Skip to main navigationSkip to main content
The University of Southampton

SESM3028 Biomaterials

Module Overview

A biomaterial can be described as a material used in a biomedical device intended to interact with biological systems. The selection of an appropriate biomaterial is critical to the performance of an implant. For a hip replacement, properties such as good strength, excellent corrosion resistance, fatigue resistance and biocompatibility are required to ensure the hip replacement does not fail in service. In this module, you will learn about the various polymer, metal and ceramic based materials used as biomaterials, and discover why these materials have been accepted into clinical practice. A series of case studies will be used as examples to show how past failures have led to the materials that are used today, in particular, focussing on hip and knee replacements.

Aims and Objectives

Learning Outcomes

Knowledge and Understanding

Having successfully completed this module, you will be able to demonstrate knowledge and understanding of:

  • Material properties of metallic, polymer based and ceramic materials used in implants. Contributes to EAB learning outcomes SM1m, SM3m, SM6m
  • Biocompatibility and corrosion issues of these materials.Contributes to EAB learning outcomes SM1m, SM3m, SM6m
  • Techniques used to assess the performance of these materials both individually and as part of a joint replacement. Contributes to EAB learning outcomes SM1m, SM3m, SM4m, D3m
Disciplinary Specific Learning Outcomes

Having successfully completed this module you will be able to:

  • Evaluate the strengths and weaknesses of prospective joint replacement materials. Contributes to EAB learning outcomes SM1m, SM3m, SM4m, SM6m
  • Apply material property analysis techniques to orthopaedic biomaterials selection. Contributes to EAB learning outcomes SM1m, SM3m, SM4m, SM6m
  • Make informed decisions as to the best method to assess the suitability of a material for a specific application. Contributes to EAB learning outcomes SM1m, SM3m, SM4m, SM6m
  • Solve problems by linking appropriate analytical approaches to engineering problems.Contributes to EAB learning outcomes SM2b, SM3b, EA1b
  • Prepare brief technical reports on clinically relevant problems. Contributes to EAB learning outcomes SM3m, D6, P4m


Arthroplasty surgery: • Anatomy of the hip and knee before and after implantation. • Conditions necessitating implant surgery. • The functions of the prosthesis. Biomaterials - structure property relationships: • Metallics .• Ceramics. • Polymers. • Polymer based composites. The Bioenvironment: • Bioenvironment effects. • Implant interactions. Corrosion of biomaterials: • Degradation of the material and its effects - - Biological effects. - Chemical effects. - Mechanical effects. Biocompatibility of materials used in hip and knee arthroplasty: • Concepts of biocompatibility - - Mechanical biocompatibility. - Chemical biocompatibility. - Biocompatibility testing/cell culture. - Genocompatibility. Biomaterials selection and performance: • Orthopaedic materials. • Other applications. Performance prediction of the total joint replacement: • Mechanical testing. • Passive monitoring. • Clinical studies. Revision and past papers. Demonstration. Note guest seminars from external speakers form part of the above lectures.

Learning and Teaching

Teaching and learning methods

Teaching methods include • Provision of skeleton lecture notes. • Handouts. • Case studies. • Practical demonstrations. • Industrial talks. Learning activities include • Directed reading and web based resource searches. • Written coursework based on research into clinical experience (e.g. cases of implant failure). • Learning outcomes include. • Understanding of engineering principles and the ability to apply them to conduct the materials selection process. • Ability to apply and integrate knowledge and understanding of engineering materials to support the study of biomedical engineering. • A comprehensive knowledge and understanding of biomedical materials, in particular orthopaedic biomaterials, and an appreciation of their limitations. • The ability to extract data pertinent to an unfamiliar problem, and apply to the problem of materials selection in new devices. • An awareness of developing technologies related to biomaterials. • A thorough understanding of current practice and its limitations through case study evaluation and some appreciation of likely new developments in the biomaterials field.

Wider reading or practice8
Completion of assessment task20
Preparation for scheduled sessions66
Total study time150



MethodPercentage contribution
Continuous Assessment 25%
Final Assessment  75%


MethodPercentage contribution
Set Task 100%


MethodPercentage contribution
Set Task 100%

Repeat Information

Repeat type: Internal & External

Share this module Share this on Facebook Share this on Twitter Share this on Weibo
Privacy Settings