Skip to main navigationSkip to main content
The University of Southampton
Engineering
Phone:
(023) 8059 2884
Email:
A.Elkady@soton.ac.uk

Dr Ahmed Elkady 

Lecturer in Structural Engineering

Dr Ahmed Elkady's photo
Related links
Google Scholar
Research Gate
LinkedIn

Dr. Elkady is a Lecturer in Structural Engineering at the University of Southampton. He specializes in the performance of steel and composite steel/concrete structures under multi-hazards, with particularly strong experience in large-scale testing and advanced numerical modelling and simulation of structural components and systems under seismic loading. 

Engineering is the art of modelling materials we do not wholly understand into shapes we cannot precisely analyse so as to withstand forces we cannot properly assess ― Dr AR Dykes

I obtained my bachelor degree (BSc 2006, Hons) in Civil Engineering from Alexandria University, Egypt and my graduate degrees, MSc (2011) and PhD (2016), from McGill University, Canada. Prior to joining the University of Southampton in Fall 2019, I worked as a research scientist in the Resilient Steel Structures Laboratory at École Polytechnique Federale de Lausanne (EPFL), Switzerland from 2016 to 2019.

My research primarily focuses on structural resilience by 1) quantifying structural robustness metrics such as collapse risk and economic losses following man-made and natural hazards; and 2) developing methodologies for mitigating damage. This is achieved through integrated experimental and computational research. Past research has involved both large-scale and full-scale testing of deep steel columns under cyclic loading as well as comprehensive numerical and analytical studies to investigate collapse risk in archetype steel frame buildings under seismic hazard. This work has influenced the North American (AISC and CSA) seismic provisions related to the design of steel moment-resisting frame systems. Landmark experimental data complemented with high fidelity finite element simulations were used to develop nonlinear modelling recommendations for steel beam-columns and composite steel beams in support of performance-based seismic design and assessment as part of the ASCE 41 guidelines for seismic assessment of new and existing structures.

At the University of Southampton, I continue to utilize the state-of-the-art facilities within the National Infrastructure Laboratory to further expand our understanding of the degrading mechanisms in the built environment under natural and man-made hazards and to develop design provisions and innovative techniques to mitigate damage and improve resilience. See under “Research” section for more details.

 

Research interests

  • Performance-Based Earthquake Engineering.
  • Collapse Risk and Loss Assessment of Steel and Composite Buildings.
  • Resilience-based design, retrofit and rehabilitation of Existing Structures.
  • Nonlinear Numerical and Finite Element Modelling and Analysis of Structures.
  • Large-Scale Experimental Evaluation of Structural Components and Systems.

 

Development of robust numerical models for predicting structural demands and collapse risk

Within the context of performance-based engineering, robust numerical models are essential in predicting structural behavior accurately under different hazards and to guide design and retrofit schemes. Such models are also needed to predict collapse risk due to structural instability which is equally important from a life-safety point-of-view. This research focuses on developing mechanics-based and data-driven numerical models that can accurately capture the different degrading mechanisms in various structural components and connections.

System-level simulation

Numerical model of an 8-storey moment-frame building subjected to a strong earthquake that leads to collapse.

Watch video on YouTube

Component-level simulation

Simulating local buckling in wide-flange deep steel columns under cyclic loading using a high fidelity finite element model

Watch video on YouTube

Energy-dissipative devices and smart connections for damage mitigation

The design of critical structures -in particular- is more concerned with limiting damage in structural and non-structural elements to ensure continuous functionality and to avoid monetary losses. The objective of this research is to: 1) develop accurate fragility functions for the different damage states in critical components and 2) utilize advances in manufacturing and material science to develop structural fuses and smart connections as means to isolate critical components from structural demands.

