values for the velocity and 
the turbulence modelling quantities must be reduced. Usually the 
turbulence variables must be relaxed more than the velocity, and so 
the relaxation factor applied is smaller. This process of changing 
relaxation and time step values is very much a question of trial-and-
error and so it can involve running several initial sets of say 10 
iterations each with different relaxation values. If a converging 
solution cannot be achieved, then it is probable that there is some 
sort of error in the computer model.  

Common causes of divergence related to poor modelling, and some 
possible solutions, are:  

• a poor mesh which has cells that differ greatly from a 
cuboid shape. This is a typical problem if a finite volume 
scheme is being used which has some terms in the 
numerical formulation missing. These terms might 
describe, for example, the non-orthogonality of the mesh as 
detailed in Section 6.3.2. It is these missing terms that 
should enable the calculation to be accurate on a non-
orthogonal mesh. Smoothing the non-orthogonal mesh 
using a procedure that produces an orthogonal or near-
orthogonal mesh might help to overcome this.  

• inadequate prescription of the boundary conditions, such as 
not specifying the pressure anywhere. This has to be dealt 
with by carefully checking the data defined with the pre-
processor.  

• poor initial conditions, that are unrealistic and too far from 
the the conditions that exist if the solution is converged. 
One way of improving the initial conditions is to run a 
potential flow solution first. Such a solution assumes that 
the flow is both inviscid and incompressible. This, of 
course, will not take into account any effects of flow 
separation.  
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• applying insufficient upwinding for the convection terms as 
was discussed in Chapter Three. Smoothing the mesh might 
help, but the use of a more diffuse upwinding scheme 
usually cures the problem, at the expense of getting a less 
accurate solution than would have been hoped for.  

• the turbulence model. Running the solver with the simplest 
turbulence model, i.e. just specifying an effective turbulent 
viscosity everywhere should enable some results to be 
obtained. These can then be used to start a new calculation 
with a more sophisticated turbulence model.  

If modelling errors are found they must be corrected, either by 
changing the mesh or by using the pre-processor to modify the 
input data. Then the solver can be run again and the solution 
process checked all over again.  

Eventually, it should be possible to achieve a converged solution. 
This is a solution where the residuals are several orders of 
magnitude lower than the maximum value recorded during the 
solution process. Once a converged numerical solution has been 
found all that we can be sure of is that the numerical solution 
satisfies the numerical equations on the mesh we have used to some 
order of accuracy. What we require is that the converged solution 
will bear at least some relationship to the physical flow that would 
be obtained. Usually, this is the case, but we must check that the 
converged solution is reasonable in the light of the expected flow 
structures, as discussed in Section 5.1, and as illustrated in the 
examples of Chapter Ten. The difference between the physical flow 
and the numerical solution could be due to one of the following:  

• an inadequate mesh density being used in regions of high 
rates of change of the flow variables, for example in a 
boundary layer.  

• inadequate physical modelling of the flow, especially due 
to the use of turbulence models which are too simplistic. 
For some flows this is all turbulence models.  
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• poor specification of the boundary conditions which have 
overor under-constrained the flow, typically at an outlet to 
the system where the pressure has been fixed as a constant. 
This restricts the flow if it swirls out through the outlet as 
the calculated pressure needs to be able to vary across the 
outlet to provide the necessary centripetal force.  

Sometimes it is possible to see these errors during the post-
processing phase and we shall look at various examples of this in 
Chapter Ten when we produce some flow simulations. Finding 
these errors is really a matter of experience.  
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9 ANALYSING THE RESULTS  

In the previous chapter we looked at how to obtain a set of results 
using the solver program. These results should be a converged 
numerical solution to the governing equations, produced with the 
appropriate boundary and initial conditions on a mesh that describes 
the geometry of the problem. Remember that the solution is strictly 
a solution of the numerical problem not of the physical problem, 
and that the differences between these two could be due to such 
things as an inadequate mesh or a poor turbulence model.  

When the numerical solution is obtained it is necessary to 
determine whether or not it bears some relationship to the physical 
reality. If it is likely that it does, then the required technical 
information can be extracted from the results. This chapter looks at 
what the results of a simulation are, how computer graphics can be 
used to obtain pictures of the results, how the solution can be 
checked to see if it is likely to be reliable and finally how the model 
can be refined so that the required data can be obtained from the 
results.  

9.1 The Results Obtained From The Solver  

When the solver runs it produces a large amount of data that has to 
be analysed. This analysis might be undertaken so that some cause 
of divergence in the solution process can be identified, so that the 
quality of the solution can be examined or so that useful technical 
information can be extracted if it is a converged solution. First we 
must consider what information will actually be available to us 
when we want to analyse the results.  

Information can be produced by the solver in two main forms. 
These forms differ in how the data is stored by the computer. In one 
form the data is stored using an internationally agreed format that 
defines individual characters of data such as the letters of the 
alphabet or the numbers 0 to 9. This form of data is known as 
ASCII data, after the committee that divised the data standard, and 
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can be written to a terminal screen or stored in a file known as an 
ASCII file. Each character has to be defined by one byte, i.e. eight 
bits, of computer memory and so 256 different characters can be 
specified. ASCII files of data can be edited by text processors and 
other software, and they are effectively machine-independent which 
means that the data can be transferred from one computer to another 
computer, even if the machines are from different manufacturers, 
without any translation process taking place. Whilst most computer 
manufacturers use the ASCII standard, there are other standards 
such as EBCDIC which are used by a minority of manufacturers.  

Numerical data can also be stored in the second data storage format, 
which is known as binary data format. There is a standard for this 
method of data storage, but usually, in 1991 at least, the method of 
storage is peculiar to each computer operating system or computer 
manufacturer. Each of these binary storage methods enables real 
numbers, for example, to be stored by four bytes in single precision 
or eight bytes in double precision. Binary data is stored in files 
known as binary files. These files are not machine-independent and 
so can not be transferred from computer to computer without some 
form of translation process taking place. Sometimes when a 
workstation, for example, is connected to a mini-supercomputer a 
translation program will be provided by the workstation vendor to 
facilitate the transfer process. By using binary files to store real 
numbers, there is a saving in the amount of storage required, as can 
be seen from the number of bytes required to store each number.  

The type of information produced by the solver program can 
usually be controlled by the user but it often consists of:  

• values of the residual error for the various partial 
differential equations that have been solved. These are 
listed as a function of the iteration number or time step. As 
was explained in Chapter Eight these values give some idea 
as to whether the solution is progressing to a converged 
solution. This is usually stored as ASCII data so that it can 
easily be read later.  
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• values of some of the variables at a limited number of 
locations, known as monitor locations, for every iteration or 
time step. This data also gives an indication of the progress 
of the solution towards a converged solution. For time-
varying solutions it also gives a limited history of the 
development of the flow with time. Again this is usually 
ASCII data.  

• a complete list of the flow variables at all the nodes of the 
domain or all the cells of the domain as appropriate for the 
way in which the solver works. These lists, also known as 
dumps of the data, are produced at the end of the solution 
process, but the solver can also be instructed to produce 
such a list at intermediate stages in the process. This might 
be necessary if the results at several discrete times are 
needed to describe a time-varying flow. This is normally 
binary data to reduce the storage space that is required, but 
ASCII forms can also be requested to make reading of the 
data easier, if the amount of data is small, or to allow a 
transfer between computers.  

• mesh data. This is sometimes produced by the pre-
processor but might be produced by the solver program. It 
includes the coordinates of the points in the mesh and, if 
necessary, the connectivity list. Depending on the CFD 
package, such things as cell volumes and face areas might 
also be stored. This data is usually held in binary form to 
reduce the required storage, but again ASCII data could be 
used for the same reasons as those given for the flow 
variable data.  

• some form of ASCII file that reports on the progress of the 
solution. This file might include an echo of the input data 
from the pre-processor so that the input actually used by the 
solver can be checked, a repeat of the residual values and 
monitor data at each iteration or time step, any user-
programmed results, such as the pressure drop between two 
points or the integrated values of pressure to give a measure 
of the pressure-derived drag and lift on a object, as well as 
accounting information such as the length of time that the 
solver took to run and the amount of disk resources used.  
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In Chapter Eight we discussed how the residual errors can be 
analysed and a converged solution produced. Now, in this chapter, 
we are concerned with how the flow data at all the nodes or cells in 
the mesh can be analysed. Large quantities of this data are produced 
by a CFD solver, especially if the mesh is complex and has a large 
number of nodes or cells, as might be the case for an industrial flow 
problem. Only when small test cases are run is it possible to read 
the ASCII files that contain the solution and so for realistic 
problems we have to resort to the use of computer graphics 
techniques to analyse the results visually.  

9.2 Using Computer Graphics For CFD  

9.2.1 Using Graphics Hardware  

Before considering what can be done with computer graphics let us 
think about the hardware that is required to drive the software that 
will generate the pictures as well as to display the pictures 
themselves. A typical hardware installation will consist of the 
following devices:  

• a screen or visual display unit (VDU) that is able to 
produce a grid of points in a variety of colours. These 
points are known as pixels as we said in Section 4.2.2. The 
resolution of the screen is determined by the number of 
pixels that can be displayed and most graphics screens can 
display a grid of something like 1000 pixels in the 
horizontal direction by 1000 pixels in the vertical direction. 
If the display is monochrome then each pixel can only be 
shown as either black or white, whereas if the display is a 
colour device then each pixel can be displayed in one of 
several colours. Typically sixteen colours or even two 
hundred and fifty six colours are used. The screen could be 
part of a terminal which is attached to a computer or it 
could be part of a workstation.  
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• a keyboard which allows the user to interact with the 
software by typing commands and replying to questions 
from the software.  

• a pointing device which should enable a cursor to be moved 
around the screen. This pointing device could be a mouse 
which is a small device that senses movement either 
mechanically or optically, or it could be a simple set of four 
direction keys.  

• a button box. This is used in the more expensive 
installations to manipulate the picture. The box has several 
knobs on it that can be used to rotate an existing picture 
about any of the three coordinate axes, or to zoom in and 
out or pan across the picture.  

When the user runs the graphics software, the program should 
activate the screen, keyboard, pointing device and button box in 
such a way that the user can develop an intuitive feel for the 
manipulation of the results.  

9.2.2 Using Graphics Software  

The graphics software itself is usually supplied as part of the CFD 
software package and is known as a post-processor. Sometimes, 
however, this software is combined together with the pre-processor 
to form a single interactive program that is used for both creating 
the computer model and post-processing. Also, post-processors 
from other sources such as finite element structural programs might 
be available and these can also be used.  

These programs enable a user to see the geometry of the flow 
problem, the mesh and the results of the simulation by producing 
pictures of the available data, usually in colour. Displaying the data 
in a visual way condenses the vast amount of information that a 
CFD solver can generate into a usable format. As computer power 
becomes cheaper, graphics software is often run on interactive 
colour workstations which have sufficient display resolution for the 
task and also have enough of their own computer power to produce 



C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992 

175 

detailed pictures in a reasonable time without having an impact on 
other users on the network.  

By entering commands the analyst can use the CFD post-processing 
software. These commands direct the software to build up the 
required picture of the data on the graphics screen. Several 
commands may be needed to create a picture and, in many cases, 
the analyst will want to generate similar pictures from one analysis 
to the next. To prevent the user from re-entering a lengthy set of 
commands it is often possible for the software to read the 
commands from an ASCII file. This file can be created by the user 
with a text editor or it could be written by the software itself in 
some cases.  

When generating the pictures, the stages that are followed are 
similar regardless of the type of data being displayed. The display 
process involves, first of all, displaying some part of the geometry 
or mesh on the screen. This could be a collection of the basic 
entities that make geometrical hierarchy, Fig. 6.6, or the boundaries 
of the mesh or even some part of the mesh itself. Then, the picture 
is manipulated so that the required view is displayed before the 
solution itself is shown. This final display might be some of the 
velocity data, shown as a set of vectors, or the contours of scalar 
variables such as the fluid pressure or the turbulence modelling 
variables. These three stages; show the geometry, modify the view 
and display the results; can be performed in any order but it is usual 
to display the actual results last of all. As this post-processing part 
of the analysis process is highly interactive, the user can often move 
between these three stages in a seemingly random fashion. 
However, for most simple cases, it will be most useful if the order 
given above is followed. The following sections deal with each of 
these three stages in turn.  

9.2.3 Plotting the Geometry  

When the post-processing software is started it has to read the files 
of results and mesh data. Then the user has to find the required 
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view. One way of doing this is to plot some part of the geometry, 
normally a part of the mesh used in the solution process, onto the 
graphics screen. This can be done by asking the program to display 
the basic entities used to create the mesh, if it has access to this data 
or the boundaries of the mesh or the mesh itself. Exactly which of 
these is used will depend on the capabilities of the CFD software 
itself and the user's preference. A simple plot of the boundaries of 
the mesh is usually good enough at this stage.  

Once some part of the geometry has been displayed, the user can 
begin to manipulate the view of the geometry so that the particular 
section of geometry that is required to be the centre of interest is 
displayed on the screen. For example, in the next chapter we will 
produce the simulation for the flow about a car. One area of interest 
is the rearscreen and boot of the car where the flow separates from 
the vehicle surface. To plot the results of the simulation in this area, 
we display the outline of the car and then change the view so that 
only the required area in visible. Techniques for carrying out this 
manipulation of the view will be discussed in the next section.  

Another use of the plotting of the geometry or mesh is to check that 
the geometry looks like the physical situation and also to check the 
integrity of the mesh. By integrity we mean that the mesh should 
both represent the required flow domain and be structured in the 
correct way. The display of the mesh will show a user the basic 
cells or elements that have been used in the calculation procedure, 
and so any significant errors in the mesh or bad modelling practice 
can be found.  

The way in which the mesh is displayed depends on the mesh 
structure that is being used. If the mesh has a regular structure then 
the local coordinate system and the point or cell indices can be used 
to specify areas of the mesh just as was done in Section 7.3.1. 
Sheets of cell faces can be defined in this way and then displayed. 
On the other hand, if an unstructured finite element or finite volume 
mesh is being used then the cells can be grouped in some way and 
the group projected onto some cutting plane in space. Another way 
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of displaying the mesh is to draw only the free faces of the mesh. In 
the next chapter we will show how some of these methods can be 
used.  

9.2.4 Obtaining the Required View  

Once the geometry has been plotted, the view of the geometry may 
well have to be manipulated. There are an infinite number of ways 
of looking at any image and so there must be some means of 
defining the exact view that is required. The picture on the screen is 
drawn as if a single eye is looking at the object being drawn. This 
situation leads the graphics software to require the user to define a 
few fundamental pieces of data. This data can include such things 
as:  

• the target point, which is the point in space at which the eye 
is looking.  

• the eye position, which is the point in space at which the 
viewing eye is placed.  

• the up-direction, which defines where the top of the picture 
should be.  

• the viewing area, which enables the apparent size of the 
objects in a view to be specified.  

Looking at Fig. 9.1, the target point is taken to be at the origin of a 
set of Cartesian axes. This target is shown being viewed by a single 
eye which can be placed in two different positions. Default values 
are always given by the CFD software for the initial specification of 
both the target point and the eye position. These could be 
something like the origin and a point on the x-axis, such as eye 
position 1, respectively. When plotting data that relates to 
engineering work, the eye will normally be at an infinite distance 
from the target and so the effects of perspective are not seen. This 
means that even though the eye position can be defined as a point in 
space the software will actually place the eye at infinity on the same 
directional vector that joins the eye position and the target position. 
So, it can be seen that it is the combination of the eye position and 
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the target point that defines the vector along which the eye looks. 
For some work, however, such as architectural drawing or aesthetic 
design, perspective effects can be produced by the software and 
then the eye position will be the actual point in space at which the 
eye is placed.  

 

Defining these two positions in space in still not sufficient to 
specify the view of an object. Humans have a sophisticated balance 
system and this gives us information as to which is the vertical 
direction and so where up and down are. Computers are not as 
sophisticated and so they have to be told where the vertical 
direction is. This direction is also known as the up-direction. In Fig. 
9.1, the up-direction is in the positive z-direction. A simple example 
of how the up-direction is used can be seen by considering the 
example of the flow about a car again. We know that a car roof 
should be the furthest from the ground and so the up-direction will 
be from the ground to the roof. The vector definition of this 
direction, within our computer model, will depend upon the 
orientation of the mesh and so upon the way the mesh was built. 
For example, it might be in the positive or negative global z-
direction, or the positive or negative global y-direction, or the 
positive or negative global x-direction, or any one of a host of other 
directions. Consequently, we must tell the post-processor which 
direction the up-direction is, if the pictures that it produces are to 
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have the car in a realistic orientation. One command usually enables 
this direction to be specified and some examples of the effect of the 
command are given in Fig. 9.2.  

If the up-direction cannot be specified to the post-processor, as is 
sometimes the case, then the picture has to be orientated by a series 
of rotations about the three coordinate axes. This is usually 
achieved by specifying the angles for each global coordinate axis, 
x, y and z, through which the axes are to be rotated. It is difficult to 
produce the correct view this way using a single command. Several 
attempts may be needed to get the picture right.  

Once the eye position, target point and the picture orientation are 
known, the display software can take the three-dimensional data for 
the geometry or mesh and draw it on the screen, in what is of course 
a two-dimensional representation. This can be done in one of two 
ways. The original way that this was done was to transform the 
three-dimensional data into two-dimensional data using the post-
processing software. This two-dimensional data can then be plotted. 
Many systems still use this technique, but a more recent way of 
handling the data is for the post-processing software to send the 
three-dimensional data to the display hardware, together with the 
current eye-position, target point and the vertical orientation. The 
transformation of the data from this set of three-dimensional vectors 
into a two-dimensional picture is then carried out within the 
hardware itself by a combination of both hardware and software, 
known as firmware. This local transformation is extremely fast as 
the firmware is dedicated to the task. Once the three-dimensional 
data is stored by the firmware it can be manipulated into further 
pictures very easily and quickly, and this is where the button-box, 
mentioned in Section 9.2.1, can be used very effectively to modify 
the target point, eye-position or orientation, signaling the firmware 
to produce the new pictures so fast that the objects can be moved in 
real time.  
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Quite often, we wish to focus our attention on one particular area of 
the model, for example to see the detailed flow around a corner of 
an object. This can be done by changing the target position and the 
viewing area. The mechanics of doing this with the post-processor 
can vary, but there is nearly always a zoom command or a centre 
command. Figure 9.3 shows an example of the zoom command 
being used. This allows a rectangular window to be placed over the 
current view by defining the two ends of one of the diagonals of the 
window with the cursor. The software then modifies the target 
position and the view area to display the picture within the limits of 
the window. This is done whilst ensuring that the aspect ratio of the 
geometry is preserved. The centre command works in a similar 
way, but the user has to define the required centre of the new view, 
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together with the magnification required, as shown in Fig. 9.4. By 
using these commands in the correct combination, the view of a 
mesh or the results can be infinitely varied.  

When working with very complex meshes, and the associated 
results, the shear volume of information displayed can by too great. 
The information content can be restricted by using the following 
techniques:  

 

• volume clipping, which enables the user to give limits in 
the global coordinates x, y and z within which objects are 
displayed, but outside of which they are ignored.  

• suppression of hidden lines, which calculates whether 
something that would be drawn is hidden from view by any 
other object, such as, for example, a cell face. If the object 
is hidden from view it is not drawn. The displays that are 
generated using this method are often called hidden-line 
displays.  

9.2.5 Displaying the Results  

Now we have looked at how the geometry or mesh of the model can 
be displayed and we know how to orientate the view to give the 
desired picture. Once this has been done we can add some of the 
results to the picture. The results that can be viewed graphically 
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have to be derived from the flow velocity data or from the scalar 
data for quantities such as the fluid pressure and the turbulence 
variables. This data is known at a series of points in space which 
might, for example, be the nodes of a mesh or the centroids of the 
cells.  

With a mesh that has a regular structure the results data can be 
drawn for a sheet of cells or nodes, in the same way as the mesh can 
be drawn. It is worth remembering that this sheet may not be planar 
in global coordinate space, as even a mesh with a regular structure 
can be curved in space so that it fits around an object. When the 
mesh has an irregular structure the display of results is not so 
straightforward. As there is no simple way of referring to a group of 
cells, many post-processors allow the user to define a geometrical 
plane through the mesh onto which the results are interpolated. This 
plane is known as a cutting plane. Other ways of grouping cells can 
also be used, such as showing a hidden-line plot of the results 
which displays only those results on the boundaries of the mesh, or 
displaying the results for a restricted group of cells defined by 
creating a list of cell numbers.  

No matter which way is used to display the data, there are 
essentially two types of results display:  

• vector plots, which show the vectors relating to the velocity 
results.  

• contour plots, which show contours of the scalar variables 
over the domain.  

Dealing with vector plots first, the vectors are displayed within the 
picture as arrows in two dimensions. These plots are what we see 
when the so-called wind arrows are shown on weather forecasts. 
Plotting velocity information in this way can lead to confusing 
displays being produced as information is lost. The arrows that are 
drawn are the projections of a three-dimensional vector into two-
dimensions. Take, for example, a vector pointing directly out of the 
page, this would be displayed as a point. So that some of the lost 
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information can be retrieved, the arrows are often colour coded to 
denote the absolute magnitude of the vector which is the local flow 
speed. Usually, red denotes a high speed and blue a slow speed with 
intermediate shades denoting the speeds in between. This does not 
work terribly well on monochrome terminals!  

One other problem that has to be dealt with concerns the length of a 
typical vector arrow. Depending on the problem, the user will want 
the length of the arrows to give as informative a display as possible. 
This means that the user must scale the arrows appropriately, either 
by letting the computer draw some arrows and then scaling them, or 
by giving the computer a typical velocity which might represent, 
say, ten per cent of the screen width.  

For meshes which have very dense cell distributions the arrows 
may be so close together that too much is displayed and the useful 
information is obliterated. This can be overcome by the software 
interpolating the velocity data on to a coarse, regular grid of points. 
The user specifies the distance between the points in the grid, and 
the arrows are drawn at the points. One problem with this type of 
display is that the true nature of the computed velocity field can be 
hidden from the user. Sometimes it is better to display the data at 
the positions that it was calculated, and we shall see why this is 
when we look at some real data in Chapter Ten.  

Turning to contour plots these are pictures of the lines of equal 
scalar value of some variable plotted through the domain. They are 
similar to the isobars we see on maps for weather forecasts. Little 
interaction is required to produce these plots, except perhaps to 
specify the number of contours that are to be drawn. Typically, 
about ten contours will be calculated, and again these will be colour 
coded in the picture to show the value of the variable on the 
contour. A coding scheme which is similar to that used for the 
magnitude of a vector is used in this case as well. Sometimes, the 
contour levels can be chosen by the user to give the required values. 
This is done where several separate pictures of contours have to be 



Chapter 9. Analysing the results 

184 

produced to create the required display, and it provides a consistent 
display.  

A variation of the contour plot is to use a surface plot. This is 
generated by displaying a three-dimensional surface, the height of 
which above a plane is a measure of some variable. This variable 
should be a function of the two dimensions that describe the plane. 
Effectively, the display shows a series of mountains and valleys.  

9.2.6 Special Displays  

All of the above is applicable to the production of two-dimensional 
images of the data at a given point in time. Sometimes such 
representations may not convey enough information to a user. One 
such situation is when the data describes a time-varying situation 
such as the flow of air into a combustion chamber of a four-stroke 
internal combustion engine. To provide a better feel for the results 
animation can be a useful display technique. If several sets of 
results for say a scalar variable such as pressure can be stored by 
the solver, specialist software can read the data together with the 
variation in time of the physical geometry and produce a series of 
pictures at various times on the correct geometry for the time 
concerned. These pictures can be seen as the frames of a moving 
picture and the display software can be used show these pictures in 
sequence to produce an animated display. This involves 
considerable computer resources to ensure that the speed of display 
is sufficient for the purpose.  

