Skip to main navigation Skip to main content
The University of Southampton
Biological Sciences
Phone:
(023) 8059 0000
Email:
T.P.Fleming@soton.ac.uk

Professor Tom P. Fleming BSc, PhD

Emeritus Professor of Developmental Biology

Professor Tom P. Fleming's photo

Professor Tom P. Fleming is Emeritus Professor of Developmental Biology within Biological Sciences at the University of Southampton.

Career History

2017-present: Emeritus Professor of Developmental Biology. University of Southampton, UK.
1998-2017: Professor of Developmental Biology. University of Southampton, UK.
1988-1998: Lecturer, Senior Lecturer, Reader (Biology). University of Southampton, UK.
1981-1988: Senior Research Associate. Anatomy Department, University of Cambridge, UK.
1979-1981: Demonstrator. University of Keele, UK.

Academic Qualifications

1979: PhD in Cell Biology. University of London, CNAA, South Bank Polytechnic, London, UK.
1972: BSc Zoology. University of Wales, Swansea, Wales.

Research interests

Embryo environment and developmental potential and health

We are interested in how the environment of the oocyte and preimplantation embryo can influence its development and future long-term potential. We investigate how maternal diet (in vivo), maternal sickness (in vivo) or IVF-related culture conditions (in vitro) can affect blastocyst development including gene expression patterns, cell proliferation and cellular phenotype. We derive embryonic stem cell lines to further characterise environmental effects on developmental potential.

We also examine long-term consequences of rodent preimplantation environment on subsequent fetal growth and gene expression, maternal nutrient provision, postnatal growth, cardiovascular and metabolic physiology, behaviour, immune reactivity.

Our data indicate that programming of postnatal phenotype can derive from early embryonic environment which has important implications for embryo potential and fetal/postnatal health. Our studies comprise a range of molecular, epigenetic, cellular and physiological technologies on extra-embryonic and embryonic cell lineages and postnatal tissues.

Mechanisms of early mammalian development

We are also interested in the basic mechanisms regulating early mammalian development. Following fertilization, the egg undergoes a series of cell divisions to form a blastocyst which implants into the uterus wall. The blastocyst initially contains two types of cells, one an outer epithelium (trophectoderm) which gives rise to most of the placental tissues of the conceptus, the other, (inner cell mass), which gives rise to the entire foetus after implantation. Blastocyst formation is therefore an essential first step in our development. We use the mouse embryo to tackle the fundamental questions: How do different cell types expressing different genes and proteins emerge during development? What role is played by cell-cell interactions in this process? How do cells mature and differentiate into an epithelium, the commonest tissue in our bodies?

We utilize mainly animal models for our research (principally the mouse) but also include human embryos where appropriate and under HFEA license.

We have strong links with the School of Medicine at Southampton, particularly staff within DOHaD (Developmental Origins of Health and Disease) and the early human development and stem cell consortium within the university.

PhD supervision

Current:
Joanne Gould (Co SV, Medicine)
Oliver Hutton (Co SV, Medicine)
Pooja Khurana (Main SV, Marie-Curie ESR, EU)
Yi-Lung Chang (Co SV, Overseas)

Com pleted since 2008:
Anan Aljahdali (Main SV, Overseas)
Ili Raja Khalif (Main SV, Overseas)
Rose Panton (Main supervisor, MRC)
Charlotte Williams (Main SV, BBSRC)
Franchesca Lock (Co SV, Medicine)
Sarah Finn (Co SV, Medicine)
Andy Cox (Co SV, BBSRC)
Congshun Sun (Main SV, University + Private)
Ayat Bakheet (Co SV, Overseas)

Research group

Developmental Biology

Affiliate research groups

Institute for Life Sciences (IfLS) , Biomedical Sciences

Research project(s)

Consequences of early embryo environment

Maternal nutrient restriction exclusive to the preimplantation period has a pronounced influence on fetal and postnatal growth and organ development, as well as postnatal physiology.

Maternal mechanisms induced by diet regulating embryo developmental plasticity affecting life-long health

Discovering the maternal mechanisms induced by diet which act through embryo developmental plasticity to alter later health.

