Skip to main content

Postgraduate research project

Power electronic converters for hybrid energy storage and EV charging

Funding
Competition funded View fees and funding
Type of degree
Doctor of Philosophy
Entry requirements
2:1 honours degree
View full entry requirements
Faculty graduate school
Faculty of Engineering and Physical Sciences
Closing date

About the project

Applications are invited for a fully-funded PhD studentship to investigate power electronic converters integrating energy storage and renewable generation into EV charging stations. The PhD will also investigate techniques for implementing online electrochemical impedance spectroscope (EIS), battery diagnostics and protection, and energy management within the control system of the converter. This PhD will support a wider research team working on a new EPSRC funded Programme Grant entitled ‘Future Electric Vehicle Energy networks supporting Renewables (FEVER)’, grant ref: EP/W005883/1.

The focus of the FEVER project is to develop new, grid independent, 100% renewable energy supplied, EV charging stations. As the input energy is in the form of stochastic renewable energy, the charging station architecture requires to utilise a novel energy store, capable of regulating seasonally variable input energy against a daily and weekly pattern of EV charging use. The novel energy store must be capable of meeting the charging power and energy requirements of EVs, whilst satisfying the charging station annual energy flows and economic model. For example, a lithium-ion battery system on its own could not meet these diverse requirements and a novel energy storage hybrid system will be investigated.

The successful PhD candidate will be required to undertake a detailed literature review of existing models, understand and develop the various means of direct experimental characterisation used to parameterise these models, and also to investigate options and issues surrounding the direct parallel operation of a range of combinations of these energy stores. The resulting hybrid energy store is required to facilitate new grid independent, 100% renewable energy sourced, electric vehicle charging stations.

The successful candidate will be part of the Energy Technology Research Group within the Mechanical Engineering Department at University of Southampton. Training will be provided at the beginning of the project to help the student start these investigations, and the student will also benefit from attendance and participation in FEVER consortium meetings with a range of external stakeholders, including industrial partners.

Back
to top