Skip to main content
Research project

Brillouin laser on a chalcogenide chip

Lead researcher:
Research funder:
Royal Society
Status:
Not active

Staff

Lead researcher

Professor Radan Slavik

Professorial Fellow-Research

Research interests

  • In recent years, there have been significant developments in lightwave technologies enabling wide exploitation of optical phase, as exemplified in particular by the dawn of Coherent Optical Communications - the key enabler for the growth in the capacity of the Internet. This is due to many key breakthroughs in laser technology (low-noise low-cost and compact lasers), new revolutionary concepts that have recently  been introduced (e.g., the Optical Frequency Comb, the significance of which was demonstrated by the award of a Nobel Prize in 2005), and significant advances in electronics that, thanks to the increased speeds now possible, can accommodate the processing of very complicated coherent (amplitude + phase) signals.
  • Another exciting field is Hollow Core Optical fibres, which guides ligth in a central hole surrounded by a microstructure that prevents light escaping from the core. Although known for over 20 years, only very recently their fabrication enabled them to use their full potential. 

Connect with Radan

Research outputs

Moritz Merklein,
Birgit Stiller,
Irina V. Kabakova,
Udara S. Mutugala,
Khu Vu,
Stephen J. Madden,
Benjamin J. Eggleton,
, 2016 , Optics Letters , 41 (20) , 4633--4636
Type: article
Back to top