This module is taught together with ELEC3205 Control System Design. ELEC6243 has higher requirements on the desired learning outcomes, which will be assessed by a different set of coursework.
Aims and Objectives
Learning Outcomes
Syllabus
Frequency Domain Methods for Controller Design
- Lead-lag compensator
- Introduction to loop shaping
State-space representations for linear systems
- Transfer function canonical realisations
- State space representations
Structural properties
- Controllability and state transfer
- Observability and state estimation
Multivariable control by pole placement
- Pole placement by state feedback
- Elements to optimal control
State estimation
- Observer design by pole placement
Joint observer-controller schemes
Nonlinear systems and mathematical modelling
Introduction to the phase plane analysis method
Stability and Lyapunov analysis
- Lyapunov indirect method
- Lyapunov direct method
- Lasalle’s Theorem
Describing functions
Nonlinear control system design
- Design via linearisation
- Design via feedback linearisation
- Introduction to Lyapunov based design method