About this course
Explore people's changing relationships with the world’s oceans and seas on this science-focused maritime archaeology master's degree at the University of Southampton. You’ll study the technologies of seafaring, histories of environmental change, and underwater landscapes. This subject incorporates elements of traditional archaeology, ethnography, maritime history and marine science.
This course is now closed to new applications for 2023 entry.
Each year we get many high-quality applications and places for many of our courses are very competitive.
Search similar degrees for 2024 entry by browsing our course finder.
You can apply to study Maritime Archaeology as either an MSc or an MA at Southampton.
This MSc version offers the same course content as our MA Maritime Archaeology degree but you’ll take a more science-based approach through your module choices and dissertation topic.
The course draws on the world-leading expertise of the Centre for Maritime Archaeology to offer an unparalleled breadth and depth of content.
The course is designed to allow rapid development of the diverse academic knowledge and practical skills required to work in this field, including:
- the latest methods for data acquisition and integration
- academic research and dissemination
- archaeological fieldwork
This means you’ll cover all aspects of maritime archaeology, from those who wish to focus on field-based activities, both above and under water, through to laboratory or library-based research.
Course lead
Your course leader is Dr Julian Whitewright, Senior Teaching Fellow in Maritime Archaeology. He has a special interest in the study of boats and ships, specifically their construction and use. Read Dr Whitewright’s staff profile to find out more about his work.
Course location
This course is based at Avenue.
Awarding body
This qualification is awarded by the University of Southampton.
Download the Course Description Document
The Course Description Document details your course overview, your course structure and how your course is taught and assessed.
Changes due to COVID-19
Although the COVID-19 situation is improving, any future restrictions could mean we might have to change the way parts of our teaching and learning take place in 2022 to 2023. This means that some of the information on this course page may be subject to change.
Find out more on our COVID advice page.
Entry requirements
You’ll need a 2:1 degree in in archaeology, anthropology, history or another relevant subject.
Find the equivalent international qualifications for your country.
English language requirements
If English isn't your first language, you'll need to complete an International English Language Testing System (IELTS) to demonstrate your competence in English. You'll need all of the following scores as a minimum:
IELTS score requirements
- overall score
- 6.5
- reading
- 6.0
- writing
- 6.0
- speaking
- 6.0
- listening
- 6.0
We accept other English language tests. Find out which English language tests we accept.
Got a question?
Please contact us if you're not sure you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Course structure
On the full-time master's course you'll study for a full 12 months.
For the first 8 months (semesters 1 and 2) you'll focus on the taught part of your course.
Each semester is made up of a combination of modules that everyone on the course takes, and modules that we’ll ask you to choose from a list of options.
For the rest of the course, you’ll work independently on your research project and dissertation. You’ll have one-to-one meetings with your supervisor during this time to discuss your progress.
Want more detail? See all the modules in the course.
Modules
For entry in Academic Year 2022-23
Year 1 modules
You must study the following modules:
Applied Maritime Archaeology
This fifteen credit module will introduce you to the theoretical, ethical, logistic, technical and legislative issues that have to be addressed if the theory and practice of archaeology are to be successfully applied in the investigation of sites underwat...
Archaeology Masters Dissertation
The dissertation is a personal research project which is completed with guidance from a personal supervisor. It takes place primarily over the summer period and should involve original research and high-quality formal presentation of material. The word li...
Maritime Aspects of Culture
This module will introduce you to the key theoretical and technical concepts used in maritime archaeology, along with its evidence base. It has been designed to provide an accelerated learning curve for those who are new to the subject area, developing c...
You must also choose from the following modules:
Analysis of archaeological faunal remains
This module will cover the practical skills necessary to identify, record and interpret animal bones from archaeological sites as well as the techniques used for the study of animals in human life in the past. You will learn methods of identification of ...
Ancient Mediterranean Seafaring
A basic appreciation of the cultural phases and events that took place in the Mediterranean and Indian Ocean region from Prehistory to Late Antiquity will be assumed for this module. This module offers a thorough examination of the maritime aspects of a r...
Bioarchaeology of Human Remains
The first portion of the module comprises the learning of the basics of human osteology and palaeopathology. The second portion is more theoretically driven and integrates bioarchaeology with skeletal analysis, including topics such as age, gender, ethnic...
