About this course
Chemistry plays a key role in tackling some of the world’s biggest problems. It explores renewable energy and its storage, cleaner and more efficient processes for manufacturing chemicals, and medicines and treatments for disease. Chemistry at Southampton focuses on being part of a sustainable future. Our MChem Chemistry degree with year-long industry experience allows you to expand the breadth and depth of your skills.
Our expert staff will help you to develop in-depth knowledge of core topics of chemistry while gaining extensive laboratory experience.
You’ll use state of the art equipment in our range of laboratories. These include the single crystal diffraction lab, the mass spectrometry lab and a dedicated X-ray crystallography teaching facility.
You'll do 2 research projects. The first will be in Southampton within one of our research groups. This will prepare you for your second year-long project in industry, or at a research establishment.
You'll take part in distance learning lectures to support you during your placement. Completing the year-long project will clearly show your academic independence to future employers.
This degree is accredited by the Royal Society of Chemistry. When you graduate you'll be eligible for full membership status (MRSC).
Course location
This course is based at Highfield.
Awarding body
This qualification is awarded by the University of Southampton.
Download the Course Description Document
The Course Description Document details your course overview, your course structure and how your course is taught and assessed.
Changes due to COVID-19
Although the COVID-19 situation is improving, any future restrictions could mean we might have to change the way parts of our teaching and learning take place in 2021 to 2022. We're working hard to plan for a number of possible scenarios. This means that some of the information on this course page may be subject to change.
Find out more on our COVID advice page.
Entry requirements
For Academic year 202223
A-levels
AAA including chemistry with a pass in the chemistry Practical or AAB including chemistry and one additional science subject with a pass in all science Practical components
A-levels additional information
Accepted A-level science subjects include biology, human biology, physics, mathematics, further mathematics, psychology, geography and geology. General Studies, Critical Thinking and use of mathematics are excluded for entry. A pass in all science practical components is required where applicable.
A-levels with Extended Project Qualification
If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer:
AAB plus grade A in the EPQ, and including chemistry with a pass in the chemistry Practical or ABB plus grade A in the EPQ, and including chemistry and an additional science subject, with a pass in all science Practical components
A-levels contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience.
Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme, as follows:
AAB, including chemistry with a pass in the chemistry practical and mathematics or ABB, including chemistry, mathematics and one additional science subject with a pass in all science practical components
International Baccalaureate Diploma
Pass, with 36 points overall with 18 points at Higher Level, including 6 at Higher Level in chemistry
or
Pass, with 34 points overall with 6,6,5 in three Higher Level subjects including chemistry and an additional science subject.
International Baccalaureate Diploma additional information
Accepted science subjects include biology, human biology, physics, mathematics, further mathematics, psychology, geography and geology.
International Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Career Programme (IBCP) statement
Offers will be made on the individual Diploma Course subject(s) and the career-related study qualification. The CP core will not form part of the offer. Where there is a subject pre-requisite(s), applicants will be required to study the subject(s) at Higher Level in the Diploma course subject and/or take a specified unit in the career-related study qualification. Applicants may also be asked to achieve a specific grade in those elements.
Please see the University of Southampton International Baccalaureate Career-Related Programme (IBCP) Statement for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
BTEC
D in the BTEC National Extended Certificate plus A in A-level chemistry with a pass in chemistry Practical and A in an additional A-level subject
DD in BTEC National Diploma plus grade A in A-level chemistry with a pass in chemistry Practical.
We do not accept the BTEC National Extended Diploma without A-level chemistry.
Applicants with a BTEC National Extended Diploma can apply for the Science Foundation Year
RQF BTEC
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience.
Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Additional information
Accepted A-level science subjects include biology, human biology, physics, mathematics, further mathematics, psychology, geography and geology. General Studies, Critical Thinking and use of mathematics are excluded for entry. A pass in all science practical components is required where applicable.
QCF BTEC
D in the BTEC Subsidiary Diploma plus A in A-level chemistry with a pass in chemistry Practical and A in an additional A-level subject.
DD in the BTEC Diploma plus grade A in A-level chemistry with a pass in chemistry Practical.
We do not accept the BTEC Extended Diploma without A-level chemistry. Applicants with a BTEC Extended Diploma can apply for the Science Foundation Year.
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Access to HE Diploma
Applicants with an Access to HE Diploma should apply for BSc Chemistry
Access to HE additional information
There are no additional requirements
Irish Leaving Certificate
Irish Leaving Certificate (first awarded 2017)
H1 H1 H2 H2 H2 H2 including chemistry or H1 H2 H2 H2 H2 H2 including chemistry and an additional science subject
Irish Leaving Certificate (first awarded 2016)
Irish certificate additional information
Accepted science subjects include applied mathematics, biology, mathematics, physics and geography
Scottish Qualification
Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education.
Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
Cambridge Pre-U
D3 D3 D3 in three Principal subjects including chemistry or D3 D3 M2 in three Principal subjects including chemistry and an additional science subject
Cambridge Pre-U additional information
Accepted science subjects include biology, mathematics, physics, psychology and geography.
Cambridge Pre-U's can be used in combination with other qualifications such as A-levels to achieve the equivalent of the typical offer, where D3 can be used in lieu of A-level grade A or grade M2 can be used in lieu of grade B.
Welsh Baccalaureate
AAA from three A-levels including chemistry, with a pass in chemistry Practical
or
AA from two A-levels including chemistry, with a pass in chemistry Practical, and A from the Advanced Welsh Baccalaureate Skills Challenge Certificate
or
AAB including chemistry and one additional science subject with a pass in all science practical components
or
AA from two A-levels including chemistry and one additional science subject, with a pass in all science practical components, and B from the Advanced Welsh Baccalaureate Skills Challenge Certificate
Welsh Baccalaureate additional information
Accepted A-level science subjects include biology, human biology, physics, mathematics, further mathematics, psychology, geography and geology. General Studies, Critical Thinking and use of mathematics are excluded for entry. A pass in all science practical components is required where applicable.
Welsh Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
European Baccalaureate
85% overall including grade 8 in chemistry and grade 8 in mathematics
Other requirements
GCSE requirements
Applicants must hold GCSE English language (or GCSE English) (minimum grade 4/C) and mathematics (minimum grade 6/B). Grade 7/A in GCSE mathematics is preferred for applicants not studying A-level mathematics
Find the equivalent international qualifications for our entry requirements.
English language requirements
If English isn't your first language, you'll need to complete an International English Language Testing System (IELTS) to demonstrate your competence in English. You'll need all of the following scores as a minimum:
IELTS score requirements
- overall score
- 6.5
- reading
- 5.5
- writing
- 5.5
- speaking
- 5.5
- listening
- 5.5
We accept other English language tests. Find out which English language tests we accept.
You might meet our criteria in other ways if you do not have the qualifications we need. Find out more about:
-
our Access to Southampton scheme for students living permanently in the UK (including residential summer school, application support and scholarship)
-
skills you might have gained through work or other life experiences (otherwise known as recognition of prior learning)
Find out more about our Admissions Policy.
For Academic year 202324
A-levels
AAA including chemistry or AAB including chemistry and one additional science subject
A-levels additional information
Accepted A-level science subjects include biology, human biology, physics, mathematics, further mathematics, psychology, geography and geology. General Studies, Critical Thinking and use of mathematics are excluded for entry. A pass in all science practical components is required where applicable.
A-levels with Extended Project Qualification
If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer: AAB including chemistry, plus grade A in the EPQ or ABB including chemistry and an additional science subject, plus grade A in the EPQ
A-levels contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme, as follows: AAB, including chemistry and mathematics or ABB, including chemistry, mathematics and one additional science subject
International Baccalaureate Diploma
Pass, with 36 points overall with 18 points at Higher Level, including 6 at Higher Level in chemistry or Pass, with 34 points overall with 6,6,5 in three Higher Level subjects including chemistry and an additional science subject.
International Baccalaureate Diploma additional information
Accepted science subjects include biology, human biology, physics, mathematics, further mathematics, psychology, geography and geology.
International Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Career Programme (IBCP) statement
Offers will be made on the individual Diploma Course subject(s) and the career-related study qualification. The CP core will not form part of the offer. Where there is a subject pre-requisite(s), applicants will be required to study the subject(s) at Higher Level in the Diploma course subject and/or take a specified unit in the career-related study qualification. Applicants may also be asked to achieve a specific grade in those elements. Please see the University of Southampton International Baccalaureate Career-Related Programme (IBCP) Statement for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
BTEC
D in the BTEC National Extended Certificate plus A in A-level chemistry and A in an additional A-level subject DD in BTEC National Diploma plus grade A in A-level chemistry. We will consider the BTEC Extended Diploma if studied alongside A-level chemistry.
RQF BTEC
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Additional information
Accepted A-level science subjects include biology, human biology, physics, mathematics, further mathematics, psychology, geography and geology. General Studies, Critical Thinking and use of mathematics are excluded for entry. A pass in the science Practical is required where it is separately endorsed.Applicants who have not studied A-level chemistry can apply for the Science Foundation Year. Please visit theScience Foundation Year page for more information.
QCF BTEC
D in the BTEC Subsidiary Diploma plus A in A-level chemistry and A in an additional A-level subject. DD in the BTEC Diploma plus grade A in A-level chemistry. We will consider the BTEC Extended Diploma if studied alongside A-level chemistry.