To overcome the two-dimensionality of images, three-dimensional 
displays are being made available. These show the user a stereo 
image by interlacing two two-dimensional images the eye positions 
of which have been displaced slightly to represent the human eye 
spacing. The interleaving can be carried out using a switchable 
polarised filter and special glasses. In some systems the glasses act 
as the filter and in others the glasses are passive and the filter is 
attached to the display device.  
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One final feature of the display of results that is coming available is 
the production of particle tracks. These show where the fluid 
particles travel within the flow domain. They are produced by 
integrating the velocity data at a point to show where the particle 
will move to. Such displays are extremely useful in showing the 
qualitative features of a flow such as vortices.  

9.3 Checking A Solution  

When analysing the results of a simulation, certain pieces of 
information will be required. For example, we might need to know 
a prediction of the pressure difference between two points in the 
flow domain for some physical system. Then slight geometrical 
modifications might be made to the mesh and another CFD solution 
produced to find the comparable pressure difference for the 
modified geometry. Another requirement might be the investigation 
of the flow field structure at a series of places in the calculation 
domain. Whilst the user can run the solver, obtain converged 
numerical results and then find the required data, this is not a very 
satisfactory procedure. It is much better to add an intermediate step. 
This step is the determination of whether or not the solution 
produced by the CFD process is a reasonable one, i.e. it is of high 
quality and is likely to resemble the physical flow. Then, if the 
simulation is reasonable, the user can find the specific data that is 
required and have some confidence in the findings.  

Some of the following features of a set of results can be used as 
checks on the quality of the results:  

• the flow should look qualitatively correct. For example, it 
should flow in the directions that might be expected.  

• where boundary layers exist the results should show a 
velocity change that resembles that in a boundary layer. 
Near a stationary wall the velocity vectors should show that 
the velocity changes with the distance away from the wall. 
The velocity should be seen fall from some value at a point 
well away from the wall, the free stream value, to zero at 
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the wall. This should take place over several cells, perhaps 
five or more. If there are less cells than this inside the 
computed boundary layer, then the mesh is too coarse and 
should be refined near the wall.  

• the mass of fluid entering the domain should equal the mass 
leaving the domain. This is often calculated by the program 
itself and reported in an ASCII file to the user.  

• at points where the pressure is specified, the velocity field 
should be smooth. At these points the coontinuity equation 
is not satisfied and so fluid can leave or enter the domain in 
a non-physical way. If this can be seen to be happening it is 
clear that the fluid mass is not being conserved in overall 
terms.  

If these simple checks show that there might be problems with the 
quality of the results then users should consider checking their input 
data and changing their models, if necessary, before re-running the 
solver program.  

9.4 Refining A Computer Model  

If it looks likely that a model must be refined, a user must consider 
the advantages of producing a better prediction against the cost 
constraint of repeating the whole simulation process. Quite often 
even crude models can give large amounts of new and useful 
information to a user. This might prove adequate for the purposes 
of some users but not for others. It all depends on the application 
under consideration.  

The process of refining a model might include any of the following:  

• increasing the density of mesh points in a given area so that 
the changes of the flow variables in that area can be more 
accurately captured, for example, in a boundary layer.  

• improving the physics of the model, such as would happen 
if a more suitable turbulence model could be used.  
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In terms of effort, the first of these involves a large amount of work, 
as it would involve rebuilding the mesh of the domain, either by 
repeating one of the mesh generation processes that are described in 
Chapter Six, or by using an adaptive meshing process. Once the 
mesh is built the fluid specification within the pre-processor and the 
setting of the boundary and initial conditions has to be carried out 
again, transforming the data generated as part of the original 
specification process onto the new mesh. Then, finally, the 
numerical control procedures have to be repeated before the solver 
can be run.  

A systematic way of increasing the mesh density for a mesh with a 
regular structure is to double the number of cells in each of the local 
mesh directions. Similar refinement schemes can also be carried out 
with unstructured meshes by, for example, placing a new node at 
the centroid of each cell and then remeshing. With the new mesh a 
solution is calculated, and the results obtained. When the results do 
not vary in global terms from one mesh refinement to the next then 
the results are said to be mesh independent. Whilst we would 
always like our results to be independent of the mesh size, for many 
industrial problems this is not always possible as the constraints in 
terms of cost or time or computer capacity are too great.  
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10 SOME CASE STUDIES  

10.1 The Examples  

In Chapters Five to Nine we have discussed the various stages of 
the CFD analysis process. Each of these chapters acts as a basic 
guide for an individual stage in the process. The time has now come 
to demonstrate how the whole process is used to produce a CFD 
simulation. To do this we will look at three examples that show the 
CFD analysis process being used. By going through these examples 
in considerable detail, it is hoped that the analysis process can be 
brought to life and some of the realities of carrying out the analysis 
process can be conveyed to the reader. The three examples that we 
will look at are:  

• a simple laminar flow. To illustrate the basic procedures, 
we will look at predicting the two-dimensional laminar 
flow between two plates. Simple examples such as this are 
often used to test a new CFD program and to give the user 
some confidence that the program produces accurate results 
compared to known analytical solutions. Also, they can be 
used in the training of CFD users as they require very little 
computational effort to produce results.  

• the flow of air over a vehicle. In this example, we simplify 
the three-dimensional problem of calculating the flow over 
a car by considering the flow to be in a two-dimensional 
plane corresponding to the vertical plane of symmetry. The 
flow is turbulent, however, and so we have to think about 
how to model the effects of the turbulence on the flow. To 
discretise the flow domain we use a mesh which has a 
regular topology, i.e. we use a structured mesh, but the 
mesh is distorted to fit around the surface of the vehicle. 
Having looked at the two-dimensional problem, some of 
the results from three-dimensional simulations will be 
discussed together with their implications for the use of 
CFD.  
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• the flow of water around a combustion chamber. This 
example considers a three-dimensional flow in a complex 
geometry, such as that found inside a water-cooled piston 
engine. Again the problem is simplified in that the flow 
around a single combustion chamber is modelled. In this 
problem the turbulent flow through an inlet, a cooling 
chamber and an outlet is modelled as a fully three-
dimensional flow using a mesh that is essentially 
unstructured.  

These cases are described so that the reader can see exactly how the 
CFD solutions were produced by using commercial software and by 
following the analysis process that has been described in the 
preceding chapters. By studying these examples you should become 
more familiar with the tasks that need to be performed during the 
analysis; that is the tasks of flow specification, mesh building, 
setting the fluid flow parameters, controlling the numerical 
solution, running the solver and analysing the results.  

10.2 The Software Packages  

All the cases have been run using commercial CFD software, 
although the meshes for the two turbulent flows have been built 
using simple, locally-generated computer programs. For each case, 
the operating system commands that have been used to run the 
programs have not been given as these are often specific to a 
particular type of hardware; but the commands that have been used 
to set up the simulations within the software packages have been 
given. This has been done to give the reader a feel for the types of 
command that need to be issued, not to give a tutorial in the use of 
the software. In fact, the syntax of some of the commands will 
probably change before this book is published, and so the reader 
should be very wary of using the commands listed here. The 
reference guide or user manual of the particular CFD software 
package should always be consulted when creating the computer 
model for a simulation.  
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Two CFD software packages have been used to generate the flow 
simulations discussed here. The packages used are:  

• PHOENICS. This has been available since 1981 and is 
written by CHAM Ltd. of Wimbledon. It is a CFD software 
package which uses the finite volume method to solve the 
governing equations on a staggered grid which has a 
regular topology. As it was one of the first packages to be 
available, it can be used to simulate a very wide variety of 
physical problems.  

• STAR-CD. This is written by Computational Dynamics 
Ltd. of London and is a CFD software package which uses 
the finite volume method to solve the governing equations 
on a non-staggered grid which can have an irregular 
topology. This capability to deal with an unstructured mesh 
is achieved by using the Rhie and Chow algorithm which 
was mentioned in Chapter Three.  

These CFD packages have been used with the permission of the 
authors and it is not the intention of this book to draw comparisons 
between the two packages. Each of these packages has unique 
features and they are both used here solely to give a feel for how 
different packages can be used to produce flow simulations. In fact, 
if a user follows the simulation process that has been discussed, the 
CFD package might be thought of as being reduced to the role of a 
translator, translating the flow specification into a form that is 
understood by the solver program and then translating the 
numerical results into a form understood by the user.  

It must be recognised that the needs of users vary as people have to 
solve many different types of flow problem. This means that each 
user, or commercial organisation, must decide what it is that they 
require the use of a CFD software package to give them. In every 
case the requirements that are decided upon will be different, but 
the process of making decisions can be standardised. This problem 
is addressed in Chapter Twelve, where the issues that determine the 
specification of a CFD package are discussed.  
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10.3 Laminar Flow Between Parallel Plates  

10.3.1 Producing The Flow Specification  

Figure 10.1 shows the flow situation for this simple example. We 
can see that two thin parallel plates, of length L m and distance h m 
apart, are placed horizontally in a flow which, well upstream of the 
plates, has a constant velocity in the horizontal direction. If the flow 
velocity is sufficiently small or the kinematic viscosity sufficiently 
large, the Reynolds number will be low. If this is the case, then the 
flow should be laminar.  

Given that this test case is being run as a simple training exercise, 
the first task in the production of a simulation is to consider what 
will happen to the fluid as it passes between the plates. First let us 
assume that the plates are so thin that the flow ahead of the plates is 
not affected by them. This means that we need only be interested in 
the flow between the plates and the flow above the top plate and 
below the bottom plate need not be considered. From this, the flow 
domain can be taken to be a simple rectangle. At the left hand side 
the flow has a uniform velocity in the horizontal direction moving 
from left to right and so this boundary is an inlet. The plates are 
stationary solid walls and so the velocity there must be zero. Hence, 
there is a retardation of the flow at the plates due to viscous shear 
which is generated by friction and two boundary layers are formed 
on the plates as shown in Fig. 10.1. These boundary layers become 
thicker along the plates from left to right until they merge. At the 
end of the plates, the fluid leaves the domain and so the right hand 
side of the rectangle may be taken to be an outlet.  
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This consideration of what happens enables us to see that the the 
flow is symmetric about the horizontal plane half-way between the 
two plates, and so the flow domain can be halved for the purposes 
of our calculations. Figure 10.2 shows the rectangular domain and 
gives the four boundary types that will be used. These are a 
stationary solid wall on the lower side where the velocity is zero, a 
symmetry plane on the upper side where the vertical velocity 
component is zero and the normal derivative of the horizontal 
velocity component is also zero, an inlet with a uniform horizontal 
velocity imposed at the left hand end, and an outlet where the 
pressure will be taken to be uniform at the right hand end.  
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We must also decide upon the values of the density and viscosity 
parameters. For simplicity, these will be taken to be unity in each 
case (i.e. rho = 1 kg/{m sup 3} and mu = 1 kg/ms). Hence the 
Reynolds number Re is given by  

(10.1) 

Finally, as the flow is a simple shear flow and none of the boundary 
conditions change with time, it is reasonable to assume that the 
flow itself will not vary with time and so will be steady. This 
completes the flow specification.  

10.3.2 Some Analysis  

We have already said that this flow situation can be used as a test 
case to check the accuracy of a CFD code. This comes about 
because, some distance after the two boundary layers merge, the 
flow becomes one-dimensional. When this occurs the flow is said to 
be a fully developed flow, which means that the horizontal 
component of velocity does not change in the x-direction and that 
the vertical component of velocity is zero. If this flow is simulated 
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using a mesh which is very long in the x-direction, then the CFD 
solver should produce results that are one-dimensional and the 
results should be of the form that will now be derived.  

When the flow is fully developed the Navier-Stokes equations can 
be simplified. If the flow is steady and has the velocity 
characteristics given above then the x-momentum equation 
(equation 2.8) can be rewritten as  

(10.2) 

and the y-momentum equation (equation 2.9) can be rewritten as  

(10.3) 

Equation 10.3 shows that the pressure is a function of x only, and so 
when equation 10.2 is integrated with respect to y the pressure 
derivative can be taken to be a constant. This gives  

(10.4) 

where A is a constant or a function of x only. Further integration 
with respect to y gives  

(10.5) 
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where B is also a constant or a function of x. The values of A and B 
can be determined by applying the boundary conditions for the 
velocity at the two plates. We know that the horizontal velocity 
component u is zero at the plates, i.e. u = 0 at y = 0 and y = h, 
where h is the distance between the plates, and so equation 10.5 
becomes  

(10.6) 

which describes a parabolic velocity profile.  

Finally, we can calculate the mass flow in and out of the system. 
For an inlet velocity of 1 m/s and a density of 1 kg/{m sup 3}, the 
mass flow per unit area is simply h and this must be the mass flow 
at the outlet too. Integrating the velocity expression in equation 
10.6 to obtain the mass flow at the outlet:  

(10.7) 

which can be rearranged to give an expression for the pressure 
gradient  

(10.8) 

Equation 10.8 enables the pressure gradient for a fully developed 
flow to be found for a given mass flow rate, and this can then be 
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used in equation 10.6 to give the fully developed velocity profile 
for the same flow. These quantities can then be compared with the 
values calculated by the CFD program.  

10.3.3 Building a Mesh  

Having produced a specification of the flow problem, we can now 
use a CFD program to produce a numerical simulation of the 
problem. The next step in this analysis process is to decide upon a 
suitable mesh and this part of the process is explained in Chapter 
Six. The domain and its boundaries are shown in Fig. 10.2 and the 
mesh must fit within the domain in such way that the variations in 
the flow variables can be calculated as accurately as possible.  

For the flow situation that we are considering, we know that there is 
a boundary layer on each of the plates due to the shearing of the 
fluid caused by friction. We also know that at some distance 
downstream of the inlet, perhaps a factor of ten times the distance 
between the plates, the flow becomes fully developed and is 
effectively one-dimensional. Whilst this takes quite a distance to 
occur, the velocity changes most rapidly near the inlet. In the 
vertical direction, between the plates, the velocity profile is 
parabolic at the outlet and so it varies throughout the vertical 
distance.  

For the problem that we are going to simulate we will take the 
distance between the plates h to be 1.0 m and the length of the 
plates to be 20.0 m. Hence, the computational domain is 0.5 m high 
and 20.0 m long. For our first mesh we will place ten cells between 
the lower plate and the symmetry plane, and ten cells down the 
length of the plates. To ensure that the rapid changes in velocity at 
the inlet can be captured, we will bias the mesh so that more cells 
are placed near the inlet. Between the plate and the symmetry plane 
we will use equal cell spacing, as we do not know where the 
velocity will vary the most in the vertical direction.  
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Having considered the layout of the mesh, we must work out how 
to create the mesh data in a form suitable for the CFD program. The 
way that this is done will be specific to the CFD software being 
used. For this example we will use the package PHOENICS, and 
so, before we look at the creation of the mesh data, we must first 
consider the software tools that make up PHOENICS.  

PHOENICS is a finite volume program that is comprised of three 
main components or programs. The first of these, named the 
SATELLITE program, is a pre-processor; the second, named 
EARTH, is the solver program, and the third, PHOTON, is a 
graphical post-processor. Initially, the SATELLITE program has to 
be given sufficient information for it to produce the data that 
EARTH needs. One means of doing this is to prepare an input file 
for SATELLITE, which splits the input data into 24 groups. It is in 
this file that the mesh data is defined. SATELLITE can also be run 
interactively, allowing the user to create data or modify existing 
data in any of the 24 groups. When SATELLITE is run, files are 
produced for EARTH to read and, from this input data, EARTH 
produces the CFD solution in the form of further files, which are 
usually binary files, and these can be accessed using PHOTON. 
EARTH also produces some ASCII files which can be read by the 
user.  

The input file for SATELLITE is known as the Q1 file, and several 
lines can be used to define a simple mesh. First we must decide 
upon the exact location of the mesh points. For this problem we will 
change the labels of the coordinate directions from x and y to z and 
y respectively, that is, we will take the direction between the plates 
to be the y-direction and the direction along the plates to be the z-
direction. This choice of coordinate directions is determined by the 
internal structure of the programs that make up PHOENICS. These 
programs calculate the flow variables in sheets of points in the local 
z-direction, taking one sheet of points at a time. Here, the local z-
direction and the global z-direction are the same (see Chapter Six). 
By carrying out the calculations in this way the number of points 
being considered at any one time is reduced from 100 to 10 for this 
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problem. Whilst such a reduction is not significant for this mesh, as 
the memory storage requirements for this problem are small, it can 
mean the difference, when the mesh is much larger, between having 
sufficient computer memory to produce a solution and not having 
enough memory.  

Returning to the generation of the mesh for this example, we have 
already stated that we will use equal cell spacing between the plates 
and so the mesh points will be at the following values of y; 0,0, 
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5. In the z-
direction, the choice of points is more difficult, and so we will try 
values which halve the available distance working from the outlet 
i.e. we will use z values of 0.0, 0.03906, 0.07813, 0.15625, 0.3125, 
0.625, 1.25, 2.5, 5.0, 10.0 and 20.0. Once we have decided upon the 
mesh coordinates, we must build the mesh using appropriate 
commands in the Q1 file.  

Below, we have listed an extract from the Q1 file. Note that where a 
line is indented by several spaces SATELLITE takes the line to be a 
comment not a command. The commands the specify the mesh are:  

TALK=t;RUN( 1, 1);VDU=TTY  

GROUP 1. Run title and other preliminaries 
TEXT(SIMPLE DEVELOPING FLOW IN BETWEEN 
PLATES)  

A Cartesian coordinate system is used to encapsulate a rectangular 
duct  
GROUP 2. Transience; time-step specification  
GROUP 3. X-direction grid specification 
NX=1  

GROUP 4. Y-direction grid specification 
NY=10 
YFRAC(1)=0.05 
YFRAC(2)=0.1 
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YFRAC(3)=0.15 
YFRAC(4)=0.2 
YFRAC(5)=0.25 
YFRAC(6)=0.3 
YFRAC(7)=0.35 
YFRAC(8)=0.4 
YFRAC(9)=0.45 
YFRAC(10)=0.5  

GROUP 5. Z-direction grid specification 
NZ=10 
ZFRAC(1)=0.03906 
ZFRAC(2)=0.07813 
ZFRAC(3)=0.15625 
ZFRAC(4)=0.3125 
ZFRAC(5)=0.625 
ZFRAC(6)=1.25 
ZFRAC(7)=2.5 
ZFRAC(8)=5.0 
ZFRAC(9)=10.0 
ZFRAC(10)=20.0  

GROUP 6. Body-fitted coordinates or grid distortion  

Looking at the beginning of this extract from the Q1 file, there is a 
single line which tells the SATELLITE to read the Q1 file and then 
allow the user to interactively modify the data. Then the data is 
given group by group as follows:  

• Group 1 - Preliminaries. A title for the simulation is given. 
This is printed on any ASCII files that are written by 
EARTH and on any pictures generated by PHOTON.  

• Group 2 - Time Dependence. Here, the transient nature of 
the problem can be specified, but PHOENICS assumes that 
problems are steady state unless told otherwise, and so 
there are no entries in this case.  
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• Groups 3 to 5 - Mesh Specification. In these groups our 
simple mesh can be defined. For this problem, the x-
direction is across the flow and so is not really needed for 
the simulation. However, PHOENICS is a program that 
must have a three-dimensional mesh and so there has be a 
single cell in the x-direction. This is defined in Group 3 and 
the cell will have the default width of one metre. The mesh 
in the y-direction is specified in Group 4 by setting the 
number of cells (NY) to ten and by giving the coordinates 
of the mesh points. Similarly, in Group 5, the mesh in the z-
direction is defined. This is all the information that is 
required to define the mesh.  

• Group 6 - Body-Fitted Coordinates. As the mesh is very 
simple and not body-fitted, no entries are required here.  

10.3.4 Setting the Fluid Flow Parameters  

Having defined the mesh, we can proceed with the next stage of the 
process and define the fluid flow problem. It is this part of the 
analysis process that tells the CFD software what the fluid 
properties are together with the boundary conditions and the initial 
conditions. This section of the process is explained in Chapter 
Seven and involves translating the flow specification into terms 
understood by the CFD solver. Again, an extract from the Q1 file 
follows:  

GROUP 7. Variables stored, solved & named  
SOLVE(P1,V1,W1)  

GROUP 9. Properties of the medium (or media)  
ENUL=1.0 
RHO1=1.0  

GROUP 10. Inter-phase-transfer processes and properties  
GROUP 11. Initialization of variable or porosity fields  
FIINIT(W1)=1.0  
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GROUP 12. Convection and diffusion adjustments  
GROUP 13. Boundary conditions and special sources  
Wall 
PATCH(DUCTWALL,SWALL,1,1,1,1,1,NZ,1,1)  
COVAL(DUCTWALL,W1,1.0,0.0)  
Inlet 
PATCH(INLET,LOW,1,1,1,NY,1,1,1,1)  
COVAL(INLET,P1,FIXFLU,1.0);COVAL(INLET,W1,ONLY
MS,1.0) 
Outlet 
PATCH(OUTLET,HIGH,1,1,1,NY,1,NZ,1,1);COVAL(OUTLE
T,P1,FIXVAL,0.0)  

GROUP 14. Downstream pressure for PARAB=.TRUE.  

It is these entries that determine the flow problem, and the 
commands that are entered group by group are:  

• Group 7 - Solution Variables. We need to determine the 
variables that must be calculated. As this is a two-
dimensional laminar flow problem, the equations to be 
solved are the momentum equations in the y- and z-
directions, together with the continuity equation. The 
variables that we need to find to complete the solution are, 
therefore, the velocity components v and w, and the fluid 
pressure p. PHOENICS can solve problems that involve 
flows comprising of several fluid components or phases, as 
discussed in Chapter Eleven, and so the entry here tells the 
software which variables to calculate by listing their names 
V1, W1 and P1. These variable names specify that the 
variables are those of the first fluid phase, which in this 
case is the only phase.  

• Group 9 - Properties. We have already decided that the 
fluid viscosity and density should both be unity and these 
values are set here.  

• Group 10 - Multi-Phase Flows. As this is a single phase 
flow, no extra specification is needed here.  
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• Group 11 - Initialisation. In this group the initial conditions 
can be defined. The specification of these conditions might 
seem to be contradictory as the flow is steady and so, in a 
mathematical sense, the numerical solution should not 
require initial conditions. Despite this, we specify a set of 
initial conditions for the variables and these are then used 
as a first guess by the non-linear solution procedure. For 
this example we have defined the velocity component w to 
be unity within the domain when the time is zero and we let 
the other variables take their default value of zero.  

• Group 12 - Unused. No entries.  
• Group 13 - Boundary Conditions. Finally, in specifying the 

fluid flow problem, we must specify the boundary 
conditions of the problem. This involves specifying where 
in the mesh the boundaries are and then applying the 
correct boundary conditions at the relevant boundaries. For 
this problem, the boundaries are shown in Fig. 10.2, where 
we can see an inlet, an outlet, a solid stationary wall and a 
symmetry plane. To identify the location of the boundaries, 
PHOENICS uses the notation described in Section 7.3.1 
and shown in Fig. 7.1. Hence, the inlet is a LOW boundary, 
the wall is a SOUTH boundary, the symmetry plane is a 
NORTH boundary and the outlet is a HIGH boundary. The 
PATCH commands define the inlet, outlet and wall areas, 
giving the limits of a patch in the local coordinate 
directions x, y, z and the time t respectively. Note that the 
symmetry plane is not defined as this is the default 
boundary type in PHOENICS. So-called COVAL 
statements can then be used to apply the appropriate 
boundary conditions on the given boundary patches. On the 
wall the velocity component w is set to zero, at the inlet the 
mass flow and inlet velocity are specified and at the outlet 
the pressure is set to zero.  
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10.3.5 Running The Solution  

At this stage, all of the fluid mechanics parameters of this example 
have been defined, and so we can now set the parameters that 
control the numerical solution. The remainder of the Q1 file is 
listed below, and it can be seen that some of the groups are empty 
as no input is required and the default values will be used. The 
groups that do have entries are concerned with the control of the 
solver itself.  

