Skip to main navigationSkip to main content
The University of Southampton

SESM3028 Biomaterials

Module Overview

A biomaterial can be described as a material used in a biomedical device intended to interact with biological systems. The selection of an appropriate biomaterial is critical to the performance of an implant. For a hip replacement, properties such as good strength, excellent corrosion resistance, fatigue resistance and biocompatibility are required to ensure the hip replacement does not fail in service. In this module, you will learn about the various polymer, metal and ceramic based materials used as biomaterials, and discover why these materials have been accepted into clinical practice. A series of case studies will be used as examples to show how past failures have led to the materials that are used today, in particular, focussing on hip and knee replacements.

Aims and Objectives

Module Aims

The aims of this module are to introduce the materials used in biomedical applications, in particular those used in joint replacement of the lower limb, and to gain an appreciation of material selection issues of these materials based on a knowledge of structure/property relationships.

Learning Outcomes

Knowledge and Understanding

Having successfully completed this module, you will be able to demonstrate knowledge and understanding of:

  • Material properties of metallic, polymer based and ceramic materials used in implants
  • Biocompatibility and corrosion issues of these materials
  • Techniques used to assess the performance of these materials both individually and as part of a joint replacement
Disciplinary Specific Learning Outcomes

Having successfully completed this module you will be able to:

  • Evaluate the strengths and weaknesses of prospective joint replacement materials
  • Apply material property analysis techniques to orthopaedic biomaterials selection
  • Make informed decisions as to the best method to assess the suitability of a material for a specific application
  • Solve problems by linking appropriate analytical approaches to engineering problems
  • Prepare brief technical reports on clinically relevant problems


Arthroplasty surgery: • Anatomy of the hip and knee before and after implantation. • Conditions necessitating implant surgery. • The functions of the prosthesis. Biomaterials - structure property relationships: • Metallics .• Ceramics. • Polymers. • Polymer based composites. The Bioenvironment: • Bioenvironment effects. • Implant interactions. Corrosion of biomaterials: • Degradation of the material and its effects - - Biological effects. - Chemical effects. - Mechanical effects. Biocompatibility of materials used in hip and knee arthroplasty: • Concepts of biocompatibility - - Mechanical biocompatibility. - Chemical biocompatibility. - Biocompatibility testing/cell culture. - Genocompatibility. Biomaterials selection and performance: • Orthopaedic materials. • Other applications. Performance prediction of the total joint replacement: • Mechanical testing. • Passive monitoring. • Clinical studies. Revision and past papers. Demonstration. Note guest seminars from external speakers form part of the above lectures.

Learning and Teaching

Teaching and learning methods

Teaching methods include • Provision of skeleton lecture notes. • Handouts. • Case studies. • Practical demonstrations. • Industrial talks. Learning activities include • Directed reading and web based resource searches. • Written coursework based on research into clinical experience (e.g. cases of implant failure). • Learning outcomes include. • Understanding of engineering principles and the ability to apply them to conduct the materials selection process. • Ability to apply and integrate knowledge and understanding of engineering materials to support the study of biomedical engineering. • A comprehensive knowledge and understanding of biomedical materials, in particular orthopaedic biomaterials, and an appreciation of their limitations. • The ability to extract data pertinent to an unfamiliar problem, and apply to the problem of materials selection in new devices. • An awareness of developing technologies related to biomaterials. • A thorough understanding of current practice and its limitations through case study evaluation and some appreciation of likely new developments in the biomaterials field.

Wider reading or practice8
Completion of assessment task20
Preparation for scheduled sessions66
Total study time150

Resources & Reading list

JB Park. Biomaterials: An Introduction. 



MethodPercentage contribution
Coursework assignment(s) 25%
Examination  (90 minutes) 75%


MethodPercentage contribution
Examination  (90 minutes) 100%

Repeat Information

Repeat type: Internal & External

Share this module Share this on Facebook Share this on Google+ Share this on Twitter Share this on Weibo

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.