Skip to main content
Research project

Microns2Reefs - From microns to reefs: mechanistic insights into coral biomineralisation and the fate of coral reefs

Project overview

Coral Reefs are under threat from climate change, pollution and other local and global anthropogenic disturbances. Microns2Reefs will go beyond the state of the art by providing the mechanistic understanding needed to accurately predict their fate given the multifaceted and multifactorial anthropogenic threats they face. Coral reefs provide many ecosystem functions, from coastal defence to sustaining fisheries. These, and many others, critically depend on the 3D framework of the reef made from the skeletons of Scleractinian corals. The coral biomineralisation tool kit is known but key questions remain: what biomineralisation tools are most important? what and how do environmental and biological factors limit and influence biomineralisation? how does the environmental sensitivity of coral biomineralisation determine the diversity, resilience, and survivability of individual colonies and the entire reef? The answers to these questions are key to inform the strategies needed to effectively manage these diversity hotspots and are placed into sharp focus by recent coral mass mortality events and the rapidity of anthropogenic climate change.
Microns2Reefs will produce a step change by integrating a raft of new and innovative scientific techniques to provide a mechanistic understanding of coral biomineralisation and hence coral reef resilience. Microns2Reefs has four objectives: 1) to develop a novel multimodal imaging technique to reconstruct the nature of the calcifying fluid and the biomineralisation process in 3D; 2) use this to build a detailed model of coral biomineralisation; 3) develop a mechanistic understanding of the relationship between environment and skeleton construction; 4) quantify the future resilience of corals and coral reefs in the face of multiple anthropogenic stressors. Microns2Reefs is only now feasible due to recent analytical developments, exchange of knowledge and ideas from biomedical sciences, and advances in geochemistry and coral genomics.

Staff

Lead researcher

Professor Gavin Foster

Professor of Isotope Geochemistry
Other researchers

Professor Joerg Wiedenmann

Professor of Biological Oceanography

Research interests

  • Coral Reef Biology and Ecology
  • Coral Bleaching
  • Nutrient biology of coral reefs

Dr Cecilia D'angelo

Associate Professor

Collaborating research institutes, centres and groups

Research outputs

Thomas Chalk,
Muhammad Saeed,
Fang Lei,
Michael Christopher Buckingham,
, 2023 , Geochimica et Cosmochimica Acta , 351 , 108--124
Type: article
Back
to top