Skip to main content
Research group

Advanced Solid-State Sources

Light guided and emerging from a bundle of optical fibres

The Advanced Solid-State Sources group develops novel approaches for scaling output power from lasers for use in a variety of applications including industrial manufacturing, medicine and defence.


Scaling output power and brightness from laser sources is an activity that has pre-occupied many within the laser community ever since the invention of the laser.  This has been driven partly by curiosity, but increasingly by the needs of a wealth of applications in areas such as industrial manufacturing, medicine, defence and scientific research.

Research in the Advanced Solid-State Sources group is directed mainly towards investigating new concepts for scaling output power and brightness from fibre lasers and amplifiers, crystal solid-state lasers and hybrid fibre-bulk lasers, and investigating novel schemes for efficient nonlinear frequency conversion of these sources to generate intense laser light from the ultraviolet and visible through to the mid-infrared spectral regimes.

The group has a very broad range of interests and activities within the high power laser area, and has close links with many other research groups within the ORC and with other laboratories and industry. A key element of our work is the study of the underlying physics of optical sources operating at high power levels to allow the formulation of new strategies for improving overall performance and extending functionality. The ultimate goal of this work is to develop technologies for the next generation of high power optical sources, and in so doing address the demands from a growing number of applications in areas such as precision materials processing, defence, medicine, laser radar, remote monitoring and sensing.

Research themes

  • Advanced concepts for scaling output power in fibre lasers and amplifier
  • Novel fibre architectures for scaling core area and brightness enhancement
  • New concepts for pulsed fibre sources
  • Nonlinear frequency conversion schemes to access the ultraviolet, visible and mid-infrared spectral regimes
  • Hybrid fibre-bulk laser schemes for scaling output pulse energy
  • High-power fibre-based superfluorescent sources and their applications
  • Planar solid-state sources
  • Novel pump beam focussing and in-coupling schemes
  • Laser beam combination
  • Thermal effects and their mitigation
  • Optical vortex (hollow) beam generation
  • High power mid-infrared lasers
  • Laser processing of materials
  • Novel laser applications

The group is grateful for the research funding provided by past and present sponsors including:

Engineering and Physical Sciences Research Council, European Commission, Defence Science and Technology Laboratory (Dstl), Defence Science and Technology Group (DSTG), Laser Quantum, Trumpf (formerly SPI) Lasers, Leonardo, NKT Photonics, QinetiQ, USAF/EOARD, DARPA, Woodrow Scientific.

People, projects, publications and PhDs


Professor Andy Clarkson

Professor of Optoelectronics Research
Connect with Andy

Dr Jacob Mackenzie

Associate Professor

Research interests

  • Waveguide amplifiers and lasers
  • Cryogenically cooled lasers for peak and average power scaling
  • Ultra-fast high repetition rate compact lasers

Accepting applications from PhD students

Connect with Jacob

Dr Manuel Medina

Research Fellow
Connect with Manuel

Dr Richard Svejkar

Research Fellow

Research interests

  • Solid-state lasers
  • Tm-fibre lasers
  • Near- and mid-infrared lasers
Connect with Richard

Related research institutes, centres and groups

Connect with us

Contact us

Get in touch to find out more about our group and how we might be able to work with you.