Dr András Sóbester BSc, BEng, PhD, MAIAA
Senior Lecturer

Dr András Sóbester is Senior Lecturer within Engineering and Physical Sciences at the University of Southampton.
Using sophisticated optimization algorithms to engineer aircraft shapes the air likes to touch
Dr. András Sóbester is a Senior Lecturer in Aeronautical Engineering. His research focus is on developing techniques for the aerodynamic optimization of aircraft (as distilled into the parahprase to the right by aircraft geometry pioneer E. Schmued), as well as on understanding and enhancing the potential of 3d printing in the aerospace design process.
Dr Sóbester leads the development of AirCONICS (Aircraft CONfiguration through Integrated Cross-disciplinary Scripting), a parametric geometry toolkit for aircraft conceptual design. A recently published Wiley textbook sets out the theoretical and practical foundations behind the parametric models implemented in AirCONICS.
He is also the author of ADRpy (Aircraft Design Recipes in Python), a free library of aircraft design and performance analysis tools suitable for rapid sizing calculations. The models implemented in ADRpy are largely analytical, enabling fast explorations of large design spaces (the open source code is hosted on GitHub).
Stratospheric flight (whether on fixed wings or balloon-borne), especially the design of high altitude Unmanned Air Vehicles (UAVs) for scientific applications, is another key area of interest. He leads the ASTRA (Atmospheric Science Through Robotic Aircraft) initiative, which aims to develop high altitude unmanned aircraft for meteorological and Earth science research.
Dr. Sóbester lectures on two modules on the University's Aeronautics and Astronautics course: Aircraft Operations and Mechanics of Flight (first year) and Aircraft Design (third year). He also supervises third and fourth year individual and group design projects.
Short biography...
Having obtained degrees in Mechanics and Mechanical Engineering (1st) and Design and Manufacture (1st), he joined the University of Southampton as a PhD student in 2000. Upon completion of his doctorate ("Enhancements to Global Design Optimization Techniques") he worked as a Research Fellow in the Computational Engineering and Design research group on a series of industrial research projects for Rolls-Royce and BAE Systems.
His appointment to an academic position in 2007 was followed by the award of a five year Royal Academy of Engineering (RAEng) Research Fellowship. András's RAEng research focused on reducing the environmental impact of passenger airliners through unconventional airframe geometries.
In addition to 20+ journal articles, András is the author of a book exploring the scientific and technological limits of flight at high altitudes, as well as co-author of two Wiley texts, one on the statistical modeling for engineering design applications, another on aircraft geometry.