Skip to main navigationSkip to main content
The University of Southampton
(023) 8059 2488

Professor Stephen R Turnock MA, SM, PhD, CEng, FIMechE, FRINA, FHEA

Professor of Maritime Fluid Dynamics, Head of the Department of Civil, Maritime and Environmental Engineering

Professor Stephen R Turnock's photo
Related links
Personal homepage

Stephen is Head of Civil, Maritime and Environmental Engineering, a 50 strong academic department, a previous head of the Maritime Engineering Group, set up the Performance Sports Engineering Laboratory (awarded Queen’s Anniversary prize for higher and further education, 2012) and founded the Maritime Robotics Laboratory in 2008.

The complex interaction of the maritime environment with ships, underwater vehicles, yachts, floating platforms or swimmers is endlessly fascinating. The challenge is always to apply our understanding of the fundamentals to the design of the next generation of vehicles.

He has strong interests in decarbonisation of shipping, maritime robotics and ship autonomous systems, performance sport and sailing, maritime energy including tidal and floating wind as well as his long-standing expertise in hydrodynamics including hull-propeller-rudder interaction, manoeuvring in waves, propeller noise and energy harvesting. At present he is leading the fit-out on behalf of the Faculty for the £25M Fluids Research Complex including a 138 x 6 x 3.5 m tow/wave tank with a maximum carriage speed of 12m/s and 0.9m wave height from 12 HR Wallingford wavemakers.

Follow our work on the Maritime Engineering and Ship Science blog.

He is co-author of two books: Marine Rudders and Control Surfaces, Butterworth- Heinemann (2007, 2nd Ed due late 2021) and Ship Resistance and Propulsion, CUP (2011, 2nd Ed 2017)

PhD, University of Southampton, Ship Science,1993

SM, Massachusetts Institute of Technology, 1988

MA, University of Cambridge, Pembroke College, 1990

Student Apprentice, GEC Energy Systems, Whetstone, Leics

Research Assistant, MIT Dept of Aero/Astro, 1986-1988

Research Assistant/Fellow, Dept of Ship Science, 1988-1994

Lecturer(1994) /Senior Lecturer (2002)/ Reader(2008)

Professor (2010-)


Research interests

His fluid dynamics expertise lies in the synthesis of analytical, experimental and computational methods for a diverse range of applications. Examples of such work are in the development of a patented integrated tidal energy generator (winner of The Engineers’ Energy Sector Innovation award 2008), supervision of the students who designed Amy Williams’ Gold medal winning bob skeleton sled (winner of The Engineer’s Sport Technology Innovation award in 2010) and with continued support for Gold medal success in 2014 and 2018, academic supervisor for the Delphin Autonomous underwater vehicle (winner of the SAUC-E competition in 2007).

He has acted as a consultant to diverse organisations including NOC, Speedo, Shell Shipping, BAEsystems, Rolls Royce, dstl, QinetiQ, and WS Atkins.


  • Future Fuels for Shipping
  • Maritime Robotics and Autonomy
  • Rudder, hydrofoil, and control surface design
  • Unsteady race simulation for kayak, rowing and sailing
  • Hull-propeller-rudder interaction
  • Ship added resistance and manoeuvring in waves
  • Underwater noise prediction using CFD
  • Experimental techniques for use of wave/tow tank testing
  • Tidal turbines, wave energy and offshore wind turbine design
  • Wind turbine array power prediction
  • Hydrogen fuel cells for hybrid ship propulsion
  • Hydrodynamics of swimming assessment by pool based test techniques and using CFD

PhD Supervision

I lead a team of researchers and PhD students with funding of from a wide range of sources including EPSRC, dstl, EU, UK Sport, and industry.

