Skip to main navigationSkip to main content
The University of Southampton

FEEG2001 Systems Design and Computing

Module Overview

This module follows on from FEEG1001 Design and Computing where students focus on the design of functional parts. In FEEG2001 students address the design of a system consisting of a number of interacting parts which may include mechanical and electrical parts, sensors, actuators and real-time computational devices. Students work within a group to practically apply their knowledge to design, build and test an artefact in response to an engineering brief within a proactive and competitive environment. Particular focus is placed upon the ability to work as an effective team and realise a coordinated and well-resolved engineering system. In semester 1 design and computational skills are extended in preparation for a challenging design project in semester 2, in which teams of five students will respond to one of the following briefs: • A robot, for example that will compete in the Eurobot international contest. • A responsive system that senses and responds to some environmental stimuli. • An instrumented fixed wing unmanned flying vehicle wing and control system. • An instrumented multirotor unmanned flying vehicle and control system. • An active hi-fi loudspeaker unit with digital crossover. The testing of the final artefact has great importance and is supported by the use of internationally recognised acoustic facilities, for the loudspeaker design and by participation in inter-group competitions for the UAV, multirotor, Eurobot and responsive system designs. This module is linked to FEEG2006 Engineering Management and Law where the management of the group design project is assessed. This supports the development of effective management and group working skills within the context of designing and delivering a challenging engineering project. External consultants, visiting professors and subject experts in Acoustic, Aerospace and Mechanical Engineering have been consulted in the design of this module. This has ensured a high educational standard and industry relevance.

Aims and Objectives

Learning Outcomes

Knowledge and Understanding

Having successfully completed this module, you will be able to demonstrate knowledge and understanding of:

  • Computing - to develop understanding of (compiled) programming principles.
  • Computing - To understand the concepts of real-time computing.
  • Computing - To understand how to solve system design problems by integrating algorithms, actuators, sensors and mechanical parts.
  • Computing - The characteristics of and an ability to model a range of hardware devices, sensors and actuators.
  • Computing - How to interface an algorithm with hardware devices or other software modules.
  • Computing - How to design and build a system from component parts either physical or simulated.
  • Computing - How to select the right hardware devices or analysis techniques to meet a system design challenge.
  • Computing - Critically analysing results.
Subject Specific Intellectual and Research Skills

Having successfully completed this module you will be able to:

  • Design - Understand the definition of a “system” of parts and how parts interact to meet functional requirements.
  • Generate innovative designs for systems and components to fulfill the needs of a project brief.
  • Computing - Identify types of problems to pick the right solution strategy whether computational or physical.
  • Computing - Analyse computer programs to understand their structure.
  • Computing - Design and implement small computer programs independently.
Transferable and Generic Skills

Having successfully completed this module you will be able to:

  • Design - Produce successful system designs through individual and team working.
  • Design - Communicate a systems design idea/concept graphically.
  • Design - Examine a systems design critically and identify potential improvements.
  • Computing - Decompose a model of an engineering system and its processes into smaller tasks that can be solved sequentially (by a computer).
  • Computing - Understand the concepts behind software engineering and design decisions in modelling software.
  • Computing - Be able to design real-time algorithms to control systems.
Subject Specific Practical Skills

Having successfully completed this module you will be able to:

  • Design - Prepare geometry data for prototyping processes or systems modelling.
  • Design - Produce and interpret 2D & 3D geometry and datasets.
  • Design - Ensure that part geometry and tolerances are consistent with functional/process/standards constraints.
  • Computing - Use the Arduino Integrated Development Environments [IDE].
  • Computing - Interface sensors and actuators to a real-time processor.
  • Computing - Produce and interpret simulations of system performance.