Contexts for Human Origins Research
The module will focus on the major questions which have been, and are being, asked of Palaeolithic data. These include such issues as language origins, global colonisation, population replacement, and hominin responses to palaeoclimatic and palaeoenviron...
Cultural Heritage within Environmental Impact Assessment
Environmental Impact Assessment (EIA) is a process required in many countries to predict the consequences of proposed projects (e.g. construction) or policies (e.g. ground water management). This includes assessing the impact on cultural heritage assets. ...
Maritime Museums and Heritage Management
As maritime archaeology becomes an increasingly mainstream part of the discipline of archaeology, public awareness of the importance of protecting, managing and disseminating maritime cultural heritage assumes a heightened importance. At the same time, cl...
Materials, Technology and Social Life
This module examines the central role of technology in archaeological constructions of social life. It integrates techniques for the investigation of materials in archaeological science with discussions of social theory. Case studies from a range of diffe...
Nautical Archaeology
The waters of the world have frequently served to connect rather than divide communities, leading to water transport becoming of vital importance to society. The remains of ships and boats thus constitute a key primary source for maritime archaeology. Th...
Palaeopathology in Context
The module comprises 2 sections; the first comprises seminars based upon current theoretical and methodological developments within palaeopathology and bioarchaeology, whereas the second portion comprises development of detailed skeletal and palaeopatholo...
Professional Placement in the Archaeological and Cultural Heritage Sector
A key component of higher archaeological practice is the development of archaeological vocational skills, and the application of what is learnt at university in the working environment. The archaeological methods and skills taught at university have diver...
Professional Practice
This module is designed to equip students with the essential core skills to engage with higher-level archaeological practice within the UK and overseas. By this, we refer to activities beyond routine fieldwork procedures such as survey and excavation. The...
The Analysis of Palaeolithic Stone Tool Assemblages
This is a practical module in handling and interpreting stone tools and developing behavioural interpretations to explain the patterns seen. Stone tools remain the most significant part of the Palaeolithic cultural heritage. This course provides traini...
Learning and assessment
Learning
The learning activities for this course include the following:
- tutor-led and student-led lectures
- seminars
- tutorials
- group projects (both desk-based and in the field)
- oral presentations
- the design of your dissertation project
Assessment
We’ll assess you through:
- written work
- project work
- reports
- formal oral presentations
- dissertation
Dissertation
You’ll research and write a 25,000-word dissertation. This will need about 600 hours of preparation and writing time.
You'll have regular support meetings with your supervisor throughout the process.
Academic Support
We'll assign you a personal academic tutor, and you'll have access to a senior tutor.
Careers
With this degree you'll be qualified to work as a maritime archaeologist in a wide range of careers. Areas you could work in include:
- academic, commercial and cultural resource management
- heritage
- tourism
- non-governmental organisations (NGO)
The skills and knowledge you'll develop will also be sought after in offshore industries, the media and business settings.
Careers services at Southampton
We're a top 20 UK university for employability (QS Graduate Employability Rankings 2022). Our Careers, Employability and Student Enterprise team will support you throughout your time as a student and for up to 5 years after graduation. This support includes:
- work experience schemes
- CV/resume and interview skills workshops
- networking events
- careers fairs attended by top employers
- a wealth of volunteering opportunities
- study abroad and summer school opportunities
We have a thriving entrepreneurship culture. You'll be able to take advantage of:
- our dedicated start-up incubator, Futureworlds
- a wide variety of enterprise events run throughout the year
- our partnership in the world’s number 1 business incubator, SETsquared
Fees, costs and funding
Tuition fees
Fees for a year's study:
- UK students pay £9,250.
- EU and international students pay £22,136.
What your fees pay for
Your tuition fee covers the full cost of tuition and any exams.
Find out how to pay your tuition fees.
Accommodation and living costs, such as travel and food, are not included in your tuition fees. Explore:
10% alumni discount
If you’re a graduate of the University of Southampton you get a 10% discount on your postgraduate tuition fees.
Postgraduate Master’s Loans (UK nationals only)
This can help with course fees and living costs while you study a postgraduate master's course. Find out if you're eligible.
