Skip to main navigationSkip to main content
The University of Southampton

BIOL6095 Skills in Molecular Bioscience

Module Overview

Skills in the molecular biosciences are rapidly developing. This course will prepare students for several common techniques, giving them both a theoretical grounding and practical experience in experimental design so that they can use these new skills in their current and future research career.

Aims and Objectives

Learning Outcomes

Learning Outcomes

Having successfully completed this module you will be able to:

  • Use software to create maps of genes and vectors suitable for use in different experimental techniques.
  • Use biological sequence databases to understand the gene arrangement, and important sites and domains of a gene and protein of interest.
  • Design experiments that can analyse or manipulate expression levels of a gene of interest.
  • Demonstrate competency in carrying out and analysing experiments to quantify expression of a gene of interest.
  • Present work in oral or written form that discusses molecular biology experiments on your gene or protein of interest.


Students will learn about current research techniques that are used widely in research laboratories in order to gain insight into gene expression and protein interactions. Each work package will require students to engage with a key technique through lectures and workshops, and then produce a piece of assessed work which demonstrates that they can design experiments or analyse data. Work packages will cover the following topics: 1) Gene cloning – how do I clone gene X or Y from cDNA? We will consider the source of appropriate starting material (e.g. tissue/cell type), primer design, vector choice, and how to undertake classic genetic engineering. Activities: Design PCR primers to amplify the ORF of a gene of interest, and determine how to clone this into vectors containing epitope tags or fluorescent proteins. 2) Gene manipulation (qPCR and siRNA). Discussion of the background and applications of these techniques. How to design a knockdown specific to your gene of interest? How to measure RNA levels following knockdown? Activities: design of siRNA targets, and then a vector to escape any phenotype associated with siRNA-mediated knockdown. You will also design qPCR primers to analyse levels of expression of your gene of interest (or the human homolog), and then test both the amplification efficiency of your primers, and relative expression levels of the gene in a cDNA panel. This data has to be presented appropriately, with statistical tests applied. 3) Protein domains – what are the functions of my protein? Activities: Design an experiment to mutate a domain/site of interest in the plasmid constructed in work package 1. 4) Gene manipulation (CRISPR). Discussion of background and applications. Activities: Give oral presentation on your protein of interest discussing domains and sites of interest and how you would plan an experiment to edit in amino acid mutations, or to add an epitope tag to your protein. Submit documentation on how you would: design guides for insertion into a Cas9 plasmid; design the template for homology directed repair; design the experiment for genotyping the knock-in.

Learning and Teaching

Teaching and learning methods

Each work package will begin with a lecture on a molecular biology technique, and this will be followed up with a workshop where students will use electronic resources to design experiments. One work package will also include a lab session where students will test their own experiment to analyse expression of a gene of interest.

Independent Study120
Total study time150





MethodPercentage contribution
Coursework 20%
Coursework 10%
Coursework 10%
Coursework & Labs 30%
Individual Oral Presentation 30%

Repeat Information

Repeat type: Internal

Share this module Share this on Facebook Share this on Twitter Share this on Weibo
Privacy Settings