 

Energy-dissipative devices and smart connections for damage mitigation

Research group

Infrastructure Group

MEng Year 1 Deputy Coordinator

Sort via:TypeorYear

Articles

Conferences

EaRL – Software for Earthquake Risk, Loss & Lifecycle Assessment


EaRL is an open source MATLAB-based software for earthquake risk, loss and lifecycle Analysis. EaRL provides an interactive and user-friendly platform for evaluating the consequences of natural hazards in general, and seismic hazard in particular, on the built environment and communities, in support of the performance-based earthquake engineering framework. The software platform is meant to assist engineers, stakeholders, (re-) insurers and building owners make informed design/retrofit decisions to mitigate the impact of earthquake hazard on the built infrastructure and potentially optimize the seismic lifecycle performance of infrastructure assets. This is supported by a comprehensive library for visualizing and reporting the disaggregated economic losses. Being an open-source software, EaRL paves the way for researchers and practicing engineers worldwide to collaborate and contribute to its metadata, functionalities and interactive features. The choice of the versatile Matlab and GitHub environments, in addition to the software's well-documented technical details and codebase, will hopefully stimulate further developments in support of performance-based design.

EaRL pamphlet.

Two-Dimensional OpenSEES Numerical Models for Archetype Steel Buildings with Special Moment Frames

Ready-to-run 2-dimensional nonlinear OpenSEES numerical models for archetype steel buildings (4, 8, 12 and 20-story) with special moment frames designed in California according to ASCE 7-10.

  • Download models and full documentation here.

II-DAP: Interactive Interface for Dynamic Analysis Procedures (Version 1.3.0)

The Interactive Interface for Dynamic Analysis Procedures (IIDAP) is a standalone MATLAB-based program that performs various dynamic analysis procedures for deteriorating and non-deteriorating single degree-of-freedom (SDoF) systems. The program is able to develop fragility curves of various damage states including collapse. It also interfaces with site-specific hazard curves to compute the mean annual frequency of collapse. The program works both in MAC and Windows machines. 

  • Software files downloadable here.
  • Installation procedures and tutorials can be found in the following link.
II-DAP

Component Deterioration Models (Ready-to-use DLLs for any OpenSEES version)

External DLL executables for the modified Ibarra-Medina-Krawinkler (IMK) deterioration models for simulating deterioration in strength and stiffness of various structural components. The DLL files are only compatible with Windows machines.

  • IMKBilin: Typically used for simulating the behaviour of structural steel components
  • IMKPeakOriented: Typically used for simulating the behaviour of reinforced concrete (RC) components that exhibit peak-oriented hysteretic behaviour
  • IMKPinching: Typically used for simulating the behaviour of any structural component that is characterized by pinching
  • Download DLL files and documentation here.
Component Deterioration Models

2019 Outstanding Reviewer: the ASCE Journal of Structural Engineering

2018 First Place Award (Comprehensive Category): Phase 1 and 2 of The NIST–ATC Blind Prediction Contest on Deep Wide-Flange Steel Beam-Columns

2017 Outstanding contributions in reviewing: Engineering Structures Journal

2015 First-place award for best oral presentation: The 2015 CEISCE Seminar, Bromont, Canada

2014 Alexander Graham Bell graduate scholarship: Natural Sciences and Engineering Research Council (NSERC), Canada

2014 First-place award for best poster presentation: The 2014 CEISCE Seminar, University of Sherbrooke, Canada

2012 Second-place award for best poster presentation: The 2012 CEGSS Conference, Montréal, Canada

2012 Emil Nenniger memorial fellowship: Faculty of Engineering, McGill University, Canada

2012 McGill Engineering Doctorate Award (MEDA): Faculty of Engineering, McGill University, Canada

2011, 2014 Graduate Excellence fellowship: McGill University, Canada

2009, 2010 McGill Provost’s Grad fellowship: McGill University, Canada

2005 Mounir Konsoah award for “Excellence Achievement in Hydraulics”: Alexandria University, Egypt

2001-2006 Merit award for distinct graduates: Faculty of Engineering, Alexandria University, Egypt

Dr Ahmed Elkady
National Infrastructure Laboratory (N|I|L)
Boldrewood Innovation Campus
University of Southampton, Southampton, SO16 7QF
E: a.elkady@soton.ac.uk
T: 023 8059 2884 (office) - 24882 (internal)

Room Number: 178/4017

Share this profile Share this on Facebook Share this on Twitter Share this on Weibo
Privacy Settings