About this course
Combine biomedicine, electronics and digital health as you join the next generation of health technology engineers. You’ll learn the underlying principles of medical technologies and gain the ability to design, develop and deliver new products.
With all economies facing an increase in health spending, engineers and computer scientists have an ever-increasing role to play in inventing solutions for healthcare and treatment. Biomedical engineers work to bridge this gap.
On this 3-year programme you’ll have the opportunity to:
- solve healthcare challenges and help to create imaging systems and devices for observing and controlling body functions
- design, and create electronic circuits, systems, and computer software
- use simulation, design, and verification tools to aid in the design of systems, and to report and comment on results
- make use of our diverse range of modern laboratories and facilities, each filled with industry-standard equipment
- understand the specific clinical, safety and ethical implications of biomedical engineering work, and routes to commercialization
You can also tailor your degree to your liking by picking a pathway. These include:
Electronic Systems
You’ll learn to develop engineering solutions to health and healthcare problems, ranging from rehabilitation technologies and implantable sensors to smart signal analysis for wearable healthcare and rapid testing and diagnostic devices.
You will gain key insight into how to design and develop a wide range of systems, from underlying sensor technology to signal analysis and data interpretation.
Mechatronics for Health
You’ll learn the fundamental science, methods, analysis, and engineering applications to start a career in mechatronic engineering with a focus on medical technology and robotics.
You’ll have the opportunity to design and build intelligent machines and robots as part of your study, which integrate electrical, mechanical and control systems to perform complex tasks.
Digital Health
You'll learn to develop m-health and e-health solutions based on healthcare needs and available technology. You will gain key data science skills that allow you to analyse data, build solutions and communicate results.
As one of the few universities in the UK (United Kingdom) to have a Digital Health research group, you will be taught by academics actively involved in technologies in this area.
Artificial Intelligence
You’ll additionally learn to design and build AI (Artificial Intelligence) programs and systems to solve global healthcare challenges and integrate with Biomedical engineering solutions.
As a highly respected hub for AI research, you'll benefit from a range of specialist modules that few UK universities can match. You’ll also be taught by academics actively involved in the latest advances in AI.
Biomedical Engineering 5 in Five
“For me, the speciality of the course was a massive winning point. In my second year, I had a design project looking at remote monitoring of physical therapy exercises for stroke rehabilitation. It was a really fun project, with incorporation from different sides of my course, including physical sensors, software design and machine learning. ”
Course location
This course is based at Highfield.
Awarding body
This qualification is awarded by the University of Southampton.
Entry requirements
For Academic year
Scottish Qualification
Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education.
Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
Other requirements
You might meet our criteria in other ways if you do not have the qualifications we need. Find out more about:
-
our Access to Southampton scheme for students living permanently in the UK (including residential summer school, application support and scholarship)
-
skills you might have gained through work or other life experiences (otherwise known as recognition of prior learning)
Find out more about our Admissions Policy.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Course structure
This is a three-year, full-time course. The topics you explore will vary depending on which pathway you choose.
In the first two years you'll take core and compulsory modules in electronics and programming together with a thorough grounding in mathematics. This is complemented by modules covering the fundamentals of life science.
You’ll undertake an individual project in year 3 as a part of all pathways. This runs all year.
Year 1 overview
The first year will introduce you to the fundamentals of biomedical engineering and your chosen pathway. You’ll cover topics like:
- programming
- digital systems and microprocessors
- maths
- electronic systems and sensors
- biomedical engineering design
- key elements of life science.
Year 2 overview
In year two you'll continue to build upon your knowledge of key topics, with further modules in electronics, programming and fundamentals of cell biology and physiology.
You’ll also apply your knowledge to design a health and wellness monitoring platform within a healthcare technology design project.
Year 3 overview
In your final year you’ll undertake an individual project. You’ll also have the opportunity to specialise further with a range of optional modules.
Want more detail? See all the modules in the course.
Modules
Changes due to COVID-19
Although the COVID-19 situation is improving, any future restrictions could mean we might have to change the way parts of our teaching and learning take place in 2022 to 2023. This means that some of the information on this course page may be subject to change.