Southampton Humanities Postgraduate Global Talent Scholarship
Twenty scholarships of £5,000 are available to international students joining our postgraduate master’s courses at the School of Humanities in September 2023.
Find out more about the Southampton Humanities Postgraduate Global Talent Scholarship, including eligibility, deadlines and how to apply.
Southampton Arts and Humanities Deans Global Talent Scholarship
Ten scholarships of £10,000 each are available to international students studying for an undergraduate degree or a postgraduate master’s degree in Arts and Humanities.
Find out more about the Southampton Arts and Humanities Deans Global Talent Scholarship, including eligibility, deadlines and how to apply.
Other postgraduate funding options
A variety of additional funding options may be available to help you pay for your master’s study. Both from the University and other organisations.
Funding for EU and international students
Find out about funding you could get as an international student.
How to apply
- Use the 'apply for this course' button on this page to take you to our online application form.
- Search for the course you want to apply for.
- Complete the application form and upload any supporting documents.
- Submit your application.
Application deadlines
This course is now closed to new applications for 2023 entry.
Each year we get many high-quality applications and places for many of our courses are very competitive.
Search similar degrees for 2024 entry by browsing our course finder.
Application assessment fee
We’ll ask you to pay a £50 application assessment fee if you’re applying for a postgraduate taught course.
This is an extra one-off charge which is separate to your tuition fees and is payable per application. It covers the work and time it takes us to assess your application. You’ll be prompted to pay when you submit your application which won’t progress until you've paid.
If you're a current or former University of Southampton student, or if you’re applying for certain scholarships, you will not need to pay the fee. PGCE applications through GOV.UK and Master of Research (MRes) degree applications are also exempt. Find out if you’re exempt on our terms and conditions page.
Supporting information
When you apply you’ll need to submit a personal statement explaining why you want to take the course.
You’ll need to include information about:
- your knowledge of the subject area
- why you want to study a postgraduate qualification in this course
- how you intend to use your qualification
You'll also need to send 2 academic references.
Please include the required paperwork showing your first degree and your IELTS English language test score (if you are a non-native English speaker) with your application. Without these, your application may be delayed.
What happens after you apply
You'll be able to track your application through our online Applicant Record System.
We'll assess your application on the strength of your:
- academic achievements
- relevant professional experience
- personal statement
- academic references
We will aim to send you a decision 6-8 weeks after you have submitted your application.
If we offer you a place, you will need to accept the offer within 30 working days. If you do not meet this deadline, we will offer your place to another applicant.
Unfortunately, due to the volume of applications we receive, we may not be able to give you specific feedback on your application if you are unsuccessful.
Equality and diversity
We treat and select everyone in line with our Equality and Diversity Statement.
Got a question?
Please contact us if you're not sure you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Related courses
-
Study
- View all courses
- Taught postgraduate study
- Pre-sessional English courses
- Subjects
-
PhDs and research degrees
- Create your own research project
- Enhancing UAV manoeuvres and control using distributed sensor arrays
-
Find a PhD project
- A missing link between continental shelves and the deep sea: Have we underestimated the importance of land-detached canyons?
- A seismic study of the continent-ocean transition southwest of the UK
- A study of rolling contact fatigue in electric vehicles (EVs)
- Acoustic monitoring of forest exploitation to establish community perspectives of sustainable hunting
- Acoustic sensing and characterisation of soil organic matter
- Advancing intersectional geographies of diaspora-led development in times of multiple crises
- Aero engine fan wake turbulence – Simulation and wind tunnel experiments
- Against Climate Change (DACC): improving the estimates of forest fire smoke emissions
- All-in-one Mars in-situ resource utilisation (ISRU) system and life-supporting using non-thermal plasma
- An electromagnetic study of the continent-ocean transition southwest of the UK
- An investigation of the relationship between health, home and law in the context of poor and precarious housing, and complex and advanced illness
- Antarctic ice sheet response to climate forcing
- Antibiotic resistance genes in chalk streams
- Assessing changes in astronomical tides on global scales
- Being autistic in care: Understanding differences in care experiences including breakdowns in placements for autistic and non-autistic children
- Biogeochemical cycling in the critical coastal zone: Developing novel methods to make reliable measurements of geochemical fluxes in permeable sediments
- Bloom and bust: seasonal cycles of phytoplankton and carbon flux
- British Black Lives Matter: The emergence of a modern civil rights movement
- Building physics for low carbon comfort using artificial intelligence
- Building-resolved large-eddy simulations of wind and dispersion over a city scale urban area
- Business studies and management: accounting
- Business studies and management: banking and finance
- Business studies and management: decision analytics and risk
- Business studies and management: digital and data driven marketing
- Business studies and management: human resources (HR) management and organisational behaviour
- Business studies and management: strategy, innovation and entrepreneurship
- Carbon storage in reactive rock systems: determining the coupling of geo-chemo-mechanical processes in reactive transport
- Cascading hazards from the largest volcanic eruption in over a century: What happened when Hunga Tonga-Hunga Ha’apai erupted in January 2022?