SEMESTER 1 • Design (weeks 1-12): • Design theory (4 lectures) • Manufacturing and Design for Manufacturing (1 lecture) • PID Controllers (2 lectures) • Structural Analysis (4 lectures) • Engineering Design and Drawing - good practice (1 lecture) Computing (weeks 1-6): • The Arduino microprocessor Integrated Development Environment (IDE) • Analogue/digital conversion • Communicating with sensors (infra-red, ultrasonic) • Control of motors and servos Computing (weeks 7-12, Aeronautical, Mechanical and Space Systems Engineering): • Further Arduino applications • Additional sensors (pressure, accelerometer, GPS) • Computing (weeks 7-12, Acoustical Engineering) • High level computing efor design • Real-time signal processing with the Arduino Due microcontroller SEMESTER 2 Group Design Project (weeks 1-12) • The Design, Build and Test of an engineering system, working in teams and realised through one of the following design briefs • UAV To design a wing system capable of maximum speed range to suit a small flying vehicle that is instrumented to capture flight dynamics. • Eurobot To design a ground vehicle that is capable of a degree of autonomous behaviour and designed to carry out a strategic set of tasks using sensors and actuators. • Multirotor To design a multirotor that is capable of a degree of autonomous behaviour and designed to carry out a task. • Responsive System To design a responsive system that senses and responds to the characteristics of its local environment, including the proximity of moving objects, unique to its specified location. • Loudspeaker To design an active loudspeaker with digital crossover (incorporating additional taught material on computational aspects of loudspeaker design).

Learning and Teaching

Teaching and learning methods

This module will be delivered through a combination of the following: 1. Lectures for the delivery of new material and concepts. 2. Practical sessions where students will tackle a set of design or computing tasks. 3. Workshop sessions for students to work in groups and develop design proposals. Demonstrators/ academic staff will be available to answer questions and provide feedback during practical and workshop sessions. The teaching pattern is summarised below. SEMESTER 1 DESIGN • Lectures on formal design theories. (weeks 1-12). o Design theory o Manufacturing and Design for Manufacturing o PID Controllers o Structural Analysis o Engineering Design and Drawing - good practice • Computer-based Design Tutorials (weeks 5-11). o Manufacturing (1 session) o Structural Analysis (4 sessions) COMPUTING • Computer-based practical classes to introduce the Arduino programming system. (weeks 1-12) o Introduction to the Arduino IDE programming environment (week1) o Practicing with simple Arduino circuits (week 2) o IR Distance Sensor (week 3) o Ultrasonic Sensor (week 4) o DC Motor & Encoder.(Robot Odometry Design Brief issued)(week 5) o Odometry Exercise (week 6) Please note that the total time of this exercise is likely to last approximately 2-3 hours subject to the number of teams competing. Students are encouraged to observe and discuss the participation of the other teams. Note: Acoustical Engineering students transfer to the acoustical engineering specific computer-based sessions below after the week 6 Odometry Exercise. All other students continue with weeks 7 to 12. o Pressure Sensor (week 7) o 3-Axis Gyro (week 8) o Triple-axis Accelerometer Board (week 9) o Triple-axis Magnetometer (Compass) Board (week 10) o GPS (week 11) o Revision and Problem Solving Week (week 12) • Acoustical Engineering specific computer-based sessions followed by 45 min optional drop-in advice sessions (Acoustical Engineering only). (weeks 7-12) o FE modelling for acoustical systems design o Optimization of acoustical systems o Multiphysics: coupling electrical, mechanical and acoustical systems. One 2-hour lecture to introduce the group design project briefs. SEMESTER 2 GROUP DESIGN PROJECT: • Computer-based optional drop in advice sessions (Acoustical Engineering only). (weeks 1-6(18-23)) • Workshop sessions (weeks 1-11(18-32)) associated with the group design project within the Design Studios/Workshops: (Including an introductory project briefing session and a 1 x 15min Interim Design Review). Workshop sessions are reserved for working on the group design project within the Design Studios/ Workshops. Informal consultation opportunities with staff members are provided each week mainly within this time. Some sessions will clash with other timetabled activities. These clashes have been allowed for and groups are to arrange alternative times to meet and manage their time accordingly. Groups can use the Design Studios/ Workshops in addition to timetabled sessions, during open access times. • Test session to test the performance of the group design project prototype. Note: The date of this event may vary between design projects. Testing of the UAV and Multirotor projects is subject to weather conditions.

