Skip to main navigationSkip to main content
The University of Southampton

CHEM6145 Supramolecular Chemistry of Functional Molecules and Materials

Module Overview

This module will explore the fundamental basis of intermolecular interactions and illustrate how these can be exploited to form diverse supramolecular assemblies ranging from small molecules, soft gels and hard extended inorganic solids. The course will provide a research-led overview of the current state-of-the-art in supramolecular systems and give students an awareness and appreciation of the wider aspects of chemistry and functional materials accessible through combination and assembly of organic, inorganic, coordination and biological molecules and higher-level building units.

Aims and Objectives

Learning Outcomes

Learning Outcomes

Having successfully completed this module you will be able to:

  • Discuss the role of supramolecular chemistry in organic chemistry, chemical biology, materials science and nanotechnology.
  • Explain non-covalent interactions, molecular recognition and self-assembly and how these can be exploited to prepare functional molecules and materials for a wide-range of applications.
  • Have an appreciation of the significance and application of supramolecular chemistry, including in dynamic combinatorial chemistry, materials chemistry (e.g. soft materials, porous hybrid and other framework solids), biological systems and the controlled construction of nanoscale entities.


The syllabus, which is described in outline below, is aligned with the following QAA benchmark statements for chemistry at FHEQ Level 7 (Masters). • to extend students' comprehension of key chemical concepts and so provide them with an in-depth understanding of specialised areas of chemistry; • to develop in students the ability to adapt and apply methodology to the solution of unfamiliar types of problems; • to instill a critical awareness of advances at the forefront of the chemical science discipline; • to prepare students effectively for professional employment or doctoral studies in the chemical sciences; • the ability to adapt and apply methodology to the solution of unfamiliar problems; • knowledge base extends to a systematic understanding and critical awareness of topics which are informed by the forefront of the discipline; • problems of an unfamiliar nature are tackled with appropriate methodology and taking into account the possible absence of complete data. This unit is a research led course with many examples coming from the recent scientific literature. Topics to be covered in this module include: Principles of Molecular Recognition and Self-Assembly Overview of intermolecular forces in the context of the structural and thermodynamic origin of molecular recognition processes and the techniques use to study and measure non-covalent interactions. Historical development of supramolecular chemistry. Applications of Self-Assembly in Host-Guest Chemistry and Catalysis The principles and applications of supramolecular chemistry including: hosts for anions, cations and neutral molecular species; supramolecular catalysis through hydrogen bonding, preconcentration, self-assembly of catalysts and preorganisation of catalyst-substrate systems Supramolecular aspects of chemical biology The supramolecular chemistry of natural systems (DNA, peptides) and their chemical modification to introduce further functionalities; principles and applications of nano-biotechnology. Self-assembly of complex structures Extension of supramolecular principles and dynamic covalent chemistry to larger architectures including gels, cages, interlocked molecules, molecular machines, and self-replicating and evolving systems. Metal and Covalent Framework Materials Synthesis, properties and applications of modular porous solids such as covalent-organic frameworks (COFs) and metal-organic frameworks (MOFs), including supramolecular templating of hierarchically porous solids. Applications to be covered may include: storage and separation of strategically important gases (H2, CO2, CH4), drug delivery, catalysis and energy. For each application the challenges will be discussed and an evaluation of how these can be addressed by the composition and design of the materials presented. The dynamic behaviour of frameworks will also be discussed with respect to the (supramolecular and/or coordination) interactions which sustain the extended network structures.

Learning and Teaching

Teaching and learning methods

Teaching methods: Lectures, directed reading, Bb online support. Learning methods: Independent study, student motivated peer group study, student driven tutor support

Follow-up work60
Preparation for scheduled sessions40
Practical classes and workshops6
Total study time150

Resources & Reading list

Ed. Leonard R.MacGillivray (2010). Metal-Organic Frameworks: Design and Application. 

J.W.Steed, D.R.Turner, K.J.Wallace (2007). Core Concepts in Supramolecular Chemistry and Nanochemistry. 

(2014). MOF Special Issue. Chemical Society Reviews. ,43 .

(2011). DNA Nanotechnology Special Issue. Chemical Society Reviews. ,Issue 12 .

Paul.D.Beer, Philip. A. Gale, David.K.Smith (1999). Supramolecular Chemistry (Oxford Chemistry Primers). 

(2009). MOF Special Issue. Chemical Society Reviews. ,38 .

(2017). Supramolecular Chemistry Anniversary online collection. Chemical Society Reviews. .

F.Diederich, P.J.Stang, R.T.Tykwinski (2008). Modern Supramolecular Chemistry. 

P.A.Gale and J.W.Steed (Eds) (2012). Supramolecular Chemistry: from Molecules to Nanomaterials. 



MethodPercentage contribution
Continuous Assessment 100%


MethodPercentage contribution
Continuous Assessment 100%

Repeat Information

Repeat type: Internal & External

Linked modules

Pre-requisite: CHEM2016

Share this module Share this on Facebook Share this on Twitter Share this on Weibo
Privacy Settings