- Characterisation of cast austenitic stainless steels using ultrasonic backscatter and artificial intelligence
- Climate Change effects on the developmental physiology of the small-spotted catshark
- Climate at the time of the Human settlement of the Eastern Pacific
- Collaborative privacy in data marketplaces
- Compatibility of climate and biodiversity targets under future land use change
- Cost of living in modern and fossil animals
- Creative clusters in rural, coastal and post-industrial towns
- Deep oceanic convection: the outsized role of small-scale processes
- Defect categories and their realisation in supersymmetric gauge theory
- Defining the Marine Fisheries-Energy-Environment Nexus: Learning from shocks to enhance natural resource resilience
- Desert dune avalanche processes modern ancient environments
- Design and fabrication of next generation optical fibres
- Developing a practical application of unmanned aerial vehicle technologies for conservation research and monitoring of endangered wildlife
- Development and evolution of animal biomineral skeletons
- Development of all-in-one in-situ resource utilisation system for crewed Mars exploration missions
- Disturbance and recovery of benthic habitats in submarine canyon settings
- Ecological role of offshore artificial structures
- Effect of embankment and subgrade weathering on railway track performance
- Efficient ‘whole-life’ anchoring systems for offshore floating renewables
- Electrochemical sensing of the sea surface microlayer
- Engagement with nature among children from minority ethnic backgrounds
- Ensuring the Safety and Security of Autonomous Cyber-Physical Systems
- Environmental and genetic determinants of Brassica crop damage by the agricultural pest Diamondback moth
- Estimating marine mammal abundance and distribution from passive acoustic and biotelemetry data
- Evolution of symbiosis in a warmer world
- Examining evolutionary loss of calcification in coccolithophores
- Explainable AI (XAI) for health
- Explaining process, pattern and dynamics of marine predator hotspots in the Southern Ocean
- Exploring dynamics of natural capital in coastal barrier systems
- Exploring the mechanisms of microplastics incorporation and their influence on the functioning of coral holobionts
- Exploring the potential electrical activity of gut for healthcare and wellbeing
- Exploring the trans-local nature of cultural scene
- Facilitating forest restoration sustainability of tropical swidden agriculture
- Faulting, fluids and geohazards within subduction zone forearcs
- Faulting, magmatism and fluid flow during volcanic rifting in East Africa
- Fingerprinting environmental releases from nuclear facilities
- Flexible hybrid thermoelectric materials for wearable energy harvesting
- Floating hydrokinetic power converter
- Glacial sedimentology associated subglacial hydrology
- Green and sustainable Internet of Things
- How do antimicrobial peptides alter T cell cytokine production?
- How do calcifying marine organisms grow? Determining the role of non-classical precipitation processes in biogenic marine calcite formation
- How do neutrophils alter T cell metabolism?
- How well can we predict future changes in biodiversity using machine learning?