GROUP 8. Terms (in differential equations) & devices  
DIFCUT=0.5  

GROUP 15. Termination of sweeps 
LSWEEP=100 
RESREF(P1)=1.E-6;RESREF(V1)=1.E-6 
RESREF(W1)=1.E-6  

GROUP 16. Termination of iterations  
GROUP 17. Under-relaxation devices 
GROUP 18. Limits on variables or increments to them  
GROUP 19. Data communicated by satellite to GROUND  
GROUP 20. Preliminary print-out 
ECHO=F  

GROUP 21. Print-out of variables 
GROUP 22. Spot-value print-out 
IXMON=1 
IYMON=2 
IZMON=2  

GROUP 23. Field print-out and plot control  
IPROF=3 
ITABL=3;NPLT=1  

GROUP 24. Dumps For restarts 
STOP  
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The control commands for this problem are found in the following 
Groups:  

• Group 8 - Terms in the Differential Equations. Here, only 
one parameter, DIFCUT, is specified. This determines the 
way in which the convection terms in the momentum 
equations are handled. For this simple laminar flow 
problem which is calculated on a rectangular mesh, the 
discretisation of the convection terms should create very 
few problems. If the value of DIFCUT is set to 0.5, this 
tells EARTH to use a hybrid upwinding scheme, where the 
local cell Peclet number is calculated and if it is two or less 
central differences are used, and if it is greater than two 
upwinded differences are applied. Further details are 
discussed in Section 3.5.3.  

• Group 15 - Termination of Sweeps. In this group of data, 
the number of overall iterations, or sweeps as they are 
known to PHOENICS, is set to 100. Normally, far fewer 
iterations would be run to start the calculation and check its 
initial convergence performance, but for this problem the 
calculation is very robust and converges easily. The 
reference residual values or RESREF parameters are set 
such that the calculation will stop automatically if the value 
of the residual errors from the equations falls below the 
values specified.  

• Groups 20, 22 and 23 - Print Out. In these groups, the data 
that is written to an ASCII file is controlled. The ECHO 
command suppresses the printing of the data read by 
EARTH and the rest of these commands ensure that the 
residuals are printed to the file at each iteration together 
with the values of the velocity components and pressure at 
one cell in the mesh. This cell has been chosen to be near 
the inlet so that the variation in the variable values can be 
monitored as the iterations progress. It is known as a 
monitor location. As well as numerical values, simple 
graphs of the spot values and residuals are printed.  
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To run this model the following stages are carried out. First, the 
SATELLITE program reads the Q1 file and then allows the user to 
check the settings of the data in each of the groups interactively. 
Once the user is satisfied that everything is in order, the 
SATELLITE program writes the datafiles that EARTH requires. 
Then EARTH is run and produces a set of output files. Some of 
these can be read into PHOTON for graphical analysis or the ASCII 
files can be read by the user using a browse facility or text editor.  

10.3.6 Analysing the Results  

In Section 10.3.2, we derived some analytical results for the flow 
under consideration. These are valid near the outlet of the flow 
where the velocity field is fully developed and one-dimensional. 
Consequently, near the outlet, we can determine the exact values of 
the pressure gradient and the velocity profile that should be 
calculated by the CFD solver program. From equation 10.8, if we 
substitute for the viscosity and domain height, the pressure gradient 
can be found to be:  

(10.9) 

and the velocity profile can be found from equation 10.6 as:  

(10.10) 

By comparing the output from PHOENICS with the expressions 
above, we can obtain some measure of accuracy for our numerical 
solution.  

For this test case the mesh contains only one hundred cells and so it 
is a manageable task to read the output files from PHOENICS in 
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full. In Appendix A, an edited version of the output written by 
EARTH is listed. This output consists of the mesh point data, the 
final values of the variables calculated within each cell, the 
variation of the values of the variables at the monitor location with 
sweep number and the variation of the residuals with sweep 
number.  

From the data listed in Appendix A it can be seen that, after the first 
one hundred sweeps, the following information is available:  

• from the pressure field data and the locations of the mesh 
points, the pressure gradient near the outlet is -9.564. This 
has been calculated manually, knowing that the pressure is 
stored at a cell centroid.  

• from the velocity field data, the W1 velocity component is 
varying all the way down the mesh in the z-direction and so 
the flow is not fully developed at the outlet.  

• at the monitor location, the value of the pressure P1 is 
rising steadily, the velocity component V1 has risen to a 
peak and is now falling and the velocity component W1 has 
fallen to a minimum and is now rising.  

• the residual errors are all falling, but those for V1 and W1 
rose initially before falling.  

The data calculated for the flow field suggests that the numerical 
solution is not that which is expected and the data from the monitor 
location shows that the solution is not converged. However, as the 
residuals are falling, the solution is progressing satisfactorily and 
further sweeps need to be run to see whether a solution will be 
produced which is numerically converged and also closer to our 
expectations. To do this, a restart calculation has to be performed. 
This is done by running SATELLITE again, and telling EARTH to 
use the values of the variables that have previously been calculated. 
The necessary command is RESTRT(V1,W1,P1) and this is entered 
in Group 11. As one hundred sweeps have not produced a 
converged solution, the value of LSWEEP is also increased to 400. 



C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992 

207 

Once SATELLITE has written a new set of datafiles, EARTH can 
be run to produce a further solution.  

Again, Appendix A has an edited listing of the PHOENICS output 
after what is now five hundred sweeps. The solution now yields the 
following information:  

• from the pressure field data, the pressure gradient is now -
12.48.  

• from the velocity field data, the W1 velocity component is 
approximately constant with distance down the plates in the 
columns of cells numbered 6, 7 and 8 in the z-direction. 
This shows that the flow is becoming fully developed near 
the outlet but the process is not quite complete as yet.  

• at the monitor location, the value of the pressure P1 is 
rising but at a reducing rate and so can be seen to be 
converging. The velocity component V1 is again rising but 
converging, and velocity component W1 has fallen to a 
minimum and is now rising if only slowly.  

• the residual errors are all falling.  

This solution is clearly a much better one, the solution is 
converging and the actual values are looking like those we would 
expect, even if they are not quite right. To improve the situation 
still further, or at least to try to, we can run the solution for another 
four hundred sweeps, restarting from the latest solution. Again, 
Appendix A contains the results after this additional calculation and 
from these it can be seen that:  

• from the pressure field data, the pressure gradient has 
changed slightly to -12.55.  

• from the velocity field data, the W1 velocity component is 
approximately constant with distance from the plates in the 
columns of cells numbered 6, 7, 8 and 9 in the z-direction 
and so the flow is effectively fully developed near the 
outlet.  
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• at the monitor location, the value of the pressure P1 is 
rising but at a reducing rate and so can be seen to be still 
converging. The velocity component V1 is falling but 
converging and velocity component W1 is rising and 
converging. In fact, the changes are magnified in the plot of 
the values, as if we look at the last few sweeps, only the 
fourth significant figure is changing.  

• the residual errors are all falling.  

Now the solution is effectively converged and the accuracy of the 
simulation can be calculated. Table 10.1 shows the outlet velocity 
at the end of each of the three solution runs together with the 
analytical solution from equation 10.10. From this it can be seen 
that there is only a small error, which is worse near the wall.  
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PHOTON can now be used to produce pictures of the flow from the 
results. In Fig. 10.3 the velocity vectors can be seen, and this 
picture has been created by using the following PHOTON 
commands:  

grid x 1 
magnify grid 10 
vector x 1 
set reference vector 
1.0 
redraw  

 

Fig. 10.3. Parallel plates - velocity vectors.  

When PHOTON is used, the default view has the y-direction as the 
up-direction and the z-direction goes from left to right. This is 
exactly the orientation that we require and so no commands are 
required to specify it. The first command that is given draws one 
sheet of cells onto the screen and these are then magnified by a 
factor of ten with the cursor being used to put the center of the 
screen near the inlet. Then the vectors are drawn and the reference 
vector set so that the length of a typical vector is as shown. This 
prevents the vectors being extremely long and filling the screen. 
Finally, the completed view is redrawn to give the picture shown.  

From the figure, we can see that the velocity profile develops into 
the fully developed profile as we move downstream from the inlet. 
Also, a large vertical component of velocity is generated near the 
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junction of the inlet and the bottom wall. This is due to the 
horizontal velocity component being changed rapidly in the z-
direction by the plate and so the flow must acquire a large vertical 
velocity component if the continuity equation is to be satisfied.  

From these results we can see that this simple example has been 
simulated with a reasonable accuracy. Changing the mesh so that 
more cells are included could improve the simulation especially in 
terms of the variation of the flow along the plates. As we only have 
information as to what the analytical solution is for a fully 
developed flow, i.e. near the outlet, we have no means of checking 
the variation of the flow variables along the plates. For now, we 
have gained sufficient information from this problem that we can 
move on to consider the next example which is slightly more 
complicated.  

10.4 Turbulent Flow Over a Car  

10.4.1 Producing A Flow Specification  

For the second example in this chapter, we will consider the two-
dimensional situation that we have discussed already in Chapter 
Five. This example involves the simulation of the turbulent flow 
over the longitudinal section of a car. In Chapter Five, we 
considered this flow in some detail, producing the flow 
specification of the problem, and so we can proceed immediately to 
build the computer model of this flow. The software that we will 
use to produce this simulation is PHOENICS once again, and the 
structure of this package has already been discussed. We will use 
this software in the same way as we did for the first example, but 
we must now consider modelling a turbulent flow as well as fitting 
the mesh to the surface of the vehicle. As a matter of personal 
preference, the mesh will be produced outside of the PHOENICS 
program using locally-written software, but the mesh generation 
tools of PHOENICS itself could also be used.  
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10.4.2 Creating A Mesh  

From our consideration of the flow during the flow specification 
phase, we know that the flow variables will vary greatly in 
boundary layers near the vehicle surface and on the other solid 
walls that make up the wind tunnel. This means that we need to be 
able to produce a mesh which has many cells near the vehicle 
surface. At the same time, however, PHOENICS must be provided 
with a mesh that has a regular topology, i.e. a structured mesh. One 
way of creating a structured mesh, for this example, is to build the 
mesh in nine parts or blocks, as was shown in Fig. 6.5. As the full 
mesh must have a regular structure, so the mesh in each block must 
also have a regular structure and the distribution of the cells within 
each block must be such that the cell faces match those of other 
blocks.  

Such a mesh can be defined in two stages:  

• first, a set of points on the vehicle surface must be 
calculated. These points are created such that they define 
the front, top, bottom and rear of the fifth block of cells 
shown in Fig. 6.5.  

• second, points are created in each of the nine blocks using 
the points on the vehicle surface and the known geometry 
of the wind tunnel.  

The shape under consideration here is a two-dimensional section of 
a full size model vehicle that has been used extensively to 
investigate and compare the wind tunnels used by vehicle 
manufacturers. The model vehicle is placed in the wind tunnel 
being tested and various forces such as the aerodynamic drag on the 
vehicle found, together with the associated moments of these 
forces. As well as measuring these forces and moments, engineers 
can use the model to measure the surface pressure on the vehicle as 
there are a series of holes along the centreline section and around 
the waist of the model. Hence, there is an extensive database of 
flow data for this model which can be used to validate CFD codes. 
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These uses of the both the model itself and the data are well 
documented [32,33,34,35], as is the shape of the vehicle.  

From the drawings of the vehicle, the coordinates of the centreline 
section of the vehicle can be computed, as the three-dimensional 
surface is comprised of planes, together with cylindrical and 
spherical sections. A simple program has been written to produce 
the surface coordinates for the centreline section of the vehicle. 
This program is given the number of cells that there will be on the 
vehicle surface in the flow direction, which we will take to be the 
global z-direction, and the number of cells in the vertical direction, 
the global y-direction. The coordinates of the points on the top of 
the computational block, i.e. the bonnet, the windscreen, the roof, 
the rearscreen and the boot, and the bottom of the block, the vehicle 
undersurface, are then calculated by the program at the values of z 
that it is given. On the front and rear surfaces of the block, the 
coordinates of the points are found for a set of y values calculated 
by the program using a cosine distribution.  

Once the surface coordinates are known, the points within each of 
the blocks can be built up. This is done by a second program which 
reads the surface coordinates, together with the position of the wind 
tunnel inlet, floor, roof and outlet, and the number of cells in each 
block in the two directions z and y. Points are placed along 
horizontal and vertical lines, as appropriate, within the eight blocks 
outside the vehicle surface. Figure 10.4 shows a simplified mesh of 
the domain and from this the point creation algorithm can be 
deduced. Above the vehicle, in block 6, and below it, in block 4, 
vertical lines are created from the points on the vehicle surface to 
the tunnel roof or floor. Similarly, ahead of the vehicle, in block 2, 
and behind it, in block 8, horizontal lines are created from the 
points on the vehicle surface to the tunnel inlet and outlet. Then the 
coordinates of the points that form the cell corners are found by 
splitting each line into sections using a geometrical progression to 
bias the positioning of the points.  
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Fig. 10.4. Simplified mesh for the car problem.  

For simple flows, where the variation of the flow variables is not 
too great, the position of each point could be found by splitting the 
line into equal intervals, given the number of cells that need to be 
placed along the length of the line. As we need to be able to 
describe boundary layers along the vehicle surface, geometrical 
progression biasing is used to create the points along the line such 
that there are more points near the vehicle surface. For a geometric 
progression, the sum of n terms is given by  

(10.11) 

where S sub n can be taken to be the length of the line, a is the 
length of the first interval and r is the ratio of neighbouring element 
lengths.  

The mesh generation program is given the ratio of the length of the 
element near the tunnel boundary to the length of the element at the 
vehicle surface and then computes the value of the ratio r. From 
equation 10.11 the length of the first element a can be found and so 
the positions of all the points can be calculated. This gives a set of 
points which show a smooth reduction in cell size towards the 
vehicle surface.  

In the four remaining blocks, numbers 1, 3,7 and 9, the points are 
created from the data generated in neighbouring blocks, as can be 
seen in Fig. 10.4. Once these two programs have been written, a 
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wide variety of meshes can be produced very quickly. This is 
extremely useful if the mesh has to be changed for whatever reason.  

Using these two programs, a mesh that describes the domain of the 
flow for this example has been created. Although the programs 
already exist, they cannot be used until the mesh has been planned 
in some detail. This planning is done by drawing yet another sketch 
of the geometry, Fig. 10.5, where the vehicle is shown at the correct 
height above the floor of the wind tunnel. The tunnel is taken to be 
3.0 m high, with the inlet 5 m ahead of the vehicle nose and the 
outlet 15 m downstream of the vehicle nose. The outlet is placed at 
this position so that it can be assumed to be so far downstream of 
the vehicle that it will have little effect on the flow close to the 
vehicle.  

 

Next, the block boundaries are sketched in, and the distribution of 
cells is determined. Along the top of the vehicle there are five 
distinct regions; the bonnet, windscreen, roof, rearscreen and boot. 
Several cells are needed to model each of these regions and so forty 
cells have been placed along the whole vehicle length. The 
positions of the cells have been chosen so that there are more cells 
near the boundaries of the regions on the top of the vehicle. Ahead 
of, and behind the vehicle, the flow changes rapidly near the car and 
it changes very little near the inlet and outlet. Some ten cells have 
been placed in the horizontal direction in these areas and the cells 
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are biased so that the cells nearest the vehicle are twenty times 
shorter than those near the inlet or outlet. This value of twenty is a 
first guess for the biasing required to produce a reasonable 
simulation.  

In the vertical direction, eight cells have been placed between the 
vehicle and the tunnel floor, with the cell sizes being determined by 
a cosine distribution. This makes the cell size smaller near the 
vehicle surface and the floor to allow the gradients in the boundary 
layers to be captured. Through the height of the vehicle ten cells 
have been placed and fourteen cells have been placed between the 
tunnel roof and the vehicle roof. The positions of the cells above the 
vehicle have been chosen such that the cell size at the vehicle is 
twenty times smaller than the cell size at the tunnel roof. Of course, 
there will be a boundary layer on the tunnel roof and this 
distribution of cells will not be able to describe the flow variation 
there. For this simulation, we have assumed that the roof is so far 
from the vehicle that it will not affect the flow around the vehicle, 
and so a symmetry boundary condition will be used. This will 
ensure that the tunnel roof will constrain the flow during the 
simulation by acting as a frictionless solid boundary.  

This completes the specification of the mesh, and the mesh 
generation programs produce a datafile which contains the number 
of cells in the local coordinate directions, together with the 
coordinates of the corner points of the cells. This file is read by the 
SATELLITE program of PHOENICS using commands discussed in 
the next section.  

10.4.3 Preparing the Data Before Solution  

Once a mesh has been created, the input file to SATELLITE, the 
Q1 file, has to be created. It is this file that is read by the 
SATELLITE program before it prepares the data for the EARTH 
program. This section discusses both the commands required to 
specify the flow problem and the commands required to control the 
numerical solution process. The commands are arranged in groups 
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to assist the user in setting up the computer model, enabling small 
sets of data to be handled at any one time. A full listing of the Q1 
file is given below followed by a description of the commands in 
each of the 24 groups, listed group by group.  

TALK=T;RUN( 1, 1);VDU=TTY  

GROUP 1. Run title and other preliminaries  
TEXT(TWO-DIMENSIONAL MOTOR VEHICLE) 
REAL(W1IN,KEINIT,EPINIT)  

GROUP 2. Transience; time-step specification  
STEADY=T  

GROUP 3. X-direction grid specification  
NX=1  

GROUP 4. Y-direction grid specification  
NY=32  

GROUP 5. Z-direction grid specification  
NZ=60  

GROUP 6. Body-fitted coordinates or grid distortion  
BFC=T 
NONORT=T 
READCO(GRID) 
RSTGEO=F 
SAVGEO=T  

GROUP 7. Variables stored, solved & named  
SOLVE(V1,W1) 
SOLUTN(P1,Y,Y,Y,N,N,N) 
STORE(UCRT,VCRT,WCRT)  
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GROUP 8. Terms (in differential equations) & devices  
DIFCUT=0.0 
ADDDIF=T  

GROUP 9. Properties of the medium (or media)  
ENUL=1.46E-05 
RHO1=1.225 
TURMOD(KEMODL)  

GROUP 10. Inter-phase-transfer processes and properties  
GROUP 11. Initialization of variable or porosity fields  
W1IN=28.0 
KEINIT=0.005*W1IN*W1IN 
EPINIT=944.0 
FIINIT(KE)=KEINIT 
FIINIT(EP)=EPINIT 
FIINIT(P1)=0.0;FIINIT(W1)=W1IN;FIINIT(V1)=0.0 
CONPOR(INTERIOR,0.0,CELL,1,1,9,18,11,50) 

GROUP 12. Convection and diffusion adjustments  
GROUP 13. Boundary conditions and special sources  
PATCH(INLET,LOW,1,NX,1,NY,1,1,1,1) 
COVAL(INLET,W1,ONLYMS,W1IN) 
COVAL(INLET,P1,FIXFLU,W1IN*RHO1) 
COVAL(INLET,KE,ONLYMS,KEINIT) 
COVAL(INLET,EP,ONLYMS,EPINIT) 
PATCH(FRONT,HWALL,1,1,9,18,10,10,1,1) 
COVAL(FRONT,V1,GRND2,0.0) 
COVAL(FRONT,KE,GRND2,GRND2) 
COVAL(FRONT,EP,GRND2,GRND2) 
PATCH(BOTTOM,NWALL,1,1,8,8,11,50,1,1) 
COVAL(BOTTOM,W1,GRND2,0.0) 
COVAL(BOTTOM,KE,GRND2,GRND2) 
COVAL(BOTTOM,EP,GRND2,GRND2) 
PATCH(REAR,LWALL,1,1,9,18,51,51,1,1) 
COVAL(REAR,V1,GRND2,0.0) 
COVAL(REAR,KE,GRND2,GRND2) 



Chapter 10. Some case studies 

218 

COVAL(REAR,EP,GRND2,GRND2) 
PATCH(TOP,SWALL,1,1,19,19,11,50,1,1) 
COVAL(TOP,W1,GRND2,0.0) 
COVAL(TOP,KE,GRND2,GRND2) 
COVAL(TOP,EP,GRND2,GRND2) 
PATCH(FLOOR,SWALL,1,1,1,1,1,NZ,1,1) 
COVAL(FLOOR,W1,GRND2,0.0) 
COVAL(FLOOR,KE,GRND2,GRND2) 
COVAL(FLOOR,EP,GRND2,GRND2) 
PATCH(OUTLET,HIGH,1,1,1,NY,NZ,NZ,1,1) 
COVAL(OUTLET,P1,FIXP,0.0)  

GROUP 14. Downstream pressure for PARAB=.TRUE.  
GROUP 15. Termination of sweeps 
LSWEEP=10  

GROUP 16. Termination of iterations  
LITER(P1)=20;LITER(V1)=1;LITER(W1)=1;LITER(KE)=1;L
ITER(EP)=1  

GROUP 17. Under-relaxation devices 
RELAX(P1,LINRLX,0.1) 
RELAX(W1,FALSDT,0.006) 
RELAX(V1,FALSDT,0.006) 
RELAX(KE,FALSDT,0.0005) 
RELAX(EP,FALSDT,0.0005) 
KELIN=1  

GROUP 18. Limits on variables or increments to them  
GROUP 19. Data communicated by satellite to GROUND  
GROUP 20. Preliminary print-out 
GROUP 21. Print-out of variables 
OUTPUT(W1,Y,N,N,Y,Y,Y) 
OUTPUT(V1,Y,N,N,Y,Y,Y) 
OUTPUT(P1,Y,N,N,Y,Y,Y) 
OUTPUT(UCRT,Y,N,N,N,N,N) 
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OUTPUT(VCRT,Y,N,N,N,N,N) 
OUTPUT(WCRT,Y,N,N,N,N,N)  

GROUP 22. Spot-value print-out 
IXMON=1;IYMON=20;IZMON=39  

GROUP 23. Field print-out and plot control  
NPLT=1;ITABL=3  

GROUP 24. Dumps for restarts 
SAVE=T  

RESTRT(V1,W1,P1,KE,EP) 
SAVGEO=F 
RSTGEO=T 
LSWEEP=150 
STOP  

The first line of the Q1 file tells SATELLITE to allow both 
interactive checking and modification of the data once the file has 
been read. It also determines the computer terminal type that will be 
used. Then the commands that specify the structure of the mesh, 
read the previously prepared mesh data and set up the flow problem 
are given in the following groups:  

• Group 1 - Preliminaries. This contains a simple title and a 
list of user-defined variables that SATELLITE needs to 
know are real numbers. These variables will be used later in 
the Q1 file as part of some simple calculations.  

• Group 2 - Time Dependence. Here theflow is specified as 
being steady state, i.e. there is no variation with time. This 
is a simplification of the problem, made so that a solution 
can be found using a reasonable amount of computer time. 
In reality there is always some time variation of a turbulent 
flow, but we hope that for our computation the turbulence 
model will take this into account.  
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• Groups 3 to 5 - Mesh Specification. This is where the 
program is told how many cells there are in each of the 
three local mesh directions.  