Preparation for scheduled sessions24
Practical classes and workshops36
Completion of assessment task64
Follow-up work12
Total study time150

Resources & Reading list

Gudmundsson, S (2013).. General Aviation Aircraft Design. 

Software - Available on managed University computers. • SolidWorks (Student version also available to download for use on personal computers). • MATLAB • Arduino • Vanguard Studio (Student version also available to download for use on personal computers subject to VPN access). • A range of desktop publishing programmes.

Raymer, D (2012).. Aircraft Design a Conceptual Approach. 5th ed. 

Mccomb, G (2011). Robot Builder's Bonanza. 4th ed.. 

Gomaa, H (2000). Designing Concurrent, Distributed and Real-time Applications with UML. 

Tzivaras, V (2016).. Building a quadcopter with Arduino. 

Abbott, I. Doenhoff, A (1960). Theory of Wing Sections. 

James Leake and Jacob Borgeson (2012). Engineering Design Graphics : Sketching, Modeling, and Visualization. 

Prior, S. Barlow, C. Lewis, D. Erbill, M (Dec 2009).. S.I. Units (Revision) Playing Cards: Units, Symbols, Quantities, Equations & Abbreviations in Science, Technology, Engineering & Maths. 

Banzi, M (2011). Getting Started with Arduino. 2nd ed.. 

Margolis, M (2012).. Make an Arduino-Controlled Robot: 1st ed. 

Margolis, M (2012).. Arduino Cookbook. 2nd ed:. 

Otto, K. Wood, K (2000).. Product Design. 

Colin Simmons, Elsevier (2012). Manual of Engineering Drawing: Technical Product Specification and Documentation to British and International Standards. 

Newell, P, Holland, K (2006).. Loudspeakers for Music Recording and Reproduction. 

Norris, D (2014).. Build your own quadcopter: power up your designs with the Parallax Elev-8. 

Antonsson, E; Cagan, J (2001). Formal Engineering Design Synthesis. 

Kossiakoff, A. Sweet, W. Seymour, S S. Biemer, (2011).. Systems Engineering Principles and Practice (Wiley Series in Systems Engineering and Management). 2nd ed. 


Assessment Strategy

Group marks are awarded to students for exercises (except exercise 2). However, individual student marks can vary within a group should the assessors deem that there have been unequal contributions from the students within the group. All students are to complete a Group Assessment Form to comment on their and other group member’s contributions. A moderation meeting involving the project tutors and members of the Design Panel will be held at the end of semester 2 to moderate assessments. This module is coordinated with the co-requisite module FEEG2006 Engineering Management and Law. A proportion of the marks for FEEG2006 will be awarded for management practice associated with the Group Design Project of this module.


Concept Design Report


MethodPercentage contribution
Design 50%
Design Report 40%
Exercise 10%


MethodPercentage contribution
Design project 100%

Repeat Information

Repeat type: Internal

Linked modules

Pre-requisites: FEEG1001 and FEEG1002 and FEEG1004


To study this module, you will need to also study the following module(s):

FEEG2006Engineering Management and Law


Costs associated with this module

Students are responsible for meeting the cost of essential textbooks, and of producing such essays, assignments, laboratory reports and dissertations as are required to fulfil the academic requirements for each programme of study.

In addition to this, students registered for this module typically also have to pay for:

Equipment and Materials

A range of standard construction materials are provided to support the design projects within this module, however, students may wish to customise their designs and choose alternative materials at their own cost. Students are required to source and purchase some material for the Odometry Exercise in weeks 5 and 6 and should be prepared to spend up to £50 per group of their own money. Receipts should be retained as expenditure may be subject to auditing. Students should also be prepared to spend up to £100 per group of their own money in relation to the purchase of components for the Semester 2 group design project. Receipts should be retained as expenditure may be subject to auditing. The costs associated with the printing and binding of reports are to be covered by each student group.

Please also ensure you read the section on additional costs in the University’s Fees, Charges and Expenses Regulations in the University Calendar available at

Share this module Share this on Facebook Share this on Twitter Share this on Weibo
Privacy Settings