Find out more on our COVID advice page.
We don't have module information for this course yet. Please check again later.
Learning and assessment
The learning activities for this course include the following:
- lectures
- classes and tutorials
- coursework
- individual and group projects
- independent learning (studying on your own)
Academic support
You’ll be supported by a personal academic tutor and have access to a senior tutor.
Careers
You'll graduate with the skills required to work across the health technology sector, from small and large medtech companies, to NHS Digital analyst roles.
Engineers with core skills in mathematics and a good knowledge and understanding of biomedicine are in high demand, with the medical technology sector in the UK employing over 100,000 people and growing every year.
You’ll have access to our specialist careers support from our Careers Hub, which coordinates opportunities to connect with employers. This includes through things like careers fairs, support with job applications, summer internships and more.
Careers services at Southampton
Fees, costs and funding
Tuition fees
Fees for a year's study:
- UK students pay £9,250.
- This course is not available to EU and international students.
What your fees pay for
Your tuition fees pay for the full cost of tuition and all examinations.
Find out how to:
Accommodation and living costs, such as travel and food, are not included in your tuition fees. Explore:
Bursaries, scholarships and other funding
If you're a UK or EU student and your household income is under £25,000 a year, you may be able to get a University of Southampton bursary to help with your living costs. Find out about bursaries and other funding we offer at Southampton.
If you're a care leaver or estranged from your parents, you may be able to get a specific bursary.
Get in touch for advice about student money matters.
Scholarships and grants
You may be able to get a scholarship or grant that's linked to your chosen subject area.
We award scholarships and grants for travel, academic excellence, or to students from underrepresented backgrounds.
Support during your course
The Student Services Centre offers support and advice on money to students. You may be able to access our Student Support fund and other sources of financial support during your course.
Funding for EU and international students
Find out about funding you could get as an international student.
How to apply
When you apply use:
- UCAS course code: BB95
- UCAS institution code: S27
What happens after you apply?
We will assess your application on the strength of your:
- predicted grades
- academic achievements
- personal statement
- academic reference
We'll aim to process your application within two to six weeks, but this will depend on when it is submitted. Applications submitted in January, particularly near to the UCAS equal consideration deadline, might take substantially longer to be processed due to the high volume received at that time.
Equality and diversity
We treat and select everyone in line with our Equality and Diversity Statement.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Related courses
-
Study
- View all courses
- Taught postgraduate study
- Pre-sessional English language courses
- Subjects
-
PhDs and research degrees
- Create your own research project
-
Find a PhD project
- Design and fabrication of next generation optical fibres
- Ensuring the Safety and Security of Autonomous Cyber-Physical Systems
- Explainable AI (XAI) for health
- Exploring the potential electrical activity of gut for healthcare and wellbeing
- Floating hydrokinetic power converter
- Green and sustainable Internet of Things
- Machine learning for multi-robot perception
- Modelling high-power fibre laser and amplifier stability
- Novel technologies for cyber-physical security
- Personalized multimodal human-robot interactions
- Smart photon delivery via reconfigurable optical fibres
- X-ray imaging and property characterisation of porous materials
- Funding your research degree
- How to apply for a PhD or research degree
- How to make a PhD enquiry
- Support while studying your PhD or research degree
- Exchanges and studying abroad
- Undergraduate study
- Tuition fees and funding
- Short courses
- Clearing
- Summer schools
- Get a prospectus
-
Student life
-
Accommodation
- Choose your halls of residence
- Apply for accommodation
- Guaranteed accommodation
- Your accommodation options
- International and pre-sessional students
- Postgraduate accommodation
- Couples and students with children
- Renting privately
- Our accommodation areas
- Privacy notice
- Terms and conditions
- Fees and contracts
- Our cities
- Sports and gyms
- Our campuses
- Join our student community
- Support and money
-
Accommodation
- Research
- Business
- Global
- About
- Visit
- Alumni
- Departments
- News
- Events
- Contact