• Group 6 - Body-Fitted Coordinates. The program is told 
that a mesh has been created that is body-fitted and that the 
coordinates of the grid points are stored on a file called 
GRID. As the mesh has been created using projections of 
points in the vertical and horizontal directions, it is clear 
that no attempt has been made to ensure that the mesh is 
orthogonal. EARTH needs to know this as extra numerical 
terms must be used in the numerical analogue of the 
governing equations when the grid is non-orthogonal. Once 
EARTH has read the set of grid points, it can create a file 
which contains a great deal of geometrical information 
within it. To save time when performing a simulation, this 
file need only be created once and then stored. As the Q1 
file listed refers to the first run of a solution, the last two 
commands in this group tell EARTH that the geometry file 
does not exist and that it should save this file at the end of 
this run.  

• Group 7 - Solution Variables. To solve this problem we 
need to find two velocity components and the pressure of 
the fluid. The velocity components, variables V1 and W1, 
are calculated by the program in directions defined locally 
in each cell, and these directions are determined by the 
positions of the corner points of a cell. As the post-
processor PHOTON needs to have access to the velocity 
components defined in the Cartesian directions, we must 
calculate and store these additional components. These 
velocity components are known as UCRT, VCRT and 
WCRT. The command SOLUTN is used to activate the 
pressure variable P1 so that the default slab-by-slab 
solution method is changed to a whole-field solution 
method. This does not affect the values of the solution, but 
it does speed the solution process up.  

• Group 8 - Terms in the Differential Equations. Here, the 
convection operator is requested to be formed using upwind 
differences regardless of the value of the cell Peclet 
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number. This is done by setting the value of DIFCUT to 
zero. The ADDDIF command ensures that the pressure 
correction equation (see Section 3.5.2) includes the 
diffusion terms in the momentum equation and does not 
leave them out as it would by default. This inclusion of 
terms increases the likelihood of the solution converging.  

• Group 9 - Properties. As the vehicle is in air, the density 
and laminar kinematic viscosity are set to the values 
determined during the flow specification stage, Section 5.2. 
The TURMOD command switches on the two-equation k - 
epsilon turbulence model, telling EARTH to solve for both 
turbulent kinetic energy k and the rate of its dissipation 
epsilon, calculating the effective turbulent viscosity using 
the relationship given in by equation 2.18 in Section 2.2.3.  

• Group 10 - Multi-Phase Flows. No entries.  
• Group 11 - Initialisation. This group is used to define the 

value of the velocity, turbulent kinetic energy and 
dissipation rate at the inlet. At the inlet boundary, the 
velocity component of the flow in the local z-direction, W1, 
the direction of which coincides with the global z-direction 
at the inlet, is 28 m/s. This velocity is convected into the 
domain together with the turbulent kinetic energy and its 
dissipation rate. To calculate the values of the turbulence 
quantities at the inlet, the value of turbulence intensity is 
assumed to be 6%. From the definitions of turbulence 
intensity I and turbulence kinetic energy k [3,10], the value 
of the turbulence kinetic energy can be calculated as:  

(10.12) 

The epsilon value is set so that it gives an effective turbulent 
kinematic viscosity which is one hundred times the laminar 
kinematic viscosity, a typical value for air. Hence using equation 
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2.18 with the coefficient c sub mu set to its standard value of 0.09 
we obtain  

(10.13) 

These values will also be used when the boundary conditions are 
prescribed in a later group, but they are calculated here so that they 
can be used as the first guess to the variables throughout the field. 
The FIINIT commands set the value of the pressure and the velocity 
component V1 to zero, and of the velocity component W1 and the k 
and epsilon variables to the values at the inlet discussed above. 
These FIINIT commands work by setting the values of the variables 
at every location to the appropriate numerical value.  

Finally in this group, the cells inside the vehicle, which should not 
take any part in the simulation as they exist only to assist in the 
computational housekeeping, are labelled and switched off using 
the CONPOR command.  

• Group 12 - Unused. No entries.  
• Group 13 - Boundary Conditions. Here the boundary 

conditions are defined. We have already identified the 
boundaries as being physically located at the inlet, outlet, 
floor and roof of the tunnel, and at the vehicle surface. As 
we have decided to make the roof of the tunnel a symmetry 
plane and not a viscous wall, we do not need to do anything 
to apply this boundary condition as this is the default 
boundary condition. The vehicle surface can be described 
as the top of the car together with the bottom, the front and 
the rear. These four sections of the surface form the 
boundaries of the fifth block used to create the mesh. The 
PATCH commands define the positions of the boundaries 
by listing the cell ranges and the face positions using the 
compass notation described in Section 7.3.1, and the 
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COVAL statements apply the appropriate boundary 
conditions. These conditions are specified such that at the 
inlet the velocity component in the z-direction, and the 
values of k and epsilon are specified, together with a mass 
flow boundary condition for the pressure correction 
equation (see Sections 3.5.2 and 3.5.4); at the outlet the 
pressure is set to zero; and on the other boundaries, wall 
functions are used to find the values of k, epsilon and the 
necessary velocity components.  

Now that the information defining the fluid flow problem has been 
explained, the rationale behind the choice of the settings for the 
control parameters relating to the numerical solution must also be 
explained group by group:  

• Group 14 - Parabolic Flow. No entries.  
• Group 15 - Termination of Sweeps. The number of sweeps 

is set to ten. This enables the initial progress of the residual 
errors to be monitored to see if the solution process is 
moving in a satisfactory way towards convergence. If the 
residual values fall then the process is proceeding well, but 
if the residuals get bigger then the solution process may not 
converge.  

• Group 16 - Internal Iteration Control. Within each sweep, 
the calculation of each of the variables involves the solution 
of a set of simultaneous linear equations. These solutions 
are found by an iterative procedure inside EARTH. It is 
important that the solution to the pressure correction 
equation is computed as accurately as is realistically 
possible, as this ensures that the mass of fluid is conserved 
throughout the flow domain, and so twenty internal 
iterations are performed when calculating the pressure. For 
the other four variables, accuracy at the end of a sweep is 
less important, and so only one iteration of the linear 
equation solver is performed per sweep.  

• Group 17 - Relaxation Parameters. To control the non-
linear solution procedure, the variables that are calculated 
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must be relaxed in some way. For pressure this is done 
using standard linear relaxation, equation 8.3, and the 
relaxation factor is set to 0.1. The other variables are 
relaxed using a form of time step smoothing which is 
sometimes called pseudo-time relaxation. Although this 
problem is being calculated as a steady state problem, 
PHOENICS allows the addition of a false time-dependent 
term that smooths the solution procedure. Effectively, a 
time derivative of a variable phi dot , which has the form  

(10.14) 

is added to the left hand side of the discretised momentum 
equations. When the solution is converged this term will be zero, 
but in the initial stages it provides a smoothing of the solution. The 
value of the time step DELTA t is found by calculating a typical 
residence time for a particle in a cell. Here, an average velocity w in 
the z-direction is 28 m/s, there are sixty cells N sub c in the z-
direction covering a distance L of 20 m; and so an estimate of the 
residence time is given by  

(10.15) 

For the velocity components a suitable, and conservative, value of 
DELTA t is about half of this residence time, i.e. 0.006 s. The 
turbulence variables k and epsilon require more relaxation than this 
and so a value about one tenth of relaxation for the velocity 
components is used, i.e. 0.0005 s. These values are only first 
guesses, chosen by what is a useful rule-of-thumb. In practise the 
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required values depend on the shape of the mesh and the flow itself, 
and so some modification to these values may well be required.  

Finally, in this group, the form of the k - epsilon model is made 
appropriate for an external flow using the KELIN statement. This 
selects one form of the linearisation of the terms in the k - epsilon 
model, which the PHOENICS reference manual suggests should be 
suitable.  

• Groups 18, 19 and 20 - Special Features and Printout. No 
entries.  

• Groups 21, 22 and 23 - Printout. In these groups the output 
from EARTH is specified. In particular, graphs and lists of 
the residual errors are requested, together with graphs and 
lists of the variables at a monitor location. This location is 
chosen to be near the upper surface of the vehicle where the 
flow varies rapidly in space. At this position, the change in 
the variables from sweep to sweep should provide a 
sensitive measure of the convergence of the numerical 
solution.  

• Group 24 - Restart Data. Here, the results are stored and the 
marker denoting the end of the Q1 file is written. The 
indented commands do not really belong in this group, but 
they are conveniently located at the end of the file as they 
are the commands that need to be activated if a restart 
solution is to be performed. They tell EARTH to read the 
last set of results and use them as the initial values for the 
continuation of the solution, to read the existing file that 
contains the geometry data and not to re-write this file at 
the end of the solution.  

Once the input data has been assembled and written in the Q1 file, 
the SATELLITE program can be run. This produces input data 
suitable for being read by the EARTH program, which can then be 
run in turn.  
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10.4.4 Running the Solver and Analysing the Results  

To check that the values of the relaxation parameters are suitable 
and that the solver produces results which appear to be converging, 
only a few sweeps have been run. As the residuals decreased from 
sweep to sweep during this trial run, the Q1 file was edited to 
instruct EARTH to run 150 sweeps. By running the SATELLITE, a 
new set of datafiles for EARTH were written, and EARTH itself 
run again. At the end of its run EARTH produces a report file, 
known as RESULT, which is in ASCII format. This contains 
various information including the reports that are requested using 
the Q1 file. Amongst these results are the values of the variables 
within the monitor location cell at the end of each sweep. These are 
given in both numerical and graphical form. Similarly, the values of 
residuals for each of the equations is listed in the same way. Figure 
10.6 shows the graph that EARTH has produced of the monitored 
values against sweep number and Fig. 10.7 shows the graph of the 
residual error against sweep number.  
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In both of these figures, the abscissa is the sweep number from 1 to 
150, scaled to be in the range 0 to 1. Also, the spot values and the 
residuals are plotted as the ordinate with the values being scaled to 
fit between 0 and 1. Figure 10.6 shows that the spot values become 
constant with sweep number. We can see that the v-component of 
velocity and the pressure both fall then rise to a steady value, 
epsilon rises then falls and both k and the w-component rise, fall 
and then rise again. From the printed numerical values in the 
RESULT file, the variation in all of the variables during the final 
ten sweeps occurs in the third or fourth significant figure. Looking 
at Fig. 10.7, the residuals can be seen to fall steadily with a small 
departure for the residual of the w-component equation near the end 
of the run.  

Using the spot values and residuals as a guide, we can see that the 
solution achieved after 150 sweeps is converged to an accuracy of 
three significant figures. No further running of the solver is required 
and so we can turn our attention to the results calculated throughout 
the flow field. PHOTON, the post-processor of PHOENICS, can 
read the data produced by EARTH and Figs. 10.8 and 10.9 show 
the velocity vectors of the simulated flow for two different views. 
These figures have been produced using commands similar to those 
given for the PHOTON picture in the first example, see Section 
10.3.6, and it is interesting to note that PHOTON has taken account 
of the fact that there is no flow within the vehicle surface and not 
plotted any data there and that the vectors appear at the cell 
positions where they were calculated. Some graphics programs 
produce data on a different mesh to that used by the calculation. 
This can be useful if the mesh is unstructured. In Fig. 10.8 the 
velocity field is displayed for the area of the rearscreen of the 
vehicle. The flow is seen to separate from the rearscreen about two-
thirds of the way down the screen and a small vortex is found in the 
screen-boot intersection. In reality, a car of this shape would have a 
much larger area of separated flow over the rearscreen and so the 
results we have obtained, although numerically converged, do not 
quite agree with what we might expect. Looking at Fig. 10.9, we 
can see the flow field over the roof of the vehicle. Here, the 
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boundary layer is hardly noticeable, with nearly all the variation 
taking place in the first two cells from the surface. All of this 
suggests that the mesh is not refined enough near the vehicle 
surface.  

 

Fig. 10.8. Velocity vectors at rearscreen (bias=20).  

Refining the computer model is straightforward, now that we have 
the tools to build the mesh and a model Q1 file already exists. A 
second mesh has, therefore, been created using the same 
distribution of cells along the vehicle surface and in the flow field, 
but the biasing parameter has been increased from twenty to fifty 
for the blocks ahead of, above and behind the vehicle. As we have 
not changed the structure of the mesh, or the cell numbers in each if 
the local mesh directions, no changes are required to the Q1 file, 
but SATELLITE has to be run again, before running EARTH, so 
that the new file containing the cell corner points is read and new 
geometry data is written for EARTH.  
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Fig. 10.9. Velocity vectors on roof (bias=20).  

For this second mesh, a run of 150 sweeps has been made by 
EARTH, and the RESULT file shows very similar trends to those 
found with the original mesh for the variation of the spot values at 
the monitor location and the residuals with sweep number. Using 
PHOTON to look at the velocity field, Figs 10.10, 10.11 and 10.12, 
several interesting features can be seen. By changing the biasing 
parameter in the mesh building process, more cells are placed near 
the vehicle surface and so there are more vectors near the surface. 
This leads to a solution which has a larger area of flow separation 
(Fig. 10.10) and a much better definition of the boundary layer on 
the surface (Fig. 10.11). Consequently, the overall flow picture near 
the car, Fig. 10.12, can be seen to be qualitatively correct. Note that 
in this last figure the flow slows down as it approaches the front of 
the vehicle and that it speeds up at the front of the bonnet and at the 
vehicle roof where the surface changes direction rapidly in space. 
Also, as well as the separation at the rearscreen, there is a region of 
separated flow behind the vehicle where two vortices can be seen. 
All of these features can be seen when the physical vehicle model is 
placed in an airflow in a wind tunnel.  
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Fig. 10.10. Velocity vectors at rearscreen (bias=50).  

 

Fig. 10.11. Velocity vectors on roof (bias=50).  
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Fig. 10.12. Velocity vectors around car (bias=50).  

This refinement process can be continued and the biasing parameter 
continually increased. A case has been run with the parameter set to 
200 above the vehicle and 50 ahead of it and behind it. One 
hundred and fifty sweeps have been calculated yet again. Figure 
10.13 shows the residual variation with sweep number and, from 
this, the variation of the residual error for the w-component of 
velocity can be seen to oscillate wildly. There is also a smaller 
oscillation of the pressure residual. This shows that the solution is 
not progressing satisfactorily. Confirmation of this is found by 
looking at the spot values which also oscillate in magnitude when 
plotted against sweep number. One way of suppressing this 
oscillation is to run the solution with more relaxation by using 
smaller relaxation factors and another way is to create a mesh of the 
domain which is smoother.  
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At this stage in the process we appear to have reached the limit of 
accuracy with this particular distribution of cells. Whilst further 
simulations could be produced, we will leave this two-dimensional 
calculation knowing that we have found a solution which is 
qualitatively correct for the velocity field.  

10.4.5 A Note On Three-Dimensional Calculations  

Knowing that a simulation is qualitatively correct is often all that is 
required of a simulation. Such simulations can provide an engineer 
with sufficient information to make sensible choices about the 
design of an object and the effect of these choices on the flow of the 
fluid. In the case of the flow about a car, however, engineers must 
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know something about the forces and moments produced on a 
vehicle by the flow. This is quantitative information.  

If we carry out CFD simulations of the flow about a car, we will 
also want to know what the forces and moments are that the 
simulated airflow would produce. Several manufacturers of 
vehicles and CFD software authors have performed such 
simulations in three dimensions [33,34,35], but the results have not 
been promising. These simulations have shown that the qualitative 
picture of the flow produced by the simulation is in good agreement 
with that found in wind tunnel tests. Also there is a good agreement 
between the prediction of fluid pressure on the surface of the 
vehicle with that found by experiment. So far so good, but the bad 
news starts when the predicted pressures are integrated over the 
vehicle surface, for each cell face on the surface, to give a measure 
of the forces and moments on the vehicle body. Even if we take the 
problems of the modelling of the wheels of the vehicle and the drag 
due viscous shear into account, the predicted drag is in poor 
agreement with the experimental values.  

One source of the error between the predicted forces and moments 
and the experimental values comes from the integration process 
itself. A vehicle in a real flow sees what is in effect an infinite 
number of fluid particles over the vehicle surface, giving a pressure 
which varies continuously over the vehicle surface. When several 
hundreds of thousands of cells are used in the simulation, the cost 
of the computer time alone for the simulation is greater than the 
cost of the corresponding physical experiment and the number of 
cells on the surface might still be only of the order of a few 
thousand. This means that the simulation cannot capture the same 
level of variation that the vehicle in a physical experiment would 
see and, consequently, the numerical integration is very inaccurate. 
This would still be the case even if the values of the pressure at all 
the mesh points on the surface were exact.  

I mention this problem to give the reader something to think about. 
The aim of CFD in engineering is to produce results which are 



C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992 

235 

useful in the design process, not to produce pretty colour pictures 
for the office wall or for your manager. This means that companies 
and individuals must decide whether CFD is the right tool for their 
particular application. The ways of doing this are discussed further 
in Chapter Twelve. It should be mentioned here that, for some 
problems, CFD might be the only means of analysis and it might 
also be cheaper than the experiment. The next example shows a 
problem that is well suited to CFD, giving real insight into the 
technical problem.  

10.5 Water Flow Around A Combustion Chamber  

10.5.1 Producing A Specification  

In many industrial problems, the geometry is sufficiently complex 
that the restriction of using a regularly structured mesh cannot be 
tolerated. One source of extremely complex geometry is an 
automotive internal combustion engine. Two major flow situations 
that occur in this device are the flow of air and fuel into the 
combustion chamber caused by the motion of a piston and the flow 
of water around passages inside the engine where the water 
removes excess heat from the engine casing. In this final case study 
we will consider the problem shown in Fig. 10.14, where water 
flows through an inlet, around the cooling passages outside the 
combustion chamber and then flows out through a vertical outlet. 
This is a simplified example of the flow of cooling water through 
an engine.  
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When looking at the flow of a coolant, it is important to the 
efficiency of the design that there are very few areas where the flow 
is separated. In such regions, the fluid moves slowly over the hot 
surfaces and so the heat cannot be removed from these surfaces in 
an efficient way. One objective of a CFD analysis of such a 
situation is to determine where it is, within the cooling system, that 
these areas of separated flow occur, if they do occur. Then 
modifications can be made to the geometry of the internal passages 
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to ensure that such areas do not occur or that their existence is 
minimised. Further, it is possible that CFD can give a good estimate 
of the pressure loss in the fluid as it passes through the system and 
this can be used to specify the required pressure head of the water 
pump.  

From Fig. 10.14 we can see that the bounding surfaces of the 
geometry are simple planes or cylinders and so the production of a 
mesh should not be difficult. When considering the flow through 
the system only three types of boundary can be present. These are 
an inlet, an outlet and a series of solid walls. At the inlet, the 
velocity is 5 m/s and the width is 0.0232 m. For water at 15 { . sup 
o} C, the Reynolds number based on the inlet width is  

(10.16) 

As the height of the inlet is 0.02 m, the Reynolds number based on 
height will be much the same. Given these values of the Reynolds 
number, the flow can be assumed to be turbulent. This can be 
determined by considering the flow in a pipe [7,Chapter 7], where 
the critical Reynolds number for the flow to change from a laminar 
flow to a turbulent flow, the transition process, is about 2000.  

10.5.2 Producing A Mesh  

To produce a mesh for this problem, we can split the geometry into 
a series of blocks as shown in Fig. 10.15. Then a simple structured 
mesh can be built in each block and the blocks connected at their 
boundaries in such a way that cell faces are aligned across the block 
boundaries. A program similar to that used to mesh the car example 
has been written to do this, but no biasing is applied to the cell 
distribution. The program calculates the x- and y-coordinates of the 



Chapter 10. Some case studies 

238 

mesh points within a block and then writes the full list of 
coordinates for each block by writing sequences of these values 
together with the appropriate value of the z-coordinate. This means 
that the mesh in each block is made up of sheets of nodes at a set of 
planes which are defined by having constant values of z.  

 

STAR has the ability to read ASCII files which contain the mesh 
data. Two files are required to specify the mesh; one file contains 
the list of the x-, y- and z-coordinates for each point in the mesh, 
known to STAR as a vertex; and the other file contains a list of the 
identification numbers of the vertices that are connected to each 
element. These files are written directly by the mesh generation 
program.  

To calculate the mesh, the program must be given a set of 
parameters that state the numbers of cells in the various blocks. 
These parameters are labelled n1, n2, nz, ninlet and nriser as shown 



C.T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992 

239 

in Fig. 10.16. A complete mesh is illustrated in Fig. 10.17 for 
values of these parameters set to 7, 7, 8, 10 and 20 respectively. 
This is the mesh that we will use.  
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Fig. 10.17. Mesh of the water jacket.  

10.5.3 Other Pre-Processing Tasks  

Before describing how the computer model is created using STAR, 
we must outline the structure of STAR. The version that we have 
run to produce this simulation is STAR v2.004 which consists of 
two separate programs. The first program is PROSTAR which is 
used for the interactive tasks of pre- and post-processing and the 
second program is STAR itself, which is the solver program.  

Once PROSTAR is activated the computer model of the flow 
problem can be built up in stages. There are several modules to 
PROSTAR and these are used to create the data for the solver. The 
first stage is to create a mesh using the MESH module. As we have 
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already created the necessary files of mesh data, all that has to be 
done in this module is to read the two files. This is done using the 
VREAD and CREAD commands, where the V refers to vertices, 
which are the corner points of the cells, and the C refers to the cells 
themselves.  

Next we can use the PROPERTY module to define the fluid. This is 
done using the commands:  

density,constant,1000. 
lviscosity,constant,11.4e-4 
turbulence,ke,1.018e5,0.02 
initialize,0.0,5.0,0.0,0.0938,2.87,293.  

The first two commands set the values of the density and viscosity 
to be constant throughout the calculation and define appropriate 
values in SI units. The third command switches on the two-equation 
k- epsilon turbulence model and gives a typical Reynolds number 
and a length. These two parameters were found during the 
specification phase in Section 10.5.1. Finally, the initial values of 
the variables are given in the following order: u, v, w, k, epsilon , T. 
Here the last value T that is listed is the initial temperature and for 
this problem it is not used. The velocity values are taken to be those 
that apply at the inlet. To calculate the initial values of the 
turbulence quantities, approximate inlet values are given and these 
are found from an assumed value of turbulence intensity of 5%. 
Using the formulae for turbulence intensity, this gives  

(10.17) 

An approximate value of the mixing length is known for a flow 
near a wall, that is  
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(10.18) 

Here kappa is a constant for a boundary layer and the value of y is 
taken to be half the inlet height. The value of the mixing length that 
is derived will be a maximum value and so an average value will be 
used for the mixing length of 0.01 m. Finally, the value of epsilon is 
found from the additional turbulent viscosity. This is calculated 
from equation 2.17 as  

(10.19) 

and so, from equation 2.18, epsilon is given by  

(10.20) 

Once the fluid properties have been defined, the boundary 
conditions have to be set using the BOUNDARY module. STAR 
assumes that any unspecified boundary is a solid wall and so this 
simplifies the specification of the boundary conditions 
considerably. All we have to do is specify the location of the inlet 
and the outlet and then define the conditions that apply at these two 
boundaries. The surface of the cells of the mesh can be plotted on 
the screen in PROSTAR. This is done using the 
PLTYPE,QHIDDEN command which displays a simplified hidden-
line plot. Then the cursor can be used to pick the cell faces that are 
at the inlet and the outlet. The commands used to do this are  
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bcross,add,1 
bcross,add,2  

These define one set of faces to be region 1 and the other set of 
faces to be region 2. These regions are then associated with the 
boundary conditions using the commands  

rdefine,1,inlet 
0.0,5.0,0.0,1000.,0.0938,2.87 
rdefine,2,outlet  

These specify that the first region is an inlet at which the values of 
u,v,w, rho , k, epsilon are given as listed. Similarly, the cell faces in 
region 2 are defined to be the outlet.  