- Hydrant dynamics for acoustic leak detection in water pipes
- If ‘Black Lives Matter’, do ‘Asian Lives Matter’ too? Impact trajectories of organisation activism on wellbeing of ethnic minority communities
- Illuminating luciferin bioluminescence in dinoflagellates
- Imaging quantum materials with an XFEL
- Impact of neuromodulating drugs on gut microbiome homeostasis
- Impact of pharmaceuticals in the marine environment in a changing world
- Impacts of environmental change on coastal habitat restoration
- Improving subsea navigation using environment observations for long term autonomy
- Information theoretic methods for sensor management
- Installation effect on the noise of small high speed fans
- Integrated earth observation mapping change land sea
- Interconnections of past greenhouse climates
- Inverse simulation: going from camera observations of a deformation to material properties using a new theoretical approach
- Investigating IgG cell depletion mechanisms
- Is ocean mixing upside down? How mixing processes drive upwelling in a deep-ocean basin
- Landing gear aerodynamics and aeroacoustics
- Lightweight gas storage: real-world strategies for the hydrogen economy
- Long-term change in the benthos – creating robust data from varying camera systems
- Machine learning for multi-robot perception
- Machine learning for multi-robot perception
- Mapping Fishing Industry Response to Shocks: Learning Lessons to Enhance Marine Resource Resilience
- Marine ecosystem responses to past climate change and its oceanographic impacts
- Mechanical effects in the surf zone - in situ electrochemical sensing
- Microfluidic cell isolation systems for sepsis
- Microplastics and carbon sequestration: identifying links and impacts
- Microplastics in the Southern Ocean: sources, fate and impacts
- Migrant entrepreneurship, gender and generation: context and family dynamics in small town Britain
- Miniaturisation in fishes: evolutionary and ecological perspectives
- Modelling high-power fibre laser and amplifier stability
- Modelling soil dewatering and recharge for cost-effective and climate resilient infrastructure
- Modelling the evolution of adaptive responses to climate change across spatial landscapes
- Nanomaterials sensors for biomedicine and/or the environment
- New high-resolution observations of ocean surface current and winds from innovative airborne and satellite measurements
- New perspectives on ocean photosynthesis
- Novel methods of detecting carbon cycling pathways in lakes and their impact on ecosystem change
- Novel technologies for cyber-physical security
- Novel transparent conducting films with unusual optoelectronic properties
- Novel wavelength fibre lasers for industrial applications
- Ocean circulation and the Southern Ocean carbon sink
- Ocean influence on recent climate extremes
- Ocean methane sensing using novel surface plasmon resonance technology
- Ocean physics and ecology: can robots disentangle the mix?
- Ocean-based Carbon Dioxide Removal: Assessing the utility of coastal enhanced weathering
- Offshore renewable energy (ORE) foundations on rock seabeds: advancing design through analogue testing and modelling
- Optical fibre sensing for acoustic leak detection in buried pipelines
- Optimal energy transfer in nonlinear systems
- Optimal energy transfer in nonlinear systems
- Optimizing machine learning for embedded systems
- Oxidation of fossil organic matter as a source of atmospheric CO2
- Partnership dissolution and re-formation in later life among individuals from minority ethnic communities in the UK
- Personalized multimodal human-robot interactions
- Preventing disease by enhancing the cleaning power of domestic water taps using sound
- Quantifying riparian vegetation dynamics and flow interactions for Nature Based Solutions using novel environmental sensing techniques
- Quantifying the response and sensitivity of tropical forest carbon sinks to various drivers
- Quantifying variability in phytoplankton electron requirements for carbon fixation
- Reconciling geotechnical and seismic data to accelerate green energy developments offshore
- Resilient and sustainable steel-framed building structures
- Resolving Antarctic meltwater events in Southern Ocean marine sediments and exploring their significance using climate models
- Robust acoustic leak detection in water pipes using contact sound guides
- Silicon synapses for artificial intelligence hardware
- Smart photon delivery via reconfigurable optical fibres
- Southern Ocean iron supply: does size fractionation matter?