Effect of mouse maternal high fat diet during preimplantation and later stages of pregnancy on offspring development and health

An analysis of effects of maternal high fat diet on embryo developmental potential.

Linking perturbed maternal environment during periconceptional development, due to diabetes, obesity or assisted reproductive technologies, and altered health during ageing

Mechanisms by which assisted conception treatments may affect embryo development and health into adulthood.

How do preimplantation embryos sense and respond to maternal nutrition affecting fetal development and adult health

Mechanisms by which maternal diet affects embryo development and health into adulthood.

EpiHealthNet: Environment during periconceptional development, due to diabetes, obesity or assisted reproductive technologies, and altered health during ageing

Effects of assisted conception treatments on embryo development and health into adulthood.

Role of maternal diet on regulation of embryonic neural stem cells

Effect of mouse maternal diet on development and characteristics of neural stem cells.

Sort via: Type or Year

Additional publications

Fleming TP (2006) Periconceptional events and the embryo. In Developmental Origins of Health and Disease – A Biomedical Perspective , eds PD Gluckman and MA Hanson, pp. 51-61, Cambridge Univ Press.

Fleming TP, Eckert JJ, Thomas FC and Sheth B (2005) Morphogenesis of the early mammalian embryo: cell lineage heterogeneity and developmental potential. In Implantation and Early Development , Royal College of Obstetricians and Gynaecologists.

Hanson M, Gluckman P, Bier D, Challis J, Fleming T, Forrester T, Godfrey K, Nestel P, Yajnik C. (2004). Report on the 2nd World Congress on Fetal Origins of Adult Disease, Brighton , U.K. , June 7-10, 2003 . Pediatr Res. 55: 894-7.

Fleming, T.P. (2002). Cell-Cell Interactions: A Practical Approach (editor). IRL Press at Oxford University Press.

Fleming, T.P., Eckert, J.J., Kwong, W.Y., Thomas, F.C., Miller, D., Fesenko, I., Mears, A. and Sheth, B. (2002). Cell-cell interactions in early mammalian development. In: Cell-cell interactions: a practical approach . T.P. Fleming (editor), pp. 203-228, Oxford University Press, Oxford.

Fleming, T.P., Ghassemifar, M.R., Eckert, J., Destouni, A., Thomas, F., Collins, J.E., and Sheth, B. (2001). Cell junctions and cell interactions in animal and human blastocyst development. In: Art and the Human Blastocyst . D.K.Gardner and M.Lane (editors), pp.91-102, Proceedings of Serono Symposium, USA, Springer.

Fleming, T.P., Sheth, B., Thomas, F., Fesenko, I. and Eckert, J. (2001). Developmental assembly of the tight junction. In: Tight Junctions. M. Cereijido and J. Anderson (editors), pp.285-303, CRC Press.

Fleming, T.P., Ghassemifar, M.R. and Sheth, B. (2001). Junctional complexes in the early mammalian embryo. Sem. Reprod. Med. 18 : 185-193.

Professional Contributions

2014: Treasurer, Society of Reproduction and Fertility
2013: Marshall Medal, Society of Reproduction and Fertility
2013: Honorary Fellow, Royal College of Obstetricians and Gynaecology
2008-13: Editor-in-Chief, Reproduction
2013: Nominating Committee Member, Society for Study of Reproduction
2013: Awards Committee Member, Society for Study of Reproduction
2010-13: Member, Research Advisory Committee grant panel, Wellbeing of Women
2011: Internat Advisor: Developmental Origins of Disease, National Institute of Child Health and Development, USA
2000: Editorial Board: Reproduction; Biology of Reproduction (reviews); J DOHaD; Cell Tissue Biol Res
2008: Member of Council: Society of Reproduction and Fertility

Professor Tom P. Fleming
Biological Sciences
University of Southampton
Mailpoint 840, Level D Lab & Path Block
Southampton General Hospital
Tremona Road
Southampton
SO16 6YD

Room Number : SGH/LD68A

Share Share this on Facebook Share this on Twitter Share this on Weibo
Privacy Settings