The last module to be used is the CONTROL module, where the 
data to control the numerical solution is provided. Within this 
module, the commands are used to control the initial run of the 
solver. They are listed below together with the variations that would 
be used to carry out a restart calculation. The commands are (with 
the restart commands given in square brackets):  

time,0.005,steady iter,10,500,0.001 [iter,100,500,0.001 ] simple,on 
rdata,none [ rdata,restart,binary ] wdata,post,binary 
relax,0.1,0.1,0.1 
monitor,101  

These specify that the calculation is a steady state process; that ten 
iterations out of of a maximum number of five hundred are to be 
run with the program stopping if the residual falls below 0.001; that 
the SIMPLE algorithm is to be used; that no initial data is to be read 
from a file but that a restart calculation would read in this data; that 
a file suitable for post-processing is to be written in binary format; 
that the linear relaxation factors for the pressure, velocity 
components and the turbulence parameters respectively are set to 
0.1 and that the variables in cell 101 are to be printed every 
iteration.  
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Finally, the data necessary for the STAR solver program is written 
using the commands  

geomwrite,8 
probwrite,10  

which write the geometry data to the file numbered 8 and all the 
other data to the file numbered 10.  

10.5.4 Running The Solution  

At first, ten iterations are run to check that the model is working. 
The STAR solver produces output which lists the residuals and the 
monitored values at each iteration and these show that the residuals 
are decreasing except for epsilon which is increasing slightly. This 
rise in the epsilon residual is not too much of a problem, but in an 
attempt to get all the residuals reducing the relaxation factor for the 
turbulence variables has been reduced to 0.01. Seventy iterations 
have then been run starting from the initial values again.  

Yet again, all the residuals decreased except for those from the 
epsilon equation, but the rate of increase of this residual was clearly 
reducing. This suggests that if further iterations are run with the 
same relaxation factors the epsilon residual should start to reduce. 
At the monitor location the velocity components and pressure are 
changing rapidly, but the turbulence parameters are only moving 
slowly due to the severe relaxation. To continue the solution, two 
hundred further iterations have been run with the same relaxation 
factors. The printout now shows that all the residuals are falling and 
that the values of the variables at the monitor locations are changing 
less and less.  

Finally a further eighty iterations have been run with the relaxation 
factor for pressure kept the same at 0.1, but the relaxation factor for 
the velocity components was increased to 0.4 and for the turbulence 
variables it was increased to 0.1. Initially all the residuals fall but 
later the ones for the velocity components and pressure start to 
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oscillate. The residuals for the velocity components have decreased 
by factors of several hundred and for pressure by several thousand. 
By looking at the values of the variables at the monitor location we 
can see that they are now only changing in the third significant 
figure every sixteen iterations and so, effectively, the solution is 
converged.  

10.5.5 Analysing the Results  

To look at the results graphically, we can use PROSTAR again. 
First of all we must tell PROSTAR to access the computer model 
that we set up in PROSTAR during the pre-processing phase (file 
16) and the file of results that was created during the solution phase 
(file 9). This is done using the commands:  

resume,16 
load,9  

Once PROSTAR has read the data that it needs for post-processing, 
various commands can be used to plot the data. For this example it 
is likely that the most useful information will come from a plot of 
the velocity vectors calculated by STAR. These will allow an 
engineer to make a qualitative assessment of the way in which the 
flow is behaving. For example, the commands:  

vescale,0.5 
poption,vector 
getcell,all,none 
plty,section 
surf,on 
edge,off 
view,0,0,1 
spoint,0.0,0.0,0.01 
cplot  

will plot the picture shown in Fig. 10.18. This is a velocity vector 
plot at half the height of the main flow channel. The commands 
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given above are used to scale the vectors to a reasonable size, set 
the plot type to vector, use all the available cells, produce a section 
plot on a plane through a point (0.0,0.0,0.01) together with the 
surfaces taken as if viewed from a view point on the z-axis. The last 
command actually plots the picture.  

 

Fig. 10.18. Velocity vectors around water jacket.  

From this figure we can see that the flow comes in through the inlet 
and then splits into two to go around the cavity formed by the 
combustion chamber. At the point of splitting, the magnitude of the 
vectors is small, as it is in the upper left and lower right corners of 
the flow system. Also, where the two streams come together, the 
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flow velocity is small. If the surfaces of the cavity were hot, and the 
water was being used to transport heat away from these surfaces 
then the heat transfer would not be very good in these areas. Figure 
10.19 shows a similar plot through a vertical section which passes 
through the outlet channel. This shows that the flow separates from 
the passage surfaces at the entry to the outlet passage and we can 
see that there is a vortex near to the left hand wall of the channel 
where the flow velocity is very small. This area of separated flow 
restricts the effective width of the channel, and leads to pressure 
losses. The outlet passage could be redesigned to remove this 
separation region, reducing the pressure losses in the system and 
also improving any heat transfer in the area of the start of the outlet 
channel.  
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Fig. 10.19. Velocity vectors in vertical plane through outlet.  

Even in large systems of pipes, it is this sort of information that can 
be used to improve the fluid flow within a system and have a 
beneficial impact on engineering design.  

One thing that is clear from these two figures is that the boundary 
layers near the walls of the passages have not been modelled very 
accurately. This may not affect the qualitative nature of the 
prediction, but it will effect any quantitative data such as the 
variation of pressure through the domain. If this simulation is to be 
improved it would have to be remodelled using a mesh with more 
cells and, perhaps, with the cells being biased towards the walls of 
the passages.  

10.6 A Review Of The Usefulness Of CFD  

From this set of three examples we can find pointers to the 
usefulness of CFD. The first example shows that simple laminar 
flows can be calculated to a high degree of accuracy with little 
effort. The other two examples show that we have to be careful in 
using CFD if the flow is more complex. With the example of the 
flow over a car, the predicted data provides a reasonable simulation 
both qualitatively and quantitatively, but when the numerical 
pressure data is integrated then the results are very inaccurate. 
Depending on the information that is required this could be a good 
simulation or it could be a poor simulation. In the third example we 
have only sought qualitative data and this simulation provides a 
large amount of information that is of use to an engineer.  

Looking at other examples of CFD, the use of the technology in 
predicting the weather is extremely useful and accurate in most 
circumstances. However, the simulations are restricted in that the 
mesh size cannot be too great as the calculations have to be 
performed in a reasonable time and not use too much computer 
memory. This means that freak weather events which have a spatial 
dimension smaller than the distance between mesh points will not 
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be predicted very accurately. Without infinite computer power and 
memory this will always be the case.  

We have also discussed, in Chapter One, the Kings' Cross inquiry 
and the use of CFD in determining the cause of the fireball that 
occurred. The CFD calculations pointed out a possible mechanism 
for this in the form of the so-called trench effect, where the hot 
gases stayed near the floor of the escalator tunnel. This 
phenomenon had not been thought of before and so experiments 
were carried out to investigate if it could actually occur in practice. 
These experiments showed similar flow patterns, confirming that 
the mechanism predicted using CFD could occur in practice. It was 
the combination of both the CFD prediction and the subsequent 
experimentation that made this study so conclusive. It is becoming 
more common that these two predictive techniques, 
experimentation and computation, have to be used together. They 
should be seen as complementary means of carrying out 
investigations not as opposing strategies.  

In summary, it can be said that CFD does have its uses but that the 
results of simulations need to be considered carefully before they 
are used.  
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11 MODELLING FLOWS WITH ADDITIONAL COMPLEXITY  

So far, we have considered the ways in which CFD tools can be 
used to predict flows which can be classified as incompressible and 
viscous. Many industrial flow problems encountered outside the 
aircraft industry can be described as flows that fall into this 
category. This means that many flows can be modelled by applying 
the techniques that we have discussed. If we are to model some, or 
all, of the other categories of flows, we must determine the 
modifications that need to be made to our modelling technique. In 
particular, the modelling of four additional features will enable a 
large proportion of the flows, that are not simply incompressible 
and viscous, to be modelled. These four features are:  

• the prediction of heat transfer within a flow. In this case an 
additional equation, the energy equation, which describes 
the transport of heat energy through a fluid has to be 
solved.  

• the effects of compressibility. Many fluids in motion 
exhibit the effects of compressibility. This occurs when the 
density of the fluid changes in the flow field.  

• the existence of multiple phases within the flow. In some 
flow problems two or more fluids can flow together. For 
example a liquid and a gas could move together. Also the 
transport of solid material in a fluid can be described as 
being a multi-phase flow.  

• the inclusion of combustion. When a fuel is burned 
chemical changes take place and energy is released. This 
can occur in a fluid that is already flowing or it can cause a 
fluid to flow.  

In this chapter, we will discuss in a simple way each of these topics 
in turn. It should be noted that the material that follows is not meant 
to be an exhaustive treatment. The aim of this chapter is to highlight 
some of the modifications that are made to the modelling process 
which enable these features to be catered for. This will help the 
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analyst to look in the right places for further information, if the 
need to carry out such modelling ever arises.  

11.1 Modelling Flows With Heat Transfer  

11.1.1 The Effects of Heat Transfer on a Flow  

Heat transfer is the movement of internal energy around a system. It 
can occur in three main ways; conduction, where the agitation of 
molecules transfers the energy from one molecule to another; 
convection, where the transport of material transfers the energy 
from one place to another and radiation where electromagnetic 
fields are the mechanism of energy transfer. The textbook by 
Rogers and Mayhew [31] provides a good basic introduction to the 
subject.  

Within a given situation, all three modes of heat transfer might 
occur. For example, heat might flow through a solid by conduction 
and then be transferred into a fluid where it is convected away with 
the fluid and if, say, flames are present they will radiate heat energy 
all around. However, in the context of fluid flow, it is convection 
that is the most important and so we will concentrate on this mode 
of heat transfer.  

There are two main types of convection. Let us consider the 
situation where a fluid is forced by some pressure forces to flow 
over a hot object. Some of the heat is removed from the hot object 
and convected away. This is known as forced convection. 
Conversely, a hot object might heat the surrounding stationary fluid 
causing its density to reduce locally. When this happens the hotter 
fluid rises through the colder fluid, an effect of gravity, and we 
have what is known as natural convection. In the first case, the flow 
takes place and the heat transfer is a secondary effect, whereas in 
the second case, the heat transfer actually drives the flow of the 
fluid.  
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When we started our discussions of the modelling of fluid flow, we 
had to derive mathematical relationships between the variables that 
could then be converted into numerical equations. Similarly, when 
modelling heat transfer by convection, we have to have some 
mathematical model of the energy transfer process and so now we 
must look at how this can be derived.  

11.1.2 The Energy Equation For Heat Transfer  

When modelling incompressible, viscous flows we must use the 
momentum and continuity equations to calculate the velocity 
components and the static pressure of the fluid. If we are to model 
heat transfer by convection, then we must also find some 
relationship between the flow variables and a property related to the 
heat flow in the fluid. The property we normally choose to do this is 
the temperature, which we need to calculate throughout the flow 
domain. This is done by using an energy equation derived from the 
first law of thermodynamics. The derivation is shown in detail by 
Schlichting [3] and in an abbreviated form by Chapman [36].  

If we consider a given patch of fluid, as we did in Chapter Two, the 
first law law states that the heat entering the patch can lead to some 
combination of two effects. It can raise the internal energy of the 
fluid in the patch and it can enable the patch of fluid to do work on 
its surroundings. Hence, by considering the rates at which these 
events occur, we can write the first law of thermodynamics as  

(11.1) 

where Q is the heat energy entering the patch by conduction, E is 
the internal energy of the patch and W is the work done by the fluid 
in the patch.  
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This can be rewritten in terms of the heat added per unit volume q, 
the work done per unit volume w and the internal energy per unit 
mass, the specific internal energy e, i.e.  

(11.2) 

where rho is the fluid density.  

Dealing with each of these terms, the first is the rate at which heat 
energy is conducted into the patch, which can for two dimensions 
be shown to be given by  

(11.3) 

where k is the constant thermal conductivity of the fluid.  

The second term contains the rate of change of specific internal 
energy in the patch, and it is possible to describe this as the product 
of the specific heat at constant pressure c sub p and the rate of 
change of the fluid temperature T, which in this case is the 
substantive derivative (see Section 2.2.1) of the temperature. In two 
dimensions this gives  

(11.4) 

The third term is the rate of work done per unit volume of fluid and 
this can be taken as being due to viscous forces alone if the fluid is 
incompressible. This means that  
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(11.5) 

Here the negative sign shows that this is, in fact, work done on the 
fluid in the patch not the work done by this fluid. Combining these 
terms together we obtain the equation for the transport of 
temperature through the domain, which is  

(11.6) 

This equation is very similar in form to the momentum equations 
for laminar flow that we discussed in Chapter Two. It is a non-
linear equation describing the temperature in the fluid as being 
related to the flow velocity and some properties of the fluid. To 
produce a numerical analogue of this equation, any of the 
techniques described in Chapter Three can be used and the solution 
of the equation can be inserted into the full solution process. If the 
SIMPLE algorithm is used to calculate the variables, the 
temperature is found after the pressure equation has been used to 
update the static pressure and to correct the velocity components 
that have been derived from the momentum equations.  

Such a procedure will be valid for laminar flows where the effects 
of any changes in fluid density can be ignored. This would be the 
case in forced convection problems. The effects of turbulence on 
the situation and of any changes in the density, the so-called 
buoyancy effect, still have to be taken into account.  

As a last note on the energy equation, we can see from equation 
11.6 that the boundary conditions are likely to be the specification 
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of the temperature on a boundary or the specification of the normal 
derivative of temperature. In some circumstances these will be 
known directly, but often any derivatives will have to be found 
from empirical data.  

11.1.3 The Effects of Turbulence on Heat Transfer  

In Sections 2.2.2 and 2.2.3, we looked at how to account for the fact 
that in a turbulent flow the velocity components can be thought of 
as being made up of a mean value and a fluctuating component. We 
saw there that such an analysis produced additional terms in the 
momentum equation which can be modelled as additional stresses. 
If we carry out a similar procedure for the energy equation 11.6, 
then further heat flux terms are generated. These again have to be 
modelled by some means.  

As it can be shown that there are analogies between the 
modifications to the momentum equations due to turbulence and the 
modifications to the energy equation due to turbulence, simple 
ways of modelling the additional heat flux terms are often used.  

11.1.4 Buoyancy Effects  

When a fluid is heated its density changes. This means that as the 
density changes so gravity will exert a different force on a patch of 
fluid. Consequently, hot fluids will try to rise through cold ones. 
This is the mechanism of what is known as natural or free 
convection, and this has to be modelled in some CFD simulations. 
Take for example the case of a fluid inside a double glazing system, 
Fig. 11.1. There, the left hand wall of the cavity is hot, the right 
hand wall is cold and the other two walls have no heat flowing 
through them. Gravity can be seen to act vertically downwards, 
parallel to the hot and cold walls. Due to the temperature of the 
walls, on the left hand side the fluid will be hotter than on the right 
hand side, and the density of the fluid will be lower on the left than 
on the right. As gravity will exert a lower force on the fluid at the 
left, there will be a movement of fluid up the hot wall and down the 
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cold wall. To model such situations the addition of the energy 
equation is not sufficient, as we have to include the effect of gravity 
in the momentum equations. This is done by adding an effective 
force term due to the density variation to the right hand side of the 
momentum equations. This force acts in a direction parallel to the 
direction of the gravity force.  

 

Fig. 11.1 The double-glazing problem. 

Looking at Fig. 11.1, where the problem is shown with the y-axis 
being vertical, i.e. gravity acts in the negative y-direction, we can 
see that the density changes will lead to an additional term X in the 
y-momentum equation. This term can be modelled, for our usual 
patch of fluid, as  

(11.7) 
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where rho is the local density of fluid and rho sub f is a reference 
density. Hence, when the density rho is less than the reference rho 
sub f the fluid will have a positive force on it. This density 
relationship can be converted into a temperature relationship by 
using the coefficient of volume expansion beta to give  

(11.8) 

Here, T sub f is a reference temperature and beta is defined by  

(11.9) 

where bold v is the specific volume of the fluid and the p denotes 
that the derivative is calculated at constant pressure. Combining the 
equation for X, equation 11.8, with the momentum equation in the 
y-direction, equation 2.9, gives  

(11.10) 

It is the additional term that is known as the buoyancy term.  

11.1.5 Conjugate Heat Transfer Problems  

If we set the velocity components to zero in the energy equation, 
equation 11.6, this equation can be used to describe the heat transfer 
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in a solid. In some problems, such as the flow in a thick walled 
pipe, Fig. 11.2, we might be interested in modelling the total system 
of the conduction in the solid pipe wall and the convection in the 
fluid. Such a problem is known as a conjugate heat transfer problem 
and has some of the thermal boundary conditions set at solid 
boundaries not fluid boundaries. Considering Fig. 11.2 as showing 
an axisymmetric situation, the pipe has a hot outer wall at which we 
might know either the temperature itself or the heat flux through the 
surface. Moving towards the centre of the pipe there is a solid wall 
in which heat flows by conduction and all velocity terms are zero. 
Then there is a solid-fluid interface before we come to the fluid in 
the pipe itself. Within the fluid the velocity increases away from 
this interface to a maximum at the centre of the pipe, and the 
temperature falls towards the centre.  

 

Many CFD software packages can solve such problems, but there 
can be numerical difficulties at the fluid-solid interface. These 
problems can arise from the distribution of cells with some finite 
volume programs, where a cell might straddle the interface. This 
would not happen with finite element programs. Also the modelling 
of conjugate heat transfer with turbulent flows can lead to problems 
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when any of the discretisation techniques are used, as log-law 
profiles have to be applied at the interface.  

11.1.6 Some Non-Dimensional Groups  

When we looked at defining incompressible viscous flows, we saw 
that a useful parameter in classifying the flow is the Reynolds 
number. There are several non-dimensional groups that are useful 
when considering heat transfer problems and these are:  

• Prandtl Number, which is defined as  

(11.11) 

and can be seen to be the ratio of viscous diffusion of momentum to 
thermal diffusion through conduction. Typical values of Pr for 
gases are in the range 0.65 to 1.0, with air having a value about 0.7. 
By comparison water has a value of about 6.0 at room temperature.  

• Nusselt Number, which is defined as  

(11.12) 

where d is a typical length and h is the heat transfer coefficient 
defined as the surface flux of heat q dot divided by some 
temperature difference i.e.  

(11.13) 
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where T sub s is the temperature of the surface and T sub f is a 
reference temperature, say of the fluid surrounding the surface. 
Nusselt number is a non-dimensional measure of the heat transfer 
through a surface.  

• Grashof Number, which is defined as  

(11.14) 

where g is the acceleration due to gravity, d is a typical length, beta 
is the coefficient of volume expansion, DELTA T is a temperature 
difference and nu is the kinematic viscosity. This parameter is used 
to characterise natural convection problems.  

11.2 Modelling Flows That Are Compressible  

11.2.1 Some Features Found In Compressible Flows  

Flows that are compressible have a varying density of the fluid 
throughout the flowfield. These flows exhibit some features that are 
not found in incompressible flows. Amongst these are the 
discontinuities known as shock waves where fluid variables change 
rapidly over a small spatial distance. Many books show pictures of 
the types of flow that can be found [6]. These features are found in 
addition to the features of viscous flows already discussed.  

One way of classifying a compressible flow is by the parameter 
known as the Mach Number. This is defined as the ratio of local 
flow speed V sub {local} to the local speed of sound in the fluid a, 
or  
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(11.15) 

From this we can see that once a flow is moving, the Mach number 
is not zero. Standard texts on compressible flow, such as Shapiro 
[37], show that if the Mach number is small, say less than 0.2, then 
the flow may be considered incompressible, but when the Mach 
number is greater than this then the flow must be considered as 
compressible. If the local Mach number is less than unity 
everywhere, a subsonic flow, shock waves will not appear, and the 
flow will qualitatively behave like an incompressible flow, hence 
our modelling technique need hardly be altered. Whereas, if the 
flow has regions where the Mach number is greater than one, which 
are known as supersonic flow regions, then shock waves can 
appear. If we consider the flow around an object, the Mach number 
well away from the object may be very small, however, the flow 
must accelerate around or through the object, and so the local Mach 
number can be much greater in some places. For example, the flow 
through narrow gaps such as that between an aircraft wing and a 
slat can reach supersonic speeds if then Mach number of the free 
stream, that is away from the wing, is as small as 0.2.  

The change in the observed flow types for supersonic flow areas 
suggests that something fundamental must be happening in the flow 
that is different from what happens in incompressible flow. By 
looking at the flow equations for compressible flow, this change in 
flow properties can be investigated.  

11.2.2 Equations For Compressible Flow  

If we assume that the density of a flow can vary, which it often does 
in reality, then the equations we developed in Chapter Two need 
some modification. For the continuity of mass, the major change 
comes from allowing for the possibility of mass accumulating 
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inside the patch of fluid due to the density changing with time. 
Also, the mass flow terms at each boundary of the patch must now 
include the density. This leads to the modified equation  

(11.16) 

and the momentum equations become [38]  

(11.17) 

and  

(11.18) 

where the stress terms tau are known functions of the velocity 
gradients and the viscosity.  

To model a compressible flow we must be able to describe the 
velocity field by its velocity components and we must also be able 
to specify the pressure and density. This means that we have to find 
four variables for the two-dimensional problem, and so the three 
equations above cannot give us enough information. To complete 
the mathematical definition of the problem, we can write an energy 
equation similar to equation 11.6 in the previous section which adds 
yet another variable, temperature.  
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As before, the two momentum equations (11.17) and (11.18) can be 
used to find the velocity components, and the compressible 
continuity equation (11.16) can then be used to obtain the fluid 
density throughout the flow. Temperature can be calculated using 
the energy equation, and finally the fluid pressure can be obtained 
from the equation of state for the fluid. Usually, the fluid can be 
taken as being a perfect gas, and so the equation of state is [31]  

(11.19) 

where R is the gas constant.  

From this, we can see that the compressible flow equations do not 
require a SIMPLE-like algorithm as was discussed in Chapter 
Three. The equations derived allow the solution to proceed in a 
more intuitive way. Also, historically, people have solved the above 
equations with the viscous terms neglected. The equations are then 
known as the Euler equations. Once the local Mach number is 
greater than unity, the equations change in character to allow the 
features such as shock waves to occur. They become hyperbolic, 
and have characteristic solution directions. Numerical schemes 
capable of solving these equations must reflect these changes [13].  

11.2.3 Some Practical Problems With Compressible Flows  

Compressible flows, in reality, can exhibit behaviour that is very 
different from that of incompressible flows. This comes from the 
existence of shock waves in some flows, where the flow variables 
change rapidly over very small distances. Effectively, the flow 
solution is discontinuous. Also, if the flow speed is very large, 
when compared to the local speed of sound, the equations change in 
character to reflect the changes that occur in the physical flows.  

This leads to CFD software having to be able to handle 
discontinuous flow solutions and different types of partial 
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differential equation. Hopefully, the CFD software package will 
take care of the solution scheme changes, but the analyst must be 
aware of the requirements for a suitable mesh. This can be a 
problem, as the shock waves appear in the flow and propagate away 
from the boundaries not along the boundaries. As the flow near a 
shock wave is discontinuous, the mesh must be built such that it has 
a large number of cells in areas where shock waves are expected. 
Unfortunately, before the solution is run, it is very difficult to 
predict where the shock wave will occur, and so one useful 
technique is to use adaptive meshing as described in Chapter Six. 
Then a solution can be run, the gradients of, say, the pressure 
calculated and the domain remeshed to put more cells in the areas 
of high gradients [15].  

