Module overview
Motorised transport has transformed many aspects of human life over the past 120 years. Today’s automotive engineers, however, face the unresolved challenge of continuing that transformation in a sustainable manner. Therefore this module develops the student’s ability to engineer efficient and lowemission automotive propulsion solutions.
Linked modules
Pre-requisite: SESM2017 or SESA2023
Aims and Objectives
Learning Outcomes
Subject Specific Intellectual and Research Skills
Having successfully completed this module you will be able to:
- Estimate engine performance metrics using air-standard analysis, computer simulation, or experimental data.
- Design propulsion systems for improved performance using engineering analysis.
- Evaluate the performance of alternative hybrid drivetrain configurations in specific applications.
- Explain the role that engine design features and operating parameters have on engine performance.
- Select electro-mechanical components to meet design objectives.
- Compute flame temperatures, chemical equilibria
Knowledge and Understanding
Having successfully completed this module, you will be able to demonstrate knowledge and understanding of:
- Factors driving development of automotive propulsion technology.
- Fuel properties and fuel performance in combustion engines.
- Methods for improving performance and reducing emissions from internal combustion engines.
- Electro-mechanical and electro-chemical components used in hybrid electric power trains.
- Spark-ignition and compression-ignition engine operation and performance.
- Combustion chemistry, flame theory, and pollutant formation and mitigation.
- Configuration of hybrid powertrain for automotive applications.
Transferable and Generic Skills
Having successfully completed this module you will be able to:
- Analyse experimental data and summarise findings.
- Use computer simulation to develop and evaluate alternative designs.
- Devise appropriate plots for analysis, communication, and justification of design decisions.
- Communicate in a clear, structured and efficient manner.
Subject Specific Practical Skills
Having successfully completed this module you will be able to:
- Perform computational simulations in order to predict and to optimise the performance of automotive power-train for a given drive-cycle.
- Undertake experimental evaluation of internal combustion engines and power-train components.
Syllabus
Context
- Design requirements for automotive propulsion, on and off highway; Technical, energy, environmental, policy constraints. Trade-offs between electric-grid-powered vehicles and
combustion-engines.
- Overview of automotive powertrain technologies (combustion engine configurations and after-treatment, battery-electric systems, KERS, hybrids).
Combustion and fuels:
- Flame temperature and governing equations of combustion (revision; absolute enthalpy; species and temperature equations).
- Chemical kinetics and chemistry of combustion (Global and elementary reactions; reaction mechanisms; hydrocarbon chemistry).
- Dissociation and equilibrium (Equilibrium constants; combustion product composition).
- Autoignition (also, the well-stirred reactor).
- Laminar premixed flames (premixed flame theory; laminar burning velocity; spark ignition and flammability limits).
- Laminar non-premixed flames and droplet combustion (Conserved scalars and the mixture fraction; droplet evaporation and combustion).
- Pollution from combustion (Zel’dovich and extended NOx formation chemistry, CO and HC chemistry, particle formation and oxidation mechanisms).
- Flames and turbulence: (characteristic time and space scales; regimes of turbulent combustion; approaches to modelling turbulent combustion).
- Fossil fuels and alternatives: (fuel ratings, knocking and flame speeds; LNG, LPG, gasoline, diesel, methanol, ethanol, bio-diesel, Fischer-Tropsch).
Design and performance of Spark-Ignition (SI) and Compression-Ignition (CI) engines:
- SI performance and limits to performance:
- Mean effective pressure; efficiency; performance maps.
- Limits to efficiency and pressure: autoignition, rate of combustion, heat losses.
- SI enhancing performance and emissions:
- Improving performance: scavenging efficiency, flow exchange processes and tuning, direct injection.
- Emission control; catalysts and cycle control.
- CI performance and limits to performance:
- Mean effective pressure; efficiency; performance maps.
- Limits to efficiency and pressure: autoignition, rate of combustion, heat losses.
- CI enhancing performance and emissions:
- Fuel injection systems and spray structure
- Multiple injection in CI engines.
- Principles and performance of particle trapping and oxidation systems; Selective Catalytic Reduction.
- Turbocharging: Turbocharger technology and intercooling; turbocharger matching.
Low-carbon propulsion:
- Anticipated developments in combustion engines: downsizing; low-temperature combustion / HCCI; alternative fuels; continuous/longer gearing; hybridization.
- Series and parallel hybrids, and power management.
- Electric motor drive technology (review of technology suited to automotive propulsion –induction, permanent magnet brushless, VRPM, SRM, DC) and performance metrics
- Automotive battery and fuel cell systems – balance of plant requirements, performance metrics.
Power-train testing and simulation:
- Experimental investigation of engine design: performance, combustion behaviour, and emissions (engine dynamometer, fuel maps, mini-map testing; chassis-dyno; legislative drive-cycles).
- Emission measurements (HC, CO, NOx and particulate emissions).
- Optical diagnostics: Data required for in cylinder flow structure, Optical diagnostics (PIV, PTV, LIF, LII, etc.)
- Thermodynamics models, CFD models, averaging techniques, in-cylinder flow and combustion models, modelling flame propagation in SI engines, spray structure and modelling techniques
- Calculation of heat transfer (Eichelberg approach, dimensional analysis, Annand and Woschni models.
- Chemical rate kinetics.
- Hybrid propulsion case-study: Southampton University Peace of Mind Series Hybrid Electric Vehicle.
Revision
Learning and Teaching
Teaching and learning methods
Teaching methods include
- Lectures including examples, with lecture hand-outs provided.
- Set example questions and group problem solving sessions with staff support.
- Laboratory briefings
Learning activities include
- Directed reading
- Individual work on examples
- Laboratory measurements, analysis, and reports.
Type | Hours |
---|---|
Wider reading or practice | 10 |
Practical classes and workshops | 3 |
Completion of assessment task | 10 |
Revision | 10 |
Preparation for scheduled sessions | 8 |
Follow-up work | 70 |
Lecture | 36 |
Supervised time in studio/workshop | 3 |
Total study time | 150 |
Resources & Reading list
General Resources
Simulation software provided via blackboard..
Assessment
Summative
This is how we’ll formally assess what you have learned in this module.
Method | Percentage contribution |
---|---|
Continuous Assessment | 20% |
Final Assessment | 80% |
Referral
This is how we’ll assess you if you don’t meet the criteria to pass this module.
Method | Percentage contribution |
---|---|
Set Task | 100% |
Repeat
An internal repeat is where you take all of your modules again, including any you passed. An external repeat is where you only re-take the modules you failed.
Method | Percentage contribution |
---|---|
Set Task | 100% |
Repeat Information
Repeat type: Internal & External