Details of the PhD programme in the Department can be found at

My 30+ PhD graduates work throughout the maritime sector and beyond, including CFD simulation code developers, performance sport, sailing including AC teams, energy efficiency start-ups, offshore, renewable energy, research organisations,  academia worldwide,

Please contact me directly if you have an interest in what PhD opportunities are currently available

Research Projects

Integrated Mission Management System 2019 (Thales)

Prosperity Partnership with BAESystems

Predicting power output of wind farms using SAR images

EIS(R&I) Framework Agreement

Bridges – design of a new deep sea underwtaer glider for ocean exploration – hull designed using cfd and wind tunnel testing

Research group

Maritime Engineering

Affiliate research groups

Southampton Marine and Maritime Institute, Performance Sports Engineering Lab, Maritime Robotics Lab

Research project(s)

Design and development of cost effective surface mounted water turbines for rural electricity production

Gothenburg 2010: rans simulations of the multiphase flow around the kcs hullform

Tailored composites for deformation control in unsteady fluid-structure interactions

The influence of surface waves on the added resistance of merchant ships

Low carbon and hazardous emissions shipping

Predicting tidal turbine noise for environmental impact assessment

Use of cryogenic buoyancy systems for controlled removal of heavy objects from the seabed

Simulation of tactical yacht racing: a human-psychological-physical AI-system in a dynamically changing yacht racing environment

Fluid-structure interactions for yacht sails

Optimized athlete body sensor networks for simulation-based performance analysis

We have developed a system of wearable sensors that gather information about the movement of athletes so that we can then simulate what their muscles are doing, their aerodynamic drag, etc. This will allow us to optimize the athlete's technique in much the same way as an aircraft's shape is optimized.

Cavitation erosion-corrosion of ship propeller materials

Cavitation erosion-corrosion phenomenon is inevitable in marine propulsion system and has adverse effects on the life and functioning of the propellers. The intensity of the cavitation wear and the exact location of its occurrence have been found to be difficult to predict.The main aim of this PhD project is to identify cavitation wear-corrosion mechanism of marine materials used in propellers and rudders in order to characterize the materials based on their behaviour to cavitation erosion simulated by a vibratory probe device. Several tests will be conducted, with and without cavitation protection, using both direct and indirect methods of cavitation erosion tests along with incorporation of Computational Fluid Dynamics (CFD) modelling of the experiment.This research is sponsored by the university research groups National Centre of Advanced Tribology at Southampton (nCATS) and Fluid-Structure Interaction (FSI), along with Lloyd’s Register.

Development of a Hover Capable Autonomous Underwater Vehicle

Delphin2 is a hover capable torpedo style AUV, developed at the University of Southampton to provide a test bed for research in marine robotics

Assessment of the effectiveness of fuel cell as an alternative technology for marine propulsion systems

Head of Department, Civil, Maritime and Environmental engineering (2018-2021)

Boldrewood Towing Tank (Academic Lead), 2012-present

He is on the editorial board of two journals, deputy editor of Journal of Marine Science and Technology and regularly reviews papers for many Journals as well as a member of research panels in Norway, Netherlands and Germany

He served on the technical committees of International Towing Tank Conference (NGO member of IMO) from 2002-2014 including as Chair of the Resistance Committee of the 27th ITTC(2011-2014).  He is the ITTC representative for the University of Southampton.

He is a founding member of the Society of Maritime Industries Maritime Autonomous Systems Working Group and organised a Transport Catapult workshop on large ship autonomy(2017)

He is an invited member of the IEA Hydrogen Implementing Agreement Task 39 Hydrogen in Maritime

Sort via:TypeorYear



Book Chapters



He leads a module in SESS6063 Advances in Ship Resistance and Propulsion focussed on future zero carbon ship, and wind, wave and tidal energy system design in SESS6067 Renewable Energy from Environmental Flows: wind, wave and tide, supports a Part 1 module in Fluid dynamics and  thermodynamics, and supervises a wide range of individual, honours, group design and MSc thesis projects.

Lead Modules

SESS6063 Advances in Ship Resistance and Propulsion

SESS6067 Renewable Energy from Environmental Flows: wind, wave and tide

Contribute to



Professor Stephen R Turnock
Engineering, University of Southampton, Southampton Boldrewood Innovation Campus, Burgess Road, Southampton, SO16 7QF

Room Number : 176/3009

Professor Stephen R Turnock's personal home page
Share this profile Share this on Facebook Share this on Twitter Share this on Weibo
Privacy Settings