11.3 Multiple-Phase Flows  

Multiple-phase flows occur when two or more different states of 
material flow together. A solid might flow together with a gas or a 
liquid, or a gas might flow with a liquid. Physical examples of this 
are:  

• the flow of steam and water in power plants  
• the flow of water droplets and air in a cooling tower  
• the flow of sand and air in a sand-transport system.  

Modelling of these systems again uses the concepts of momentum 
conservation, continuity and, if necessary, energy conservation or 
other physical laws. In particular, each phase of material is assumed 
to have its own velocity components and a volume fraction. This 
latter quantity is the amount of material of a phase, by volume, 
relative to the total amount of material.  

Equations are then developed for the conservation laws, and the 
interaction of the phases is taken into account by terms which are 
derived empirically. Take the case of solid spheres flowing with a 
liquid. The spheres gain momentum due to the relative velocity of 
the spheres when compared to the fluid, and the fluid looses 
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momentum in the same way. Effectively there is a friction between 
the phases, and this is known as the interphase friction. 
Consequently, the momentum equations have to be modified to 
allow for the effects of these interface momentum changes.  

Standard papers on the modelling of multi-phase flows are those of 
Harlow and Amsden [39] and Spalding [40].  

11.4 Modelling the Effects of Combustion  

Combustion is the science of burning substances. It is a composite 
science, drawing on material from chemistry, thermodynamics and 
fluid mechanics. Much of the material that has already been 
discussed is of use in solving combustion problems, but there is a 
tremendous amount missing especially in terms of chemistry. The 
following brief note might be of help if you need to solve flow 
problems which involve combustion.  

There are several books that give good introductions to the subject, 
such as Spalding [41]. In terms of modelling, the simulation of 
combustion includes a combination of compressible flow and multi-
phase flow together with some chemistry which models the burning 
process. This takes some fuel together with an oxidant and produces 
what are known as the products of combustion. The rate at which 
this takes place has to be determined and is often controlled by the 
mixing of the components or by chemical kinetics, which are 
energy processes. The burning process releases heat energy to the 
system, and so the rate of heat release has also to be found. These 
features are given to the calculation using simple models or 
empirical data.  
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12 ACQUIRING CFD TECHNOLOGY  

12.1 Preliminaries  

In the first eleven chapters of this book, we have discussed the 
techniques that are used to produce a simulation of a flow using 
CFD. Also, we have looked at the hardware and software that is 
commercially available for use in the analysis process. For people 
that need to understand what is happening when a fluid flows, these 
techniques might provide an additional means of finding 
information, but the acquisition of the necessary hardware, software 
and expertise is expensive. For this reason, a careful study of the 
needs and requirements has to be made before the final decision to 
acquire the technology can be taken.  

In this final chapter we look at some of the items that should be 
considered before committing resources to CFD. This chapter has 
been written to help guide those who have to make commercial 
decisions about the use of this technology, and so it is aimed mainly 
at the industrial user, but it also has some relevance for other users.  

12.2 Assessing the Need  

The first thing to consider is how a knowledge of fluid flow might 
help you or your organisation. To explore this, we need to look at 
all the areas that are related to fluid flow. Let us consider the case 
of a manufacturer in the motor industry. Fluid flow is an important 
topic for many different people within the organisation such as the 
vehicle aerodynamicist, the engine designer and the `engineer 
developing heating and air conditioning systems. All of these areas 
are related to the production of the product of a company, but there 
are other areas where fluid flow could be important. For example, 
in the design of a new manufacturing facility, the flow of air could 
affect the manufacturing process, the ventilation or even the safety 
of the plant with regard to a fire.  
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Once the areas of interest have been listed, the techniques that are 
available to investigate the fluid flow phenomena should be 
assessed. In the case of the flow over a vehicle, it is cheaper and 
more accurate to obtain estimates of the aerodynamic forces that 
engineers require using experiments in a wind tunnel. Conversely, 
in the case of the flow within an engine, the experiments needed to 
determine the characteristics of a flow are extremely expensive due 
to the problems of measuring the flow variables, and so CFD might 
provide an alternative analysis tool that is cost effective. When all 
this information has been assembled, it should be possible to see if 
there is a place for CFD in the toolkit of techniques that might be 
used.  

If CFD has a place in the toolkit then the benefits of using this 
expensive technology must be made clear. Remember, it may be 
that CFD is just another tool, providing no more or no less than 
those tools currently in use. Conversely, it may provide some extra 
benefit, such as a direct saving in cash terms, or providing extra 
information that is not currently available.  

12.3 Producing A Specification For A CFD Program  

If there is a need for CFD, then we must decide what type of CFD 
software is required. To find out which of the available packages 
could be used, we must produce a list of requirements, that the CFD 
software should meet. More often than not, no single package will 
meet all the requirements but several packages will meet some of 
the requirements. Hence, when choosing the software we might 
have to make some very subjective decisions.  

To draw up the program specification, we must think carefully 
about the flow problems that we wish to analyse. For example, we 
should have some idea of the following features:  

• the geometry of the fluid domains that might need to be 
analysed. This will tell us whether we need a package that 
can solve problems in one, two or three dimensions. Also, 
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if the geometry is very complex, we might be forced to use 
a system that can handle a mesh which is unstructured, but 
for many problems a structured mesh will be sufficient.  

• the flow type. The classification of a flow depends on such 
things as the speed of the flow relative to the speed of 
sound, so that an assessment of the compressibility of the 
fluid can be made. If the Mach number throughout the flow 
is low then an incompressible flow solver can be used, but 
if the Mach number is close to or greater than one, 
anywhere in the flow, than a compressible solver will be 
required. A knowledge of the Reynolds number is also 
important, as we can determine from this whether the flow 
will be laminar or turbulent. If the flow is turbulent, then 
some form of turbulence model will be necessary, and the 
level of sophistication required of this model will also be 
determined by the characteristics of the flow. In most cases, 
a two-equation model such as the $k- epsilon$ model will 
be sufficient, but if the flow swirls, for example, then an 
algebraic stress or Reynolds stress model might well 
perform better. One other aspect of the flow that needs to 
be decided upon is the level of variation with time. Many 
flows can be assumed not to vary with time, provided that 
the gross features do not change with time, even though the 
microscopic flow features may vary with time. However, 
some flows will vary with time. This might be inherent in 
the flow itself even if the geometrical boundaries do not 
move. For example, the vortices can be shed behind a 
cylinder in a periodic manner at certain Reynolds numbers. 
In other cases, the flow will vary with time due to the 
movement of the geometrical boundaries. An example of 
this is the flow generated by a piston moving within an 
internal combustion / engine.  

• heat transfer effects. In many flow situations, the 
knowledge of the flow of heat throughout the fluid might 
be required. Further, the flow of heat in adjoining solid 
material might also be of interest, requiring a conjugate 
heat transfer problem to be solved, as might the effects of 
radiation.  
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• the number of phases in the flow. This is usually one, but it 
could be two or more for some problems.  

The above list covers some aspects of the flow, but we also need to 
determine some of the features of the simulations. For example, we 
should have some ideas about:  

• the size of the simulation problem. We need to know 
something about the number of cells or elements that a 
typical mesh will contain and the number of flow variables 
that we need to calculate. This information helps us to 
determine the storage requirements of the CFD programs in 
terms of both primary and secondary storage. It is worth 
remembering that the more data we calculate for a given 
flow, the more accurate the solution should be, but the 
longer it will take to obtain the results. Clearly some 
compromise has to be made here.  

• the required results of the analysis; such as velocities, 
pressures or forces.  

• interfacing requirements. When defining the geometry of a 
flow domain, geometrical data is required and, sometimes, 
this will come from a CAD system or from a finite element 
pre-processor. Equally, we may wish to send the results to 
an existing post-processor or some other display software. 
If this is the case, then the CFD software should have 
appropriate interfaces.  

• solution speed. Many things affect the time that it takes to 
produce the solution to a simulation problem. Clearly, this 
will depend on the processing speed of the hardware that is 
used, but it also depends on the CFD solver itself. Some 
algorithms for solving the governing equations are much 
faster than others. This speed difference might come from 
the basic discretisation of the equations, from the internal 
organisation of the program or from the speed of the linear 
equation solvers used.  

• hardware availability. If there is a restriction on the make or 
type of computer or graphics terminal that you wish to run 
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the software on, this should be noted. It is common for 
CFD pre- and post-processors to be very hardware specific 
and for solvers to be much more portable between different 
machine types.  

From all of the above, we now know a considerable amount about 
the flows that we wish to simulate and the simulation process itself. 
Finally, it is important to assess what kind of service it is that we 
need the software supplier to provide. This will be a very subjective 
set of requirements, and will to some extent depend on the people 
that are available within an organisation to run the CFD software 
and talk with the supplier. At this point, it is worth issuing a 
warning. With the proliferation of computers and software, many 
people are now used to buying a package, loading it onto a machine 
and getting results without too many problems. For business 
software this is certainly true, and it is becoming true of many 
engineering packages as well. Unfortunately, CFD software is not 
as mature as other engineering analysis tools that are on the market. 
Structural finite element packages, that solve linear statics 
problems, and matrix manipulation packages are much less prone to 
error than the latest CFD packages. This is because CFD 
technology is still developing and even the researchers in the area 
are not entirely sure as to how things will develop in the future. 
Further, it is only since, say, 1985 that industrial companies have 
started to take an interest in running CFD tools. This means that the 
wishes and demands of users have not yet been met in full.  

Amongst the requirements that are related to the software supplier 
are:  

• quality assurance or QA. This is the extent to which the 
software has been tested against standard test cases for 
which there is a known solution. The comparison data may 
come from either analytical expressions or experiments. 
These comparisons are carried out to both verify the code, 
which means to show that it is correct against the numerical 
models that it is simulating; and also to validate the code, 
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which is the process of showing that the code gives reliable 
results against physical experiments. There should be some 
evidence from the supplier that the software has been tested 
for both validation and verification. In fact, most pieces of 
CFD software are so complex that every possible 
combination of operating features will never be tested, until 
that is, you as a user run your particular example, and find 
that it does not work. This may appear cynical but it is 
often true. Hopefully, as more people use CFD so the 
problems for users will reduce.  

• user friendliness. This is probably the most subjective 
feature of all, as what appears friendly to one person will be 
unfriendly to another. Again, this will depend on the staff 
that run the programs.  

• user support. This is very important as users can never be 
fully conversant with the programs that they run. Software 
suppliers should provide some form of User Hotline that 
can give a quick response to a user's questions. This 
normally comes as part of the annual licence fee for the 
software, or can be purchased separately if the program is 
bought with a once-only payment, which is known as a 
perpetual licence. There should also be the option of buying 
training in the use of the programs, and the chance for users 
to work with the supplier in setting up a problem. This is 
normally done by paying for consultancy from the software 
supplier.  

• current users. It is important to know who is currently using 
the software, not who has used the software. This enables 
companies to see if firms in a similar business are using the 
software, and can give some confidence in the suppliers and 
their product.  

The easiest way to document this information is to draw up a table 
of capabilities product by product. Sometimes this can be difficult 
to do for someone with little experience. It is at this stage that it is 
important to obtain independent advice to guide you. Sometimes 
people place too much reliance in the software suppliers 
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themselves, and even though the suppliers can provide much 
information, an independent view is worthwhile. A sample 
specification table is shown in Table 12-1 and this can be used to 
assess each of the competing products.  

12.4 Deciding on the Necessary Software  

Once the specification of the software is determined, various 
software options need to be evaluated against this specification. 
This can take a lot of time and effort as there are many CFD 
products in the market place and the suppliers of each of them will 
be only too willing to shower you with information. The 
information that is provided can take many forms, but the simplest 
starting point is to look at the brochures that explain the software. 
Much of the information required can be determined from these, but 
quite a lot of it can not. In particular, the more subjective 
information such as the levels of user friendliness, solution times, 
QA and user support need to be investigated further.  

One way of gaining this more specific information is to produce a 
sample problem that is typical of the problems that you wish to 
solve. Suppliers will often produce a simulation of this problem 
using their software at a reduced cost, or even for free if the 
problem is very small. This enables potential customers to see 
software products in action on a realistic problem. Such a trial will 
help in understanding how the processes outlined in this book relate 
to the specification and operation of the software. It will also 
produce some hard facts that should help in determining the cost of 
obtaining a simulation using a particular CFD package.  

When the competing products have been assessed using the 
specification table, several suitable products should emerge. In fact 
it is probable that none of the products will be ideal, but some 
should come closer than others. A simple way of assessing the most 
suitable package is to assign numbers to each of the categories in 
the specification in some way such that the higher the number the 
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better the specification level. Then by adding up these numbers and 
getting a total value for each package they can be ranked.  

Once the products are ranked in order of suitability, the question of 
cost needs to be looked at. Normally, software is licenced on an 
annual basis with a single fee being paid to the supplier which 
includes the provision of the software and any updates to it as well 
as technical support in the form of a hotline service. Sometimes, 
however, the software is purchased on perpetual licence terms 
where one large payment pays for the software and a smaller annual 
fee pays for the updates to the software and the support. Sometimes 
both methods are on offer, and it takes careful consideration to 
decide which of the two will be the cheapest option in the long run. 
This is especially difficult as the market is still developing and the 
most suitable program today may not be the best choice in three or 
four years time. Finally, it may be that some sacrifice in terms of 
the capability of a package has to be made if an affordable solution 
is to be chosen for purchase. This has to be achieved by 
determining the minimum level of functionality that is acceptable.  

12.5 Deciding on the Necessary Hardware  

Many organisations already have access to the computer facilities 
that are necessary for running large computational analysis 
programs such CFD packages. Others will need to acquire the 
hardware. In both cases, however, it is important to consider a 
number of factors. For the former case this enables the user to 
determine if the existing facilities are suitable and have the 
necessary spare capacity, and for the latter case it allows estimates 
to be made of the various measures that will determine the 
hardware.  

These factors include the following:  

• computer processing power. A large amount of processing 
power is needed to run some CFD test cases. Fortunately, 
recent technical advances mean that the necessary power is 
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available very cheaply. The factors that affect the speed of 
processing include such things as the calculation speed of 
the processor which is measured in $mips$ and is the 
number of millions of processor instructions carried out per 
second, or in $MFLOPS$ where one $MFLOP$ is one 
million floating point operations per second. There is no 
clear relationship between the two for different processors, 
as what takes one instruction on one machine might take 
several instructions on another. The speeds of the various 
computers are often quoted in these units, but different 
software runs in different ways on different machines. 
Consequently, the numbers quoted are only a guide to the 
raw processing power. To find a true measure of speed for 
the software and hardware combination a series of sample 
flow problems must be simulated. This assumes that the 
CFD software does not make any use of the secondary data 
storage during execution, as the speed at which data can be 
accessed from devices such as hard disks can have a 
marked effect on solution times. Some CFD software 
packages write data to these devices during the solution 
phase and if the processes of reading and writing to the disk 
are slow, then the whole solution process is slowed down. 
For a typical analysis on a given computer installation, the 
total solution time will depend on all of these things 
together with the number of simulations that will be solved 
simultaneously on any one system.  

• primary data storage capacity. On most computer systems, 
the primary data storage system is known as random access 
memory (RAM). This is usually sized by the number of 
bytes of data that can be stored. Each byte consists of eight 
bits, where one bit is the basic unit of storage 
corresponding to a stored value of either zero or one. 
Numbers can be stored as integers or real numbers and two 
or four bytes are used for integers and four or eight bytes 
for real numbers. The greater the number of bytes the 
greater the maximum integer, and the more accurate a real 
number, that can be stored. Sometimes, the software 
supplier will specify the number of Megabytes of RAM that 
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are required to run their software successfully. In large 
machines, such as supercomputers, the memory size is 
measured in words. These are usually words of eight bytes 
or sixty four bits, and are the machine's minimum storage 
for a single real number.  

• secondary storage capacity. Random access memory is used 
during the execution of a program, but if the user needs to 
access the data after the program has stopped running then 
the data must be written to some secondary storage device. 
These are usually hard disks, which are aluminium disks 
covered in magnetic material such as iron oxide, just as 
happens with audio tape. In personal computers these disks 
may store a few tens of Megabytes and in workstations 
several hundred megabytes. In large systems, the disk 
storage might consist of sets of disks each storing several 
Gigabytes of data. We need to assess how much of this 
storage we will need for each problem that we wish to 
solve. A rough estimate can be made by taking the number 
of nodes in a problem and multiplying by the number of 
coordinates used to describe a node plus the number of 
variables stored at each point, which would be nine for a 
three-dimensional turbulent flow problem solved with three 
velocity components, pressure and two turbulence 
variables. So for a mesh with 10,000 nodes we must store at 
least 90,000 real numbers. If the data is stored in readable 
(ASCII) format, say twenty bytes are required to store each 
number, 1.8 Megabytes are required in total. If, however, 
the data is stored as single precision real numbers in binary 
format, only four bytes will be required to store each 
number and the total storage required will be 0.36 
Megabytes. These are low estimates of the total data 
storage requirements, as each software package will store 
different information. The software supplier might be able 
to give information on the data storage required for a given 
model size.  

• access points. If several people need to run CFD analyses 
simultaneously then several access points will be required. 
These might need to be split between a number of graphics 
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screens and a number of text screens. This will enable some 
people to perform graphics pre- and post-processing whilst 
others run the solver program.  

• backup facilities. There is a need to provide some backup 
of the data held on disk, to protect against loss of data. This 
can occur if a disk drive is broken, such that the data stored 
on it cannot be read, or could occur if a user deletes a file in 
error. It is common for each disk to be backed-up in full, 
i.e. all the data is written to a tape storage device, or 
something similar, every week. Then further backup 
procedures are carried out once a day, to ensure that all the 
new files that are created within the previous twenty-four 
hours, and the new versions of edited files, are also written 
to a backup device. This is procedure is known as an 
incremental backup and ensures that, at worst, only one 
day's work can be lost. Once backup tapes have been 
prepared it is worth protecting them against fire by using a 
fireproof storage facility.  

When these items have been considered, it should be possible to 
know whether an existing installation will be sufficient to run CFD 
problems or whether it will need to be enhanced in some way. If 
new facilities are required, either to enhance the existing capacity or 
to provide a completely new system, then they could now be 
assessed for suitability.  

12.6 Finding People To Run CFD Simulations  

Having decided upon a software package and a hardware system, 
CFD simulations will not run themselves. We must, finally, look at 
the most important asset in the CFD analysis process. This is the 
analyst who actually translates the engineering problem into a 
computational simulation, runs the CFD solver and analyses the 
results. It is the skill of this person, or set of persons, that will 
determine whether all the hardware and software will be utilised in 
the best possible way and produce good quality results.  
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People from many different backgrounds can be trained to go 
through the processes that we have discussed in this book, but it is 
my personal belief that more than this is required. The skills that are 
required include:  

• mathematical skills. These enable the analyst to understand 
the underlying features of the numerical processes used to 
convert the governing partial differential equations into 
numerical analogues, and to coax the solution procedures to 
converge to sensible and realistic values.  

• computational skills. The production of a CFD simulation 
can involve the user in manipulating large amounts of data 
with packages that do not interface together and reside on a 
variety of types of computers. This can mean, for example, 
that CFD analysts have to write their own interface 
programs to convert data from one program's format to 
another program's format. Also, an analyst might have to 
write computer operating system command language 
programs that instruct a computer or even a variety of 
computers to move data around a network, run some CFD 
programs and then move the data around the network again. 
Consequently, CFD analysts must be conversant with 
computer procedures at a level that is far greater than that 
required for analysts who use the more common software 
products that perform engineering computations.  

• good interpersonal skills. If the analyst is not the end-user 
of the data, then there will have to be close liaison between 
the analyst and the end-user, who is in effect a customer or 
client of the analyst. This requires that a good working 
relationship is developed between the two parties so that 
the analyst knows what the customer requires, and the 
customer is aware of the limitations of the analysis.  

• engineering skills. Finally, the analyst must have a working 
understanding of the engineering processes that are to be 
modelled. This enables the limits of a computer model to be 
established and the results of the simulation to be analysed 
in a sensible way.  
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Large organisations may well have a pool of analysts in which there 
are several people that could be used to produce CFD simulations, 
as they have a majority of the qualities listed above. These people 
could be engaged at present in running finite element structural 
analyses or similar large scale engineering computations. If such 
people do not exist within the organisation, or if suitable people 
cannot be used for whatever reason, then staff will have to be hired. 
Hiring staff of the right technical background to use CFD in 
industry, whatever their background is extremely difficult. Not 
many people have all the skills necessary and so several people may 
be needed. Depending on the size of the organisation, therefore, one 
or more people may be employed in the use of CFD, and the right 
mixture of abilities is important.  

One other way of proceeding is to employ a limited number of 
people to work with CFD and then to use external consultants to 
supplement the skills where appropriate. These consultants can be 
found working with CFD software suppliers, general engineering 
consultancy practices and in universities and polytechnics. For 
industrial users who are not specialists in this field, it is important 
to have access to advice at a moments notice. This can be provided 
by a software supplier when problems occur running a particular 
package, but another useful source is a local university of 
polytechnic, where a specialist in the CFD field may well be willing 
to provide consultancy as and when required.  

12.7 Integrating CFD Within The Design Process  

As a final topic, let us look at how the results of CFD simulations 
can be used within the engineering design process. In industry, 
CFD can be used to provide information about how fluids flow and 
what the effect of the flow is on engineering devices. Chapter One 
gave a list of possible uses. At present, there are many situations in 
which CFD simulations are being made, and many examples have 
been presented at technical conferences, or in journals, which 
demonstrate the benefits of using CFD technology in particular 
industrial areas.  
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Now, whilst these demonstrations are useful in that they show a 
technical capability, their impact on the engineering design process 
is limited. If CFD is to be of use to an industrial organisation, then 
it should be capable of being integrated into the design process in 
such a way that the simulations can influence the engineering 
design. This could happen after a given design has been proposed 
and before prototypes are built. However, this can only take place if 
the CFD simulation can provide the required engineering data in a 
cost-effective way when compared to current methods of analysis, 
whatever they are, and in a shorter span of time.  

At present, the total integration of CFD into the design process is 
not possible because it takes a long time, perhaps several man-
months to build a computer model of a flow problem, run the solver 
and produce the results. All of this must be repeated for every 
configuration that is considered. Compare this to the use of a 
physical model. Whilst it may take some time to build the model, 
once built it can be tested at a variety of flow conditions and for a 
variety of geometrical configurations with a minimum of extra 
effort.  

