The University of Southampton
Warning! Your browser is out-of-date and not compatible with this website. Please download a new secure and faster browser to view this website correctly.
Centre for Biological Sciences

Professor Tom P. Fleming BSc, PhD

Professor of Developmental Biology, Head of Developmental Biology Group

Professor Tom P. Fleming's photo
Related links

Professor Tom P. Fleming is Professor of Developmental Biology within the Centre for Biological Sciences at the University of Southampton.

Career history

1998-present: Professor of Developmental Biology. University of Southampton, UK.
Senior Research Associate. Anatomy Department, University of Cambridge, UK.
Demonstrator. University of Keele, UK.

Academic qualifications

PhD in Cell Biology. University of London, CNAA, South Bank Polytechnic,London, UK.
BSc Zoology. University of Wales, Swansea, Wales.







Research interests

Embryo environment and developmental potential and health

We are interested in how the environment of the oocyte and preimplantation embryo can influence its development and future long-term potential. We investigate how maternal diet (in vivo), maternal sickness (in vivo) or IVF-related culture conditions (in vitro) can affect blastocyst development including gene expression patterns, cell proliferation and cellular phenotype. We derive embryonic stem cell lines to further characterise environmental effects on developmental potential.

We also examine long-term consequences of rodent preimplantation environment on subsequent fetal growth and gene expression, maternal nutrient provision, postnatal growth, cardiovascular and metabolic physiology, behaviour, immune reactivity.

Our data indicate that programming of postnatal phenotype can derive from early embryonic environment which has important implications for embryo potential and fetal/postnatal health. Our studies comprise a range of molecular, epigenetic, cellular and physiological technologies on extra-embryonic and embryonic cell lineages and postnatal tissues.

Mechanisms of early mammalian development

We are also interested in the basic mechanisms regulating early mammalian development. Following fertilization, the egg undergoes a series of cell divisions to form a blastocyst which implants into the uterus wall. The blastocyst initially contains two types of cells, one an outer epithelium (trophectoderm) which gives rise to most of the placental tissues of the conceptus, the other, (inner cell mass), which gives rise to the entire foetus after implantation. Blastocyst formation is therefore an essential first step in our development. We use the mouse embryo to tackle the fundamental questions: How do different cell types expressing different genes and proteins emerge during development? What role is played by cell-cell interactions in this process? How do cells mature and differentiate into an epithelium, the commonest tissue in our bodies?

We utilize mainly animal models for our research (principally the mouse) but also include human embryos where appropriate and under HFEA license.

We have strong links with the School of Medicine at Southampton, particularly staff within DOHaD (Developmental Origins of Health and Disease) and the early human development and stem cell consortium within the university.

Affiliate research group

Developmental Biology

PhD supervision

Joanne Gould (Co SV, Medicine)
Oliver Hutton (Co SV, Medicine)
Pooja Khurana (Main SV, Marie-Curie ESR, EU)
Yi-Lung Chang (Co SV, Overseas)
Ili Raja Khalif (Main SV, Overseas)
Claire Smith (Main SV, EU)
Anan Aljahdali (Main SV, Overseas)

Completed since 2008:
Rose Panton (MRC, Main supervisor)
Charlotte Williams (BBSRC, Main SV)
Franchesca Lock (Co SV, Medicine)
Sarah Finn (Co SV, Medicine)
Andy Cox (Co SV, BBSRC)
Congshun Sun (Main SV, University + Private)
Ayat Bakheet (Co SV, Overseas)

Research group(s)

Biomedical Sciences

Affiliate research group(s)

Institute for Life Sciences (IfLS),

Research project(s)

Consequences of early embryo environment

Maternal nutrient restriction exclusive to the preimplantation period has a pronounced influence on fetal and postnatal growth and organ development, as well as postnatal physiology.

Maternal mechanisms induced by diet regulating embryo developmental plasticity affecting life-long health

Discovering the maternal mechanisms induced by diet which act through embryo developmental plasticity to alter later health.

Effect of mouse maternal high fat diet during preimplantation and later stages of pregnancy on offspring development and health

An analysis of effects of maternal high fat diet on embryo developmental potential.

Linking perturbed maternal environment during periconceptional development, due to diabetes, obesity or assisted reproductive technologies, and altered health during ageing

Mechanisms by which assisted conception treatments may affect embryo development and health into adulthood.

How do preimplantation embryos sense and respond to maternal nutrition affecting fetal development and adult health

Mechanisms by which maternal diet affects embryo development and health into adulthood.

EpiHealthNet: Environment during periconceptional development, due to diabetes, obesity or assisted reproductive technologies, and altered health during ageing

Effects of assisted conception treatments on embryo development and health into adulthood.

Role of maternal diet on regulation of embryonic neural stem cells

Effect of mouse maternal diet on development and characteristics of neural stem cells.


Book Section(s)

Module Coordinator

BIOL2003 Animal Reproduction and Development
BIOL3001 Current Topics of Cell Biology
BIOL3006 Cellular and genetic aspects of animal development


BIOL1005 Cellular and Genetic Mechanisms
BIOL1006 Cellular and Genetic Mechanisms
BIOL1012 Foundations of Physiology
BIOL1013 Cell Communications-Foundations of Physiology II


Professional Contributions

2014: Treasurer, Society of Reproduction and Fertility
2013: Marshall Medal, Society of Reproduction and Fertility
2013: Honorary Fellow, Royal College of Obstetricians and Gynaecology
2008-13: Editor-in-Chief, Reproduction
2013: Nominating Committee Member, Society for Study of Reproduction
2013: Awards Committee Member, Society for Study of Reproduction
2010-13: Member, Research Advisory Committee grant panel, Wellbeing of Women
2011: Internat Advisor: Developmental Origins of Disease, National Institute of Child Health and Development, USA
2000: Editorial Board: Reproduction; Biology of Reproduction (reviews); J DOHaD; Cell Tissue Biol Res
2008: Member of Council: Society of Reproduction and Fertility

University of Southampton

Line Manager to 6 CfBS academic staff



Professor Tom P. Fleming
Professor of Developmental Biology Centre for Biological Sciences University of Southampton Mailpoint 840, Level D Lab & Path Block Southampton General Hospital Tremona Road Southampton, SO16 6YD Tel: +44 (0)2380 794145 Room number: LD62

Room Number: SGH/62A/

Share this profileFacebookGoogle+TwitterWeibo

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.