Skip to main navigationSkip to main content
The University of Southampton

BIOL1024 Fundamentals of Biochemistry

Module Overview

The aim of this module is initially to explain the characteristics and roles of molecules that constitute living cells, including DNA, proteins, lipids and carbohydrates. Subsequently, the fundamental metabolic pathways will be explored, along with the concept of inborn errors of metabolism and the application of DNA technology to their treatment.

Aims and Objectives

Learning Outcomes

Knowledge and Understanding

Having successfully completed this module, you will be able to demonstrate knowledge and understanding of:

  • Describe the structure of nucleic acids and explain how DNA is replicated, transcribed and translated into proteins.
  • Describe the integration of metabolic pathways in anabolic and catabolic states (including exercise, starvation and diabetes).
  • Explain the concept of inborn errors of metabolism and how they may be corrected with biotechnology.
  • Describe the structures and properties of the amino acids found in proteins including examples of post-translational modifications to their structure.
  • Describe the secondary, tertiary and quaternary structures of proteins including explanation of the forces involved in forming and maintaining such structures.
  • Describe the structure of membranes and the structures/functions of proteins found in membranes.
  • Explain the Michaelis-Menten model of enzyme kinetics, including the effects of inhibitors, substrate concentration, temperature, pH and allosteric regulators on enzyme activity.
  • Define a plasmid and explain the use of restriction enzymes in creating recombinant DNA for use in molecular biology/biotechnology.
  • Describe energetic and structural roles of carbohydrates in living organisms, including photosynthesis.
  • Describe the pathways involved in the metabolism of glucose, fatty acids and amino acids, glycogen and triglycerides.
  • Outline the hormonal regulation of metabolism and discuss the importance of protein phosphorylation in this context.
Subject Specific Practical Skills

Having successfully completed this module you will be able to:

  • Know how to perform fundamental molecular laboratory techniques such as running gels, column chromatography and measuring absorbances.


The module will introduce some of the macromolecules found in cells, how these are synthesised and the role they play. The structure and function of the various forms of nucleic acid are described and how the genetic information is passed on from one generation to another. The structures of the amino acids used to synthesise proteins and the various characteristics they contribute to the final protein are discussed which leads onto a description of how protein chains fold, the structures of fully folded proteins and the nature of forces that stabilise the folded protein. Then, particular examples of proteins are explored: enzymes and membrane proteins, including the lipids found in membranes. Post-translational modifications of proteins are discussed, in particular glycosylation which leads on to other roles of carbohydrates in biological systems. Subsequent lectures build upon the basic DNA and protein knowledge to illustrate how DNA can be manipulated by modern molecular biology techniques and how genes can be located in extracts of DNA, isolated and then cloned into plasmid vectors for high expression of the protein they encode. Having introduced the macromolecules found in living organisms, the module moves on to photosynthesis and the major metabolic pathways that convert macromolecules consumed in the diet into energy, and how these pathways are regulated and altered by physiological and pathological scenarios such as starvation, exercise and diabetes. The causes and consequences of inborn mutations in key steps in these metabolic pathways are discussed, including options for treatment with DNA technology.

Learning and Teaching

Teaching and learning methods

This course consists of 42 lectures and 6 lab-based practical sessions.

Independent Study238
Practical classes and workshops18
Total study time300

Resources & Reading list

Gerhard Meisenberg & William H. Simmons (2016). Principles of Medical Biochemistry . 

Roger Miesfeld and Megan McEvoy (2017). Biochemistry. 

Despo Papachristodoulou, Alison Snape, William H. Elliott and Daphne C. Elliott (2018). Biochemistry and Molecular Biology. 

Blackboard site. Additional supporting material for this module can be found on the Blackboard module page. This includes access to virtual practicals.



MethodPercentage contribution
Class Test 35%
Practical write-ups 20%
Written assessment 45%


MethodPercentage contribution
Assessment 100%

Repeat Information

Repeat type: Internal & External


Costs associated with this module

Students are responsible for meeting the cost of essential textbooks, and of producing such essays, assignments, laboratory reports and dissertations as are required to fulfil the academic requirements for each programme of study.

In addition to this, students registered for this module typically also have to pay for:


There are no additional costs associated with this module

Please also ensure you read the section on additional costs in the University’s Fees, Charges and Expenses Regulations in the University Calendar available at

Share this module Share this on Facebook Share this on Twitter Share this on Weibo
Privacy Settings