Looking at the CFD process that we have discussed, the generation 
of the mesh takes the longest time for complex but realistic flow 
geometries. If this mesh building time can be reduced, which it can 
be if automatic mesh generation tools are developed further, then 
the turnaround time for a CFD simulation can be reduced to a few 
hours. Once the results of CFD simulations can be accessed in such 
a short space of time for each configuration, then the design process 
can be influenced much more easily as several configurations can 
be carried out and modifications made to the design which can be 
quickly modelled by the CFD analyst and tested computationally. 
When this is possible, then CFD will be a mature technology for 
use in industry. At present (1991), CFD is a useful tool but there is 
still room for improvement.  
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APPENDIX A. PHOENICS RESULTS FOR A 
SIMPLE LAMINAR FLOW  

Results After 100 Sweeps  
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Y-COORDINATES OF THE CELL CENTRES  

2.500E-02 7.500E-02 1.250E-01 1.750E-01 2.250E-01  

2.750E-01 3.250E-01 3.750E-01 4.250E-01 4.750E-01  

Z-COORDINATES OF THE CELL CENTRES  

1.953E-02 5.860E-02 1.172E-01 2.344E-01 4.688E-01 
9.375E-01 1.875E+00 3.750E+00 7.500E+00 
1.500E+01  

--- INTEGRATION OF EQUATIONS BEGINS ---  

 
TIME STP= 1 SWEEP NO= 100 ZSLAB NO= 2 ITERN 
NO= 1  

 
TIME STP= 1 SWEEP NO= 100 ZSLAB NO= 1 ITERN 
NO= 1  

FLOW FIELD AT ITHYD= 1, ISWEEP= 100, ISTEP= 1 
YZPR IX= 1 
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FIELD VALUES OF P1 
IY= 10 1.388E+02 1.236E+02 1.622E+02 1.595E+02 
1.553E+02 
IY= 9 1.371E+02 1.235E+02 1.606E+02 1.586E+02 
1.551E+02 
IY= 8 1.376E+02 1.248E+02 1.602E+02 1.584E+02 
1.551E+02 
IY= 7 1.385E+02 1.261E+02 1.601E+02 1.585E+02 
1.550E+02 
IY= 6 1.395E+02 1.271E+02 1.603E+02 1.587E+02 
1.550E+02 
IY= 5 1.405E+02 1.280E+02 1.609E+02 1.589E+02 
1.550E+02 
IY= 4 1.412E+02 1.287E+02 1.620E+02 1.593E+02 
1.550E+02 
IY= 3 1.421E+02 1.281E+02 1.638E+02 1.595E+02 
1.548E+02 
IY= 2 1.483E+02 1.210E+02 1.668E+02 1.592E+02 
1.547E+02 
IY= 1 1.662E+02 9.704E+01 1.702E+02 1.582E+02 
1.545E+02 
IZ= 1 2 3 4 5 
IY= 10 1.490E+02 1.373E+02 1.144E+02 7.173E+01 4.170E-
11 
IY= 9 1.490E+02 1.373E+02 1.144E+02 7.174E+01 6.545E-
11 
IY= 8 1.490E+02 1.373E+02 1.144E+02 7.174E+01 6.328E-
11 
IY= 7 1.490E+02 1.373E+02 1.144E+02 7.174E+01 6.004E-
11 
IY= 6 1.490E+02 1.373E+02 1.144E+02 7.174E+01 5.578E-
11 
IY= 5 1.490E+02 1.373E+02 1.144E+02 7.174E+01 5.056E-
11 



C. T. Shaw, Using Computational Fluid Dynamics, Prentice Hall, 1992 

283 

IY= 4 1.490E+02 1.373E+02 1.143E+02 7.173E+01 4.451E-
11 
IY= 3 1.490E+02 1.373E+02 1.143E+02 7.173E+01 3.778E-
11 
IY= 2 1.490E+02 1.373E+02 1.143E+02 7.173E+01 3.062E-
11 
IY= 1 1.490E+02 1.373E+02 1.143E+02 7.173E+01 5.032E-
11 
IZ= 6 7 8 9 10 
FIELD VALUES OF V1 
IY= 9 1.140E-01 1.174E-01 7.076E-02 4.693E-02 1.220E-02 
IY= 8 2.043E-01 1.978E-01 1.427E-01 9.490E-02 2.391E-02 
IY= 7 2.719E-01 2.615E-01 2.092E-01 1.403E-01 3.344E-02 
IY= 6 3.179E-01 3.072E-01 2.657E-01 1.786E-01 3.925E-02 
IY= 5 3.412E-01 3.324E-01 3.094E-01 2.048E-01 4.005E-02 
IY= 4 3.391E-01 3.317E-01 3.380E-01 2.133E-01 3.512E-02 
IY= 3 3.157E-01 2.927E-01 3.475E-01 1.982E-01 2.482E-02 
IY= 2 3.067E-01 1.773E-01 3.294E-01 1.541E-01 1.123E-02 
IY= 1 3.592E-01 -8.412E-02 2.657E-01 8.187E-02 -8.201E-
04 
IZ= 1 2 3 4 5 
IY= 9 5.606E-04 -5.055E-04 -1.038E-03 -7.173E-04 -2.708E-
03 
IY= 8 1.103E-03 -9.909E-04 -2.092E-03 -1.783E-03 -2.709E-
03 
IY= 7 1.469E-03 -1.441E-03 -3.060E-03 -2.712E-03 -2.710E-
03 
IY= 6 1.546E-03 -1.835E-03 -3.885E-03 -3.441E-03 -2.711E-
03 
IY= 5 1.287E-03 -2.147E-03 -4.499E-03 -3.904E-03 -2.712E-
03 
IY= 4 7.267E-04 -2.342E-03 -4.823E-03 -4.028E-03 -2.712E-
03 
IY= 3 2.324E-06 -2.371E-03 -4.751E-03 -3.735E-03 -2.712E-
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03 
IY= 2 -6.434E-04 -2.157E-03 -4.130E-03 -2.948E-03 -
2.712E-03 
IY= 1 -8.519E-04 -1.533E-03 -2.689E-03 -1.636E-03 -
2.712E-03 
IZ= 6 7 8 9 10 
FIELD VALUES OF W1  

 
 IY=  10       1.089E+00  1.162E+00  1.282E+00  
1.428E+00  1.505E+00 
 IY=   9       1.070E+00  1.124E+00  1.249E+00  
1.400E+00  1.474E+00 
 IY=   8       1.053E+00  1.097E+00  1.212E+00  
1.353E+00  1.414E+00 
 IY=   7       1.036E+00  1.070E+00  1.169E+00  
1.287E+00  1.324E+00 
 IY=   6       1.018E+00  1.039E+00  1.118E+00  
1.198E+00  1.204E+00 
 IY=   5       9.984E-01  1.004E+00  1.057E+00  
1.083E+00  1.052E+00 
 IY=   4       9.817E-01  9.604E-01  9.809E-01  
9.321E-01  8.672E-01 
 IY=   3       9.929E-01  9.059E-01  8.749E-01  
7.344E-01  6.488E-01 
 IY=   2       1.041E+00  8.186E-01  7.001E-01  
4.720E-01  3.961E-01 
 IY=   1       7.194E-01  8.144E-01  3.617E-01  
1.120E-01  1.174E-01 
 IZ=            1          2          3          4          
5 
 IY=  10       1.512E+00  1.499E+00  1.447E+00  
1.376E+00 
 IY=   9       1.481E+00  1.469E+00  1.416E+00  
1.309E+00 
 IY=   8       1.418E+00  1.407E+00  1.359E+00  
1.266E+00 
 IY=   7       1.325E+00  1.315E+00  1.274E+00  
1.201E+00 
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 IY=   6       1.200E+00  1.193E+00  1.162E+00  
1.116E+00 
 IY=   5       1.045E+00  1.040E+00  1.024E+00  
1.011E+00 
 IY=   4       8.581E-01  8.574E-01  8.610E-01  
8.903E-01 
 IY=   3       6.406E-01  6.459E-01  6.770E-01  
7.557E-01 
 IY=   2       3.934E-01  4.090E-01  4.810E-01  
6.123E-01 
 IY=   1       1.278E-01  1.659E-01  3.003E-01  
4.640E-01 
 IZ=            6          7          8          9 

...edited...  

 
SPOT VALUES VS. SWEEP (/ITHYD IF PARAB)  

IXMON= 1 IYMON= 2 IZMON= 2  

TABULATION OF ABSCISSA AND ORDINATES...  

ISWP P1 V1 W1 
1.000E+00 1.000E-10 4.053E-02 9.950E-01 
2.000E+00 1.391E-01 1.067E-01 9.617E-01 
3.000E+00 3.632E-01 1.313E-01 9.370E-01 
4.000E+00 6.851E-01 1.696E-01 9.186E-01 
5.000E+00 1.106E+00 1.816E-01 9.050E-01 
6.000E+00 1.623E+00 2.056E-01 8.906E-01 
7.000E+00 2.239E+00 2.109E-01 8.793E-01 
8.000E+00 2.951E+00 2.274E-01 8.670E-01 
9.000E+00 3.736E+00 2.315E-01 8.590E-01 
1.000E+01 4.601E+00 2.419E-01 8.490E-01  

...edited...  
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9.100E+01 1.123E+02 1.790E-01 8.228E-01 
9.200E+01 1.133E+02 1.786E-01 8.224E-01 
9.300E+01 1.143E+02 1.782E-01 8.221E-01 
9.400E+01 1.153E+02 1.779E-01 8.217E-01 
9.500E+01 1.162E+02 1.777E-01 8.212E-01 
9.600E+01 1.172E+02 1.775E-01 8.207E-01 
9.700E+01 1.182E+02 1.773E-01 8.203E-01 
9.800E+01 1.191E+02 1.773E-01 8.197E-01 
9.900E+01 1.201E+02 1.772E-01 8.192E-01 
1.000E+02 1.210E+02 1.773E-01 8.186E-01  

 
   VARIABLE        P1         V1         W1 
     MINVAL=  1.000E-10  4.053E-02  7.920E-01 
     MAXVAL=  1.210E+02  2.747E-01  9.950E-01 
     CELLAV=  5.988E+01  2.208E-01  8.211E-01 

 

 

 

1.00 W....+...VVVVVVVV...+....+....+....+....+....+..PPP  

     .      VV       VVVV                         PPPP . 

0.90 +    VV             VVV                   
PPPP    + 
     .W   V                 VVV              PPP       
. 
0.80 +   V                     VVV        PPP          
+ 
     .  V                         VVV   PPP            
. 
0.70 +W V                            VVVV              
+ 
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     .                             PPP   VVVVV         
. 
0.60 + W                         PPP         
VVVVVVVVVVV 
     . W                       PPP                     
. 
0.50 +  W                    PP                        
+ 
     .  W                  PP                          
. 
0.40 +V                  PP                            
+ 
     .   W             PP                              
. 
0.30 +V   W          PP                                
+ 
     .    W        PP                                  
. 
0.20 +     W     PP                                    
+ 
  
     .      W  PP                    
WWWWWWWWWWWWWWWWWWW 
0.10 +      PWW                WWWWWW                  
+ 
     .   PPPP WWW         WWWWWW                       
. 
0.00 
VPPPP+....+WWWWWWWWWW....+....+....+....+....+....
+ 
     0   .1   .2   .3   .4   .5   .6   .7   .8   
.9  1.0 
 THE ABSCISSA IS      ISWP.  MIN= 1.00E+00 MAX= 
1.00E+02 

 
 

RESIDUALS VS. SWEEP (/ITHYD IF PARAB)  

TABULATION OF ABSCISSA AND ORDINATES...  
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ISWP P1 V1 W1 
1.000E+00 2.756E+06 6.753E+04 8.983E+08 
2.000E+00 2.733E+06 2.124E+06 1.016E+09 
3.000E+00 2.465E+06 2.567E+06 1.013E+09 
4.000E+00 2.779E+06 3.106E+06 1.509E+09 
5.000E+00 2.895E+06 3.011E+06 1.463E+09 
6.000E+00 2.636E+06 3.871E+06 2.384E+09 
7.000E+00 2.669E+06 4.324E+06 1.043E+09 
8.000E+00 2.804E+06 3.729E+06 1.298E+09 
9.000E+00 2.676E+06 3.791E+06 1.770E+09 
1.000E+01 2.664E+06 3.973E+06 9.224E+08  

...edited...  

9.000E+01 1.052E+06 2.123E+06 3.499E+08 
9.100E+01 1.037E+06 2.095E+06 3.463E+08 
9.200E+01 1.022E+06 2.066E+06 3.422E+08 
9.300E+01 1.007E+06 2.038E+06 3.387E+08 
9.400E+01 9.934E+05 2.010E+06 3.350E+08 
9.500E+01 9.790E+05 1.981E+06 3.311E+08 
9.600E+01 9.646E+05 1.953E+06 3.274E+08 
9.700E+01 9.512E+05 1.926E+06 3.240E+08 
9.800E+01 9.372E+05 1.898E+06 3.202E+08 
9.900E+01 9.239E+05 1.871E+06 3.170E+08 
1.000E+02 9.109E+05 1.845E+06 3.136E+08  

 
   VARIABLE        P1         V1         W1 
     MINVAL=  1.372E+01  1.112E+01  1.956E+01 
     MAXVAL=  1.488E+01  1.532E+01  2.159E+01 

1.00 +.PW.+VVVVVVVVVVVVV.+....+....+....+....+....+....+  

 
      PPPVVVPVP P       VVVVVVVVVV                      
. 
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 0.90 + VP  PP PPPP               VVVVVVVVV             
+ 
      .V  W       PPP                      
VVVVVVVV     . 
 0.80 +V            PPP                            
VVVVVV 
      . W   W          PPP                              
. 
 0.70 +   W  W W         PPP                            
+ 
      .         W           PPP                         
. 
 0.60 +W W W W                PPP                       
+ 
      .    W  W                 PPP                     
. 
 0.50 W         W W                PP                   
+ 
      .     W    W                   PP                 
. 
 0.40 +       WW WWWWWW                PP               
+ 
      .                WWWWW             PP             
. 
 0.30 +                    WWWWW           PP           
+ 
      .                         WWWW         PP         
. 
 0.20 +                             WWWWW      PP       
+ 
      .                                 WWWWW    
PP     . 
 0.10 +                                      WWWWW 
PP   + 
      .                                          
WWWWWP . 
 0.00 
V....+....+....+....+....+....+....+....+....+..WW
W 
      0   .1   .2   .3   .4   .5   .6   .7   .8   
.9  1.0 
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 THE ABSCISSA IS      ISWP.  MIN= 1.00E+00 MAX= 
1.00E+02 

 
 

SATLIT RUN NUMBER = 1 ; LIBRARY REF.= 0 
RUN COMPLETED AT 16:49:16 ON TUESDAY, 27 
NOVEMBER 1990 
MACHINE-CLOCK TIME OF RUN = 82 SECONDS. 
TIME/(VARIABLES*CELLS*TSTEPS*SWEEPS*ITS) = 
2.733E-03  

 

.B 
Results After 500 Sweeps  

.R  

 
 

 
         CCCC HHH        PHOENICS - EARTH     
Version 1.5.3 
      CCCCCCCC HHHHH     (C) Copyright 1989 

CCCCCCC HHHHHHHHHH Concentration Heat and 
Momentum Ltd 
CCCCCCC HHHHHHHHHHHH All rights reserved. 
CCCCCC HHHHHHHHHHHHH CHAM Ltd, Bakery House, 
40 High St 
CCCCCCC HHHHHHHHHHHH Wimbledon, London, 
SW19 5AU 
CCCCCCC HHHHHHHHHH Tel: 01-947-7651; Telex: 
928517  

 
      CCCCCCCC HHHHH     Facsimile: 01-879-3497 
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         CCCC HHH        The option level is   -18 

 

...edited...  

 
Group 1. Run Title and Number  

 
 

TEXT(SIMPLE DEVELOPING FLOW IN BETWEEN 
PLATES)  

 
 

IRUNN = 1 ;LIBREF = 0  

• GRID-GEOMETRY INFORMATION *** X-
COORDINATES OF THE CELL CENTRES  

5.000E-01 Y-COORDINATES OF THE CELL 
CENTRES  

2.500E-02 7.500E-02 1.250E-01 1.750E-01 2.250E-01 
2.750E-01 3.250E-01 3.750E-01 4.250E-01 4.750E-01 
Z-COORDINATES OF THE CELL CENTRES  

1.953E-02 5.860E-02 1.172E-01 2.344E-01 4.688E-01 
9.375E-01 1.875E+00 3.750E+00 7.500E+00 
1.500E+01  

o INTEGRATION OF EQUATIONS BEGINS -
--  
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TIME STP= 1 SWEEP NO= 400 ZSLAB NO= 2 ITERN 
NO= 1  

 
TIME STP= 1 SWEEP NO= 400 ZSLAB NO= 1 ITERN 
NO= 1  

FLOW FIELD AT ITHYD= 1, ISWEEP= 400, ISTEP= 1 
YZPR IX= 1 
FIELD VALUES OF P1 
IY= 10 1.858E+02 1.879E+02 1.890E+02 1.865E+02 
1.821E+02 
IY= 9 1.840E+02 1.860E+02 1.873E+02 1.855E+02 
1.819E+02 
IY= 8 1.846E+02 1.865E+02 1.875E+02 1.855E+02 
1.819E+02 
IY= 7 1.855E+02 1.872E+02 1.878E+02 1.855E+02 
1.819E+02 
IY= 6 1.867E+02 1.882E+02 1.882E+02 1.856E+02 
1.819E+02 
IY= 5 1.886E+02 1.896E+02 1.886E+02 1.856E+02 
1.818E+02 
IY= 4 1.913E+02 1.915E+02 1.890E+02 1.855E+02 
1.818E+02 
IY= 3 1.958E+02 1.940E+02 1.892E+02 1.853E+02 
1.817E+02 
IY= 2 2.036E+02 1.968E+02 1.885E+02 1.848E+02 
1.815E+02 
IY= 1 2.085E+02 1.894E+02 1.860E+02 1.835E+02 
1.813E+02 
IZ= 1 2 3 4 5 
IY= 10 1.760E+02 1.642E+02 1.407E+02 9.360E+01 7.349E-
11 
IY= 9 1.760E+02 1.642E+02 1.407E+02 9.361E+01 7.396E-
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11 
IY= 8 1.760E+02 1.642E+02 1.407E+02 9.361E+01 7.085E-
11 
IY= 7 1.760E+02 1.642E+02 1.407E+02 9.361E+01 6.617E-
11 
IY= 6 1.760E+02 1.642E+02 1.407E+02 9.361E+01 5.994E-
11 
IY= 5 1.760E+02 1.642E+02 1.407E+02 9.360E+01 5.216E-
11 
IY= 4 1.760E+02 1.642E+02 1.407E+02 9.360E+01 4.283E-
11 
IY= 3 1.760E+02 1.642E+02 1.407E+02 9.360E+01 3.197E-
11 
IY= 2 1.760E+02 1.642E+02 1.407E+02 9.360E+01 1.963E-
11 
IY= 1 1.760E+02 1.642E+02 1.407E+02 9.360E+01 8.367E-
12 
IZ= 6 7 8 9 10 
FIELD VALUES OF V1 
IY= 9 1.102E-01 1.067E-01 9.143E-02 4.990E-02 6.791E-03 
IY= 8 2.154E-01 2.078E-01 1.777E-01 9.651E-02 1.296E-02 
IY= 7 3.160E-01 3.035E-01 2.559E-01 1.349E-01 1.677E-02 
IY= 6 4.117E-01 3.919E-01 3.217E-01 1.604E-01 1.695E-02 
IY= 5 5.011E-01 4.694E-01 3.688E-01 1.690E-01 1.284E-02 
IY= 4 5.799E-01 5.285E-01 3.880E-01 1.573E-01 4.698E-03 
IY= 3 6.381E-01 5.532E-01 3.670E-01 1.247E-01 -6.082E-03 
IY= 2 6.495E-01 5.102E-01 2.930E-01 7.681E-02 -1.681E-02 
IY= 1 5.318E-01 3.364E-01 1.677E-01 3.063E-02 -2.361E-02 
IZ= 1 2 3 4 5 
IY= 9 6.101E-04 2.545E-05 -5.636E-06 -6.392E-05 -2.030E-
04 
IY= 8 1.169E-03 4.972E-05 -1.117E-05 -1.255E-04 -2.031E-
04 
IY= 7 1.575E-03 6.988E-05 -1.640E-05 -1.826E-04 -2.032E-
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04 
IY= 6 1.763E-03 8.401E-05 -2.107E-05 -2.329E-04 -2.032E-
04 
IY= 5 1.718E-03 9.129E-05 -2.493E-05 -2.737E-04 -2.033E-
04 
IY= 4 1.489E-03 9.196E-05 -2.769E-05 -3.016E-04 -2.034E-
04 
IY= 3 1.175E-03 8.692E-05 -2.898E-05 -3.122E-04 -2.034E-
04 
IY= 2 8.866E-04 7.690E-05 -2.818E-05 -2.976E-04 -2.034E-
04 
IY= 1 6.646E-04 6.028E-05 -2.380E-05 -2.378E-04 -2.034E-
04 
IZ= 6 7 8 9 10 
FIELD VALUES OF W1  

 
 IY=  10       1.086E+00  1.173E+00  1.310E+00  
1.466E+00  1.509E+00 
 IY=   9       1.082E+00  1.164E+00  1.293E+00  
1.439E+00  1.478E+00 
 IY=   8       1.079E+00  1.156E+00  1.273E+00  
1.393E+00  1.417E+00 
 IY=   7       1.075E+00  1.147E+00  1.245E+00  
1.324E+00  1.326E+00 
 IY=   6       1.070E+00  1.133E+00  1.202E+00  
1.229E+00  1.204E+00 
 IY=   5       1.062E+00  1.110E+00  1.136E+00  
1.099E+00  1.049E+00 
 IY=   4       1.045E+00  1.067E+00  1.030E+00  
9.287E-01  8.618E-01 
 IY=   3       1.009E+00  9.768E-01  8.577E-01  
7.084E-01  6.417E-01 
 IY=   2       9.081E-01  7.732E-01  5.760E-01  
4.322E-01  3.896E-01 
 IY=   1       5.845E-01  3.088E-01  6.953E-02 -
2.636E-02  1.114E-01 
 IZ=            1          2          3          4          
5 
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 IY=  10       1.516E+00  1.517E+00  1.517E+00  
1.510E+00 
 IY=   9       1.485E+00  1.486E+00  1.485E+00  
1.479E+00 
 IY=   8       1.422E+00  1.423E+00  1.423E+00  
1.417E+00 
 IY=   7       1.328E+00  1.329E+00  1.329E+00  
1.323E+00 
 IY=   6       1.203E+00  1.203E+00  1.203E+00  
1.199E+00 
 IY=   5       1.046E+00  1.046E+00  1.046E+00  
1.043E+00 
 IY=   4       8.579E-01  8.577E-01  8.577E-01  
8.566E-01 
 IY=   3       6.381E-01  6.379E-01  6.379E-01  
6.394E-01 
 IY=   2       3.869E-01  3.864E-01  3.866E-01  
3.926E-01 
 IY=   1       1.032E-01  1.017E-01  1.029E-01  
1.266E-01 
 IZ=            6          7          8          9 

...edited...  

 
SPOT VALUES VS. SWEEP (/ITHYD IF PARAB)  

IXMON= 1 IYMON= 2 IZMON= 2  

TABULATION OF ABSCISSA AND ORDINATES...  

ISWP P1 V1 W1 
2.000E+00 1.219E+02 1.789E-01 8.181E-01 
3.000E+00 1.228E+02 1.756E-01 8.178E-01 
4.000E+00 1.237E+02 1.777E-01 8.170E-01 
5.000E+00 1.246E+02 1.754E-01 8.170E-01 
6.000E+00 1.254E+02 1.774E-01 8.159E-01 
7.000E+00 1.263E+02 1.760E-01 8.157E-01 
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8.000E+00 1.271E+02 1.777E-01 8.146E-01 
9.000E+00 1.280E+02 1.770E-01 8.142E-01 
1.000E+01 1.288E+02 1.784E-01 8.131E-01  

...edited...  

