Research interests
Embryo environment and developmental potential and health
We are interested in how the environment of the oocyte and preimplantation embryo can influence its development and future long-term potential. We investigate how maternal diet (in vivo), maternal sickness (in vivo) or IVF-related culture conditions (in vitro) can affect blastocyst development including gene expression patterns, cell proliferation and cellular phenotype. We derive embryonic stem cell lines to further characterise environmental effects on developmental potential.
We also examine long-term consequences of rodent preimplantation environment on subsequent fetal growth and gene expression, maternal nutrient provision, postnatal growth, cardiovascular and metabolic physiology, behaviour, immune reactivity.
Our data indicate that programming of postnatal phenotype can derive from early embryonic environment which has important implications for embryo potential and fetal/postnatal health. Our studies comprise a range of molecular, epigenetic, cellular and physiological technologies on extra-embryonic and embryonic cell lineages and postnatal tissues.
Mechanisms of early mammalian development
We are also interested in the basic mechanisms regulating early mammalian development. Following fertilization, the egg undergoes a series of cell divisions to form a blastocyst which implants into the uterus wall. The blastocyst initially contains two types of cells, one an outer epithelium (trophectoderm) which gives rise to most of the placental tissues of the conceptus, the other, (inner cell mass), which gives rise to the entire foetus after implantation. Blastocyst formation is therefore an essential first step in our development. We use the mouse embryo to tackle the fundamental questions: How do different cell types expressing different genes and proteins emerge during development? What role is played by cell-cell interactions in this process? How do cells mature and differentiate into an epithelium, the commonest tissue in our bodies?
We utilize mainly animal models for our research (principally the mouse) but also include human embryos where appropriate and under HFEA license.
We have strong links with the School of Medicine at Southampton, particularly staff within DOHaD (Developmental Origins of Health and Disease) and the early human development and stem cell consortium within the university.
PhD supervision
Current:
Joanne Gould (Co SV, Medicine)
Oliver Hutton (Co SV, Medicine)
Pooja Khurana (Main SV, Marie-Curie ESR, EU)
Yi-Lung Chang (Co SV, Overseas)
Com
pleted since 2008:
Anan Aljahdali (Main SV, Overseas)
Ili Raja Khalif (Main SV, Overseas)
Rose Panton (Main supervisor, MRC)
Charlotte Williams (Main SV, BBSRC)
Franchesca Lock (Co SV, Medicine)
Sarah Finn (Co SV, Medicine)
Andy Cox (Co SV, BBSRC)
Congshun Sun (Main SV, University + Private)
Ayat Bakheet (Co SV, Overseas)
Research group
Developmental Biology
Affiliate research groups
Institute for Life Sciences (IfLS)
, Biomedical Sciences
Research project(s)
Consequences of early embryo environment
Maternal nutrient restriction exclusive to the preimplantation period has a pronounced influence on fetal and postnatal growth and organ development, as well as postnatal physiology.
Maternal mechanisms induced by diet regulating embryo developmental plasticity affecting life-long health
Discovering the maternal mechanisms induced by diet which act through embryo developmental plasticity to alter later health.
Effect of mouse maternal high fat diet during preimplantation and later stages of pregnancy on offspring development and health
An analysis of effects of maternal high fat diet on embryo developmental potential.
Linking perturbed maternal environment during periconceptional development, due to diabetes, obesity or assisted reproductive technologies, and altered health during ageing
Mechanisms by which assisted conception treatments may affect embryo development and health into adulthood.
How do preimplantation embryos sense and respond to maternal nutrition affecting fetal development and adult health
Mechanisms by which maternal diet affects embryo development and health into adulthood.
Effects of assisted conception treatments on embryo development and health into adulthood.
Role of maternal diet on regulation of embryonic neural stem cells
Effect of mouse maternal diet on development and characteristics of neural stem cells.
Professor Tom P. Fleming
Biological Sciences
University of Southampton
Mailpoint 840, Level D Lab & Path Block
Southampton General Hospital
Tremona Road
Southampton
SO16 6YD
Room Number :
SGH/LD68A