- The Gulf Stream control of the North Atlantic carbon sink
- The Mayflower Studentship: a prestigious fully funded PhD studentship in bioscience
- The calming effect of group living in social fishes
- The duration of ridge flank hydrothermal exchange and its role in global biogeochemical cycles
- The evolution of symmetry in echinoderms
- The impact of early life stress on neuronal enhancer function
- The oceanic fingerprints on changing monsoons over South and Southeast Asia
- The role of iron in nitrogen fixation and photosynthesis in changing polar oceans
- The role of singlet oxygen signaling in plant responses to heat and drought stress
- Time variability on turbulent mixing of heat around melting ice in the West Antarctic
- Triggers and Feedbacks of Climate Tipping Points
- Uncovering the drivers of non-alcoholic fatty liver disease progression using patient derived organoids
- Understanding ionospheric dynamics machine learning
- Understanding recent land-use change in Snowdonia to plan a sustainable future for uplands: integrating palaeoecology and conservation practice
- Understanding the role of cell motility in resource acquisition by marine phytoplankton
- Understanding the structure and engagement of personal networks that support older people with complex care needs in marginalised communities and their ability to adapt to increasingly ‘digitalised’ health and social care
- Understanding variability in Earth’s climate and magnetic field using new archives from the Iberian Margin
- Unpicking the Anthropocene in the Hawaiian Archipelago
- Unraveling oceanic multi-element cycles using single cell ionomics
- Unravelling southwest Indian Ocean biological productivity and physics: a machine learning approach
- Up, up and away – the fate of upwelled nutrients in an African upwelling system and the biogeochemical and phytoplankton response
- Using acoustics to monitor how small cracks develop into bursts in pipelines
- Using machine learning to improve predictions of ocean carbon storage by marine life
- Vulnerability of low-lying coastal transportation networks to natural hazards
- Wideband fibre optical parametric amplifiers for Space Division Multiplexing technology
- Will it stick? Exploring the role of turbulence and biological glues on ocean carbon storage
- X-ray imaging and property characterisation of porous materials
- Funding your research degree
- How to apply for a PhD or research degree
- How to make a PhD enquiry
- Support while studying your PhD or research degree
- Exchanges and studying abroad
- Undergraduate study
-
Tuition fees and funding
-
Scholarships
- Postgraduate scholarships for UK students
- Undergraduate scholarships for UK students
- Competitive scholarships for international postgraduates
- Competitive scholarships for international undergraduates
- Merit scholarships for international postgraduates
- Merit scholarships for international undergraduates
- Scholarship terms and conditions
- Southampton Canadian Prestige Scholarship for Law
- Southampton Presidential International Scholarship
-
Scholarships
- Short courses
- Lunchtime evening and weekend courses
- Clearing
- Summer schools
- Get a prospectus
-
Student life
-
Accommodation
- Choose your halls of residence
- Apply for accommodation
- Guaranteed accommodation
- Your accommodation options
- International and pre-sessional students
- Postgraduate accommodation
- Couples and students with children
- Renting privately
- Our accommodation areas
- Privacy notice
- Terms and conditions
- Fees and contracts
- Our cities
- Sports and gyms
- Our campuses
- Join our student community
- Support and money
-
Accommodation
-
Research
- Our impact
- Research projects
- Research areas
- Research facilities
- Collaborate with us
-
Institutes, centres and groups
- Active Living
- Advanced Project Management Research Centre
- Autism Community Research Network @ Southampton (ACoRNS)
- Bladder & Bowel Management
- Centre for Digital Finance
- Centre for Eastern European and Eurasian Studies (CEEES)
- Centre for Empirical Research in Finance and Banking (CERFIB)
- Centre for Healthcare Analytics
- Centre for Human Development, Stem Cells and Regeneration
- Centre for Inclusive and Sustainable Entrepreneurship and Innovation (CISEI)
- Centre for International Law and Globalisation
- Centre for Political Ethnography (CPE)
- Centre for Research in Accounting, Accountability and Governance
- Centre for Research on Work and Organisations
- Child and Adolescent Research Group
- Computational Nonlinear Optics
- Data Science Group
- Economic Theory and Experimental Economics
- Economy, Society and Governance
- Gravity group
- Institute of Maritime Law (IML)
- Integrative Molecular Phenotyping Centre
- Interdisciplinary Musculoskeletal Health
- Law and Technology Centre
- Mathematical Modelling
- Medicines Management
- People, Property, Community
- Product Returns Research Group (PRRG)
- Southampton Imaging
- Stefan Cross Centre for Women, Equality and Law
- String theory and holography
- Ultrafast X-ray Group
- Support for researchers
- Faculties, schools and departments
- Research jobs
- Find people and expertise
- Business
- Global
- About
- Visit
- Alumni
- Departments
- News
- Events
- Contact