3.900E+02 1.968E+02 5.108E-01 7.717E-01 
3.910E+02 1.968E+02 5.108E-01 7.719E-01 
3.920E+02 1.968E+02 5.107E-01 7.720E-01 
3.930E+02 1.968E+02 5.107E-01 7.721E-01 
3.940E+02 1.968E+02 5.106E-01 7.723E-01 
3.950E+02 1.968E+02 5.106E-01 7.724E-01 
3.960E+02 1.968E+02 5.105E-01 7.726E-01 
3.970E+02 1.968E+02 5.104E-01 7.728E-01 
3.980E+02 1.968E+02 5.104E-01 7.729E-01 
3.990E+02 1.968E+02 5.103E-01 7.731E-01 
4.000E+02 1.968E+02 5.102E-01 7.732E-01  

 
   VARIABLE        P1         V1         W1 
     MINVAL=  1.219E+02  1.754E-01  7.289E-01 
     MAXVAL=  1.968E+02  5.110E-01  8.181E-01 
     CELLAV=  1.819E+02  4.077E-01  7.549E-01 

1.00 
WW...+....+....+....+....+....+....PPVVVVVVVVVVVVVV  

 
      .W                       PPPPPPVVVVVVV            
. 
 0.90 +WW                  PPPPP VVVVV                  
+ 
      . W              PPPP   VVVV                      
. 
 0.80 +  W           PPP    VVV                         
+ 
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      .  WW        PPP    VVV                           
. 
 0.70 +   W      PPP    VVV                             
+ 
      .   WW    PP     VV                               
. 
 0.60 +    W   PP     VV                                
+ 
      .    WW PP    VV                                  
. 
 0.50 +     WPP    VV                                 
WWW 
      .     WW    VV                              
WWWWW . 
 0.40 +    PPWW  VV                            
WWWW     + 
      .   PP  W VV                          WWWW        
. 
 0.30 +  PP   WWV                        WWWW           
+ 
      .  P    VWW                      WWW              
. 
 0.20 + PP  VV  WW                  WWWW                
+ 
      . P  VV    WW               WWW                   
. 
 0.10 +P  VV      WW           WWWW                     
+ 
      PPVVV        WWWW     WWWW                        
. 
 0.00 
VVV..+....+....+WWWWWWW..+....+....+....+....+....
+ 
      0   .1   .2   .3   .4   .5   .6   .7   .8   
.9  1.0 
 THE ABSCISSA IS      ISWP.  MIN= 2.00E+00 MAX= 
4.00E+02 

 
 

RESIDUALS VS. SWEEP (/ITHYD IF PARAB)  
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TABULATION OF ABSCISSA AND ORDINATES...  

ISWP P1 V1 W1 
2.000E+00 8.767E+05 1.818E+06 3.089E+08 
3.000E+00 8.625E+05 1.794E+06 3.094E+08 
4.000E+00 8.521E+05 1.766E+06 3.081E+08 
5.000E+00 8.399E+05 1.743E+06 3.035E+08 
6.000E+00 8.287E+05 1.715E+06 3.009E+08 
7.000E+00 8.179E+05 1.689E+06 2.978E+08 
8.000E+00 8.064E+05 1.669E+06 2.944E+08 
9.000E+00 7.959E+05 1.641E+06 2.916E+08 
1.000E+01 7.848E+05 1.627E+06 2.880E+08  

...edited...  

3.900E+02 4.374E+04 3.756E+05 2.281E+07 
3.910E+02 4.372E+04 3.743E+05 2.265E+07 
3.920E+02 4.373E+04 3.730E+05 2.252E+07 
3.930E+02 4.359E+04 3.717E+05 2.202E+07 
3.940E+02 4.360E+04 3.703E+05 2.191E+07 
3.950E+02 4.356E+04 3.695E+05 2.177E+07 
3.960E+02 4.358E+04 3.689E+05 2.164E+07 
3.970E+02 4.353E+04 3.684E+05 2.150E+07 
3.980E+02 4.356E+04 3.680E+05 2.136E+07 
3.990E+02 4.367E+04 3.676E+05 2.157E+07 
4.000E+02 4.348E+04 3.671E+05 2.105E+07  

 
   VARIABLE        P1         V1         W1 
     MINVAL=  1.068E+01  1.281E+01  1.686E+01 
     MAXVAL=  1.368E+01  1.441E+01  1.955E+01 

1.00 WW...+....+....+....+....+....+....+....+....+....+  
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      VWWW                                              
. 
 0.90 +VVWW                                             
+ 
      . VVWWW                                           
. 
 0.80 +   VVWWW                                         
+ 
      .     VVWWW                                       
. 
 0.70 +       VVWWW                                     
+ 
      .        PVVWWW                                   
. 
 0.60 +          PVVWWWW                                
+ 
      .            PVVVWWW                              
. 
 0.50 +             PPVVVWWWW                           
+ 
      .               PPVVV WWWW                        
. 
 0.40 +                  PVVV  WWWW                     
+ 
      .                    PVVVV  WWWW                  
. 
 0.30 +                      PPVVVV  WWWW               
+ 
      .                         PPVVVV  WWWW            
. 
 0.20 +                            PPPVVVVVWWWW         
+ 
      .                               PPPPVVVVWWWW      
. 
 0.10 +                                   
PPPPVVVWWWWW  + 
      .                                       
PPPPVVVWWW. 
 0.00 
+....+....+....+....+....+....+....+....+....+PPVW
W 
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      0   .1   .2   .3   .4   .5   .6   .7   .8   
.9  1.0 
 THE ABSCISSA IS      ISWP.  MIN= 2.00E+00 MAX= 
4.00E+02 

 
 

SATLIT RUN NUMBER = 1 ; LIBRARY REF.= 0 
RUN COMPLETED AT 17:01:37 ON TUESDAY, 27 
NOVEMBER 1990 
MACHINE-CLOCK TIME OF RUN = 477 SECONDS. 
TIME/(VARIABLES*CELLS*TSTEPS*SWEEPS*ITS) = 
3.985E-03  

 

.B 
Results After 900 Sweeps  

.R  

 
 

 
         CCCC HHH        PHOENICS - EARTH     
Version 1.5.3 
      CCCCCCCC HHHHH     (C) Copyright 1989 

CCCCCCC HHHHHHHHHH Concentration Heat and 
Momentum Ltd 
CCCCCCC HHHHHHHHHHHH All rights reserved. 
CCCCCC HHHHHHHHHHHHH CHAM Ltd, Bakery House, 
40 High St 
CCCCCCC HHHHHHHHHHHH Wimbledon, London, 
SW19 5AU 
CCCCCCC HHHHHHHHHH Tel: 01-947-7651; Telex: 
928517  
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      CCCCCCCC HHHHH     Facsimile: 01-879-3497 
         CCCC HHH        The option level is   -18 

 

...edited...  

 
Group 1. Run Title and Number  

 
 

TEXT(SIMPLE DEVELOPING FLOW IN BETWEEN 
PLATES)  

 
 

IRUNN = 1 ;LIBREF = 0  

• GRID-GEOMETRY INFORMATION *** X-
COORDINATES OF THE CELL CENTRES  

5.000E-01 Y-COORDINATES OF THE CELL 
CENTRES  

2.500E-02 7.500E-02 1.250E-01 1.750E-01 2.250E-01 
2.750E-01 3.250E-01 3.750E-01 4.250E-01 4.750E-01 
Z-COORDINATES OF THE CELL CENTRES  

1.953E-02 5.860E-02 1.172E-01 2.344E-01 4.688E-01 
9.375E-01 1.875E+00 3.750E+00 7.500E+00 
1.500E+01  
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o INTEGRATION OF EQUATIONS BEGINS -
--  

 
TIME STP= 1 SWEEP NO= 400 ZSLAB NO= 2 ITERN 
NO= 1  

 
TIME STP= 1 SWEEP NO= 400 ZSLAB NO= 1 ITERN 
NO= 1  

FLOW FIELD AT ITHYD= 1, ISWEEP= 400, ISTEP= 1 
YZPR IX= 1 
FIELD VALUES OF P1 
IY= 10 1.864E+02 1.883E+02 1.894E+02 1.869E+02 
1.828E+02 
IY= 9 1.847E+02 1.866E+02 1.878E+02 1.860E+02 
1.826E+02 
IY= 8 1.853E+02 1.870E+02 1.880E+02 1.860E+02 
1.826E+02 
IY= 7 1.861E+02 1.877E+02 1.883E+02 1.860E+02 
1.826E+02 
IY= 6 1.873E+02 1.887E+02 1.886E+02 1.861E+02 
1.826E+02 
IY= 5 1.891E+02 1.901E+02 1.890E+02 1.861E+02 
1.826E+02 
IY= 4 1.919E+02 1.920E+02 1.893E+02 1.860E+02 
1.826E+02 
IY= 3 1.964E+02 1.946E+02 1.893E+02 1.858E+02 
1.825E+02 
IY= 2 2.045E+02 1.974E+02 1.884E+02 1.853E+02 
1.825E+02 
IY= 1 2.105E+02 1.918E+02 1.838E+02 1.841E+02 
1.823E+02 
IZ= 1 2 3 4 5 
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IY= 10 1.766E+02 1.648E+02 1.413E+02 9.416E+01 7.560E-
11 
IY= 9 1.766E+02 1.648E+02 1.413E+02 9.416E+01 7.430E-
11 
IY= 8 1.766E+02 1.648E+02 1.413E+02 9.416E+01 7.116E-
11 
IY= 7 1.766E+02 1.648E+02 1.413E+02 9.416E+01 6.645E-
11 
IY= 6 1.766E+02 1.648E+02 1.413E+02 9.416E+01 6.018E-
11 
IY= 5 1.766E+02 1.648E+02 1.413E+02 9.416E+01 5.233E-
11 
IY= 4 1.766E+02 1.648E+02 1.413E+02 9.416E+01 4.292E-
11 
IY= 3 1.766E+02 1.648E+02 1.413E+02 9.416E+01 3.194E-
11 
IY= 2 1.766E+02 1.648E+02 1.413E+02 9.416E+01 1.941E-
11 
IY= 1 1.766E+02 1.648E+02 1.413E+02 9.416E+01 5.697E-
12 
IZ= 6 7 8 9 10 
FIELD VALUES OF V1 
IY= 9 1.050E-01 1.015E-01 8.661E-02 4.748E-02 1.036E-02 
IY= 8 2.051E-01 1.977E-01 1.682E-01 9.169E-02 1.997E-02 
IY= 7 3.010E-01 2.887E-01 2.417E-01 1.277E-01 2.718E-02 
IY= 6 3.931E-01 3.731E-01 3.027E-01 1.509E-01 3.070E-02 
IY= 5 4.802E-01 4.476E-01 3.446E-01 1.571E-01 2.988E-02 
IY= 4 5.592E-01 5.052E-01 3.576E-01 1.431E-01 2.487E-02 
IY= 3 6.222E-01 5.312E-01 3.282E-01 1.085E-01 1.687E-02 
IY= 2 6.450E-01 4.934E-01 2.425E-01 5.882E-02 8.212E-03 
IY= 1 5.452E-01 3.308E-01 1.047E-01 1.133E-02 1.901E-03 
IZ= 1 2 3 4 5 
IY= 9 6.707E-04 9.450E-06 -9.216E-07 -8.407E-06 -2.710E-
05 
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IY= 8 1.289E-03 1.783E-05 -1.898E-06 -1.653E-05 -2.710E-
05 
IY= 7 1.727E-03 2.295E-05 -2.891E-06 -2.408E-05 -2.712E-
05 
IY= 6 1.897E-03 2.341E-05 -3.839E-06 -3.078E-05 -2.713E-
05 
IY= 5 1.772E-03 1.910E-05 -4.669E-06 -3.632E-05 -2.714E-
05 
IY= 4 1.397E-03 1.131E-05 -5.310E-06 -4.029E-05 -2.715E-
05 
IY= 3 8.871E-04 2.345E-06 -5.680E-06 -4.215E-05 -2.715E-
05 
IY= 2 3.984E-04 -5.036E-06 -5.637E-06 -4.094E-05 -2.715E-
05 
IY= 1 7.792E-05 -8.126E-06 -4.840E-06 -3.424E-05 -2.715E-
05 
IZ= 6 7 8 9 10 
FIELD VALUES OF W1  

 
 IY=  10       1.082E+00  1.161E+00  1.296E+00  
1.445E+00  1.510E+00 
 IY=   9       1.078E+00  1.153E+00  1.280E+00  
1.419E+00  1.479E+00 
 IY=   8       1.075E+00  1.146E+00  1.261E+00  
1.373E+00  1.418E+00 
 IY=   7       1.072E+00  1.138E+00  1.233E+00  
1.306E+00  1.328E+00 
 IY=   6       1.068E+00  1.126E+00  1.191E+00  
1.211E+00  1.206E+00 
 IY=   5       1.062E+00  1.107E+00  1.127E+00  
1.083E+00  1.052E+00 
 IY=   4       1.049E+00  1.070E+00  1.023E+00  
9.152E-01  8.652E-01 
 IY=   3       1.018E+00  9.883E-01  8.542E-01  
6.992E-01  6.450E-01 
 IY=   2       9.221E-01  7.951E-01  5.793E-01  
4.310E-01  3.916E-01 
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 IY=   1       5.741E-01  3.151E-01  1.538E-01  
1.174E-01  1.056E-01 
 IZ=            1          2          3          4          
5 
 IY=  10       1.518E+00  1.518E+00  1.518E+00  
1.517E+00 
 IY=   9       1.487E+00  1.487E+00  1.487E+00  
1.486E+00 
 IY=   8       1.424E+00  1.424E+00  1.424E+00  
1.423E+00 
 IY=   7       1.330E+00  1.330E+00  1.330E+00  
1.329E+00 
 IY=   6       1.204E+00  1.204E+00  1.204E+00  
1.204E+00 
 IY=   5       1.047E+00  1.047E+00  1.047E+00  
1.047E+00 
 IY=   4       8.588E-01  8.586E-01  8.586E-01  
8.584E-01 
 IY=   3       6.389E-01  6.387E-01  6.387E-01  
6.389E-01 
 IY=   2       3.875E-01  3.874E-01  3.875E-01  
3.882E-01 
 IY=   1       1.046E-01  1.048E-01  1.051E-01  
1.085E-01 
 IZ=            6          7          8          9 

...edited...  

 
SPOT VALUES VS. SWEEP (/ITHYD IF PARAB)  

IXMON= 1 IYMON= 2 IZMON= 2  

TABULATION OF ABSCISSA AND ORDINATES...  

ISWP P1 V1 W1 
2.000E+00 1.968E+02 5.101E-01 7.734E-01 
3.000E+00 1.968E+02 5.100E-01 7.735E-01 
4.000E+00 1.968E+02 5.099E-01 7.737E-01 
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5.000E+00 1.968E+02 5.099E-01 7.739E-01 
6.000E+00 1.969E+02 5.098E-01 7.740E-01 
7.000E+00 1.969E+02 5.097E-01 7.742E-01 
8.000E+00 1.969E+02 5.096E-01 7.743E-01 
9.000E+00 1.969E+02 5.095E-01 7.745E-01 
1.000E+01 1.969E+02 5.093E-01 7.747E-01  

...edited...  

3.700E+02 1.974E+02 4.936E-01 7.949E-01 
3.710E+02 1.974E+02 4.936E-01 7.949E-01 
3.720E+02 1.974E+02 4.935E-01 7.949E-01 
3.730E+02 1.974E+02 4.935E-01 7.950E-01 
3.740E+02 1.974E+02 4.935E-01 7.950E-01 
3.750E+02 1.974E+02 4.935E-01 7.950E-01 
3.760E+02 1.974E+02 4.935E-01 7.950E-01 
3.770E+02 1.974E+02 4.935E-01 7.950E-01 
3.780E+02 1.974E+02 4.935E-01 7.950E-01 
3.790E+02 1.974E+02 4.935E-01 7.950E-01 
3.800E+02 1.974E+02 4.935E-01 7.950E-01 
3.810E+02 1.974E+02 4.935E-01 7.950E-01 
3.820E+02 1.974E+02 4.935E-01 7.950E-01 
3.830E+02 1.974E+02 4.935E-01 7.950E-01 
3.840E+02 1.974E+02 4.935E-01 7.950E-01 
3.850E+02 1.974E+02 4.935E-01 7.950E-01 
3.860E+02 1.974E+02 4.934E-01 7.950E-01 
3.870E+02 1.974E+02 4.934E-01 7.950E-01 
3.880E+02 1.974E+02 4.934E-01 7.950E-01 
3.890E+02 1.974E+02 4.934E-01 7.950E-01 
3.900E+02 1.974E+02 4.934E-01 7.950E-01 
3.910E+02 1.974E+02 4.934E-01 7.950E-01 
3.920E+02 1.974E+02 4.934E-01 7.950E-01 
3.930E+02 1.974E+02 4.934E-01 7.950E-01 
3.940E+02 1.974E+02 4.934E-01 7.951E-01 
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3.950E+02 1.974E+02 4.934E-01 7.951E-01 
3.960E+02 1.974E+02 4.934E-01 7.951E-01 
3.970E+02 1.974E+02 4.934E-01 7.951E-01 
3.980E+02 1.974E+02 4.934E-01 7.951E-01 
3.990E+02 1.974E+02 4.934E-01 7.951E-01 
4.000E+02 1.974E+02 4.934E-01 7.951E-01  

 
   VARIABLE        P1         V1         W1 
     MINVAL=  1.968E+02  4.934E-01  7.734E-01 
     MAXVAL=  1.974E+02  5.101E-01  7.951E-01 
     CELLAV=  1.972E+02  4.977E-01  7.900E-01 

1.00 
VV...+....+....+....+....+....+....+...WWWWWWWWWWWW  

 
      .VV                          WWWWWWWWWWW 
PPPPPPP  . 
 0.90 + V                     WWWWWW       PPPPP        
+ 
      .  V                WWWWW        PPPPP            
. 
 0.80 +  VV            WWWW         PPPP                
+ 
      .   VV         WWW        PPPP                    
. 
 0.70 +    VV       WW        PPP                       
+ 
      .     VV    WW       PPP                          
. 
 0.60 +      VV  WW     PPPP                            
+ 
      .       VWW     PPP                               
. 
 0.50 +       WWV  PPPP                                 
+ 
      .      WW VVPP                                    
. 
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 0.40 +     WWPPPVVV                                    
+ 
      .    WWPP    VVV                                  
. 
 0.30 +    WP        VVV                                
+ 
      .   WP           VVV                              
. 
 0.20 +  WW               VVVV                          
+ 
      . WW                   VVVVV                      
. 
 0.10 +WW                        VVVVVVV                
+ 
      PW                               VVVVVVVVVVV      
. 
 0.00 
W....+....+....+....+....+....+....+....+..VVVVVVV
V 
      0   .1   .2   .3   .4   .5   .6   .7   .8   
.9  1.0 
 THE ABSCISSA IS      ISWP.  MIN= 2.00E+00 MAX= 
4.00E+02 

 
 

RESIDUALS VS. SWEEP (/ITHYD IF PARAB)  

TABULATION OF ABSCISSA AND ORDINATES...  

ISWP P1 V1 W1 
2.000E+00 4.352E+04 3.666E+05 2.129E+07 
3.000E+00 4.345E+04 3.661E+05 2.099E+07 
4.000E+00 4.342E+04 3.656E+05 2.086E+07 
5.000E+00 4.348E+04 3.652E+05 2.071E+07 
6.000E+00 4.347E+04 3.648E+05 2.057E+07 
7.000E+00 4.353E+04 3.644E+05 2.043E+07 
8.000E+00 4.358E+04 3.641E+05 2.029E+07 
9.000E+00 4.358E+04 3.637E+05 2.015E+07 
1.000E+01 4.363E+04 3.634E+05 2.000E+07  
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...edited...  

3.700E+02 1.215E+04 1.446E+05 3.498E+06 
3.710E+02 1.131E+04 1.443E+05 3.480E+06 
3.720E+02 1.209E+04 1.440E+05 3.449E+06 
3.730E+02 1.207E+04 1.437E+05 3.444E+06 
3.740E+02 1.122E+04 1.433E+05 3.426E+06 
3.750E+02 1.200E+04 1.430E+05 3.396E+06 
3.760E+02 1.199E+04 1.428E+05 3.389E+06 
3.770E+02 1.114E+04 1.424E+05 3.372E+06 
3.780E+02 1.192E+04 1.421E+05 3.341E+06 
3.790E+02 1.190E+04 1.418E+05 3.336E+06 
3.800E+02 1.187E+04 1.415E+05 3.319E+06 
3.810E+02 1.103E+04 1.412E+05 3.302E+06 
3.820E+02 1.188E+04 1.410E+05 3.273E+06 
3.830E+02 1.186E+04 1.407E+05 3.267E+06 
3.840E+02 1.103E+04 1.404E+05 3.250E+06 
3.850E+02 1.181E+04 1.401E+05 3.220E+06 
3.860E+02 1.179E+04 1.397E+05 3.215E+06 
3.870E+02 1.095E+04 1.394E+05 3.198E+06 
3.880E+02 1.173E+04 1.392E+05 3.169E+06 
3.890E+02 1.170E+04 1.389E+05 3.165E+06 
3.900E+02 1.085E+04 1.385E+05 3.147E+06 
3.910E+02 1.163E+04 1.382E+05 3.118E+06 
3.920E+02 1.160E+04 1.379E+05 3.114E+06 
3.930E+02 1.157E+04 1.376E+05 3.098E+06 
3.940E+02 1.073E+04 1.373E+05 3.082E+06 
3.950E+02 1.151E+04 1.370E+05 3.054E+06 
3.960E+02 1.147E+04 1.367E+05 3.051E+06 
3.970E+02 1.063E+04 1.363E+05 3.034E+06 
3.980E+02 1.178E+04 1.360E+05 3.006E+06 
3.990E+02 1.176E+04 1.357E+05 3.007E+06 
4.000E+02 1.172E+04 1.354E+05 2.991E+06  
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   VARIABLE        P1         V1         W1 
     MINVAL=  9.271E+00  1.182E+01  1.491E+01 
     MAXVAL=  1.068E+01  1.281E+01  1.687E+01 

1.00 WWVVP+....+....+....+....+....+....+....+....+....+  

 
      .WWVVVVV                                          
. 
 0.90 +  WW  VVVV                                       
+ 
      .   WWWWWPVVV                                     
. 
 0.80 +      WWWWWVVV                                   
+ 
      .          WWWWVV                                 
. 
 0.70 +            PWWWWV                               
+ 
      .             PPPWWWV                             
. 
 0.60 +               PP WWWW                           
+ 
      .                PPPP WWW                         
. 
 0.50 +                   PPP WWWW                      
+ 
      .                     PPPPVWWWW                   
. 
 0.40 +                       PPPPPVWWW                 
+ 
      .                          PPPPVWWWW              
. 
 0.30 +                            PPPPVWWWW            
+ 
      .                               PPPVVWWW          
. 
 0.20 +                                  PPPVWWWW       
+ 
      .                                     
PPPVWWWP    . 
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 0.10 +                                        
PPVWWWPP + 
      .                                            
PWWWWP 
 0.00 
+....+....+....+....+....+....+....+....+....+..PW
W 
      0   .1   .2   .3   .4   .5   .6   .7   .8   
.9  1.0 
 THE ABSCISSA IS      ISWP.  MIN= 2.00E+00 MAX= 
4.00E+02 

 
 

SATLIT RUN NUMBER = 1 ; LIBRARY REF.= 0 
RUN COMPLETED AT 17:10:24 ON TUESDAY, 27 
NOVEMBER 1990 
MACHINE-CLOCK TIME OF RUN = 279 SECONDS. 
TIME/(VARIABLES*CELLS*TSTEPS*SWEEPS*ITS) = 
2.331E-03  
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