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Access to HE Diploma
Applicants with an Access to HE Diploma should apply for BSc Chemistry
Access to HE additional information
Irish Leaving Certificate
Irish Leaving Certificate (first awarded 2017)
H1 H1 H2 H2 H2 H2 including chemistry or H1 H2 H2 H2 H2 H2 including chemistry and an additional science subject
Irish Leaving Certificate (first awarded 2016)
Irish certificate additional information
Accepted science subjects include applied mathematics, biology, mathematics, physics and geography
Scottish Qualification
Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education.
Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
Cambridge Pre-U
D3 D3 D3 in three Principal subjects including chemistry or D3 D3 M2 in three Principal subjects including chemistry and an additional science subject
Cambridge Pre-U additional information
Accepted science subjects include biology, mathematics, physics, psychology and geography. Cambridge Pre-U's can be used in combination with other qualifications such as A-levels to achieve the equivalent of the typical offer, where D3 can be used in lieu of A-level grade A or grade M2 can be used in lieu of grade B.
Welsh Baccalaureate
AAA from three A-levels including chemistry or AA from two A-levels including chemistry, and A from the Advanced Welsh Baccalaureate Skills Challenge Certificate or AAB including chemistry and one additional science subject or AA from two A-levels including chemistry and one additional science subject, and B from the Advanced Welsh Baccalaureate Skills Challenge Certificate
Welsh Baccalaureate additional information
Accepted A-level science subjects include biology, human biology, physics, mathematics, further mathematics, psychology, geography and geology. General Studies, Critical Thinking and use of mathematics are excluded for entry. A pass in all science practical components is required where applicable.
Welsh Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
European Baccalaureate
85% overall including grade 8/10 in chemistry and grade 8/10 in mathematics
Other requirements
GCSE requirements
Applicants must hold GCSE English language (or GCSE English) (minimum grade 4/C) and mathematics (minimum grade 6/B). Grade 7/A in GCSE mathematics is preferred for applicants not studying A-level mathematics
You might meet our criteria in other ways if you do not have the qualifications we need. Find out more about:
-
our Access to Southampton scheme for students living permanently in the UK (including residential summer school, application support and scholarship)
-
skills you might have gained through work or other life experiences (otherwise known as recognition of prior learning)
Find out more about our Admissions Policy.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Course structure
This 4-year degree will provide you with in-depth knowledge and practical training in all aspects of chemistry, and develop your understanding of its impact on modern society.
You'll get a thorough grounding in all aspects of chemistry with a comprehensive set of core modules. You can then shape your degree to suit your interests by choosing from a wide range of optional modules.
The placement allows you to combine chemistry with a year in industry, expanding the breadth and depth of your core skills through training in an advanced chemistry environment. Students have completed placements at organisations such as GlaxoSmithKline, Pfizer and Merck.
Year 1 overview
You’ll study a set of core topics that are essential to your developing knowledge, giving you a solid grounding in organic, inorganic and physical chemistry.
Topics include:
-
Molecular Structure
-
Reactivity
-
Thermodynamics
-
Kinetics
-
Atomic Structure
-
Bonding
-
Chemistry of the Elements
You can also choose options from the wider university including mathematics, physics, biology and languages.
Year 2 overview
You'll study core topics in chemistry such as:
-
Organic Reaction Mechanisms and Organic Synthesis
-
Atomic and Molecular Interactions, Change and Equilibrium
-
Symmetry in Chemistry
-
Transition of Metal and Organometallic Compounds
-
Bonding Theories of Solid-State Chemistry
You can also choose options that may include Mathematical Methods in Chemistry, Ethics in Sciences, Engineering and Technology, Aquatic Chemistry and Pharmacology.
Year 3 overview
You'll take advanced modules in the core practical and theoretical areas of chemistry such as:
-
Pigments and F-block Chemistry
-
Natural Product Chemistry
-
Electrochemistry, Energy Storage, Pollution Control and Fuel Cells
-
Organometallic Chemistry
-
DNA and RNA
-
UV/visible Spectroscopy and Quadrupolar NMR
-
Kinetics of Interface Chemistry (gas/solid, liquid/solid)
You'll do an in-house chemistry research project involving open-ended experiments. These allow you to develop new practical skills, manage your own learning and present your results.
You can also select 3 optional chemistry modules from a choice of 8, including Medicinal Chemistry, Sustainable Chemistry and Atmospheric Chemistry.
Year 4 overview
You'll work on a research project during a chemistry industrial placement. Find out more about the master's-level 1-year placement.
During your placement, you'll take these compulsory distance learning modules to advance your chemistry expertise:
-
Chemical Enterprise and Professional Skills
-
Advanced Chemistry
Want more detail? See all the modules in the course.
Modules
Changes due to COVID-19
Although the COVID-19 situation is improving, any future restrictions could mean we might have to change the way parts of our teaching and learning take place in 2021 to 2022. We're working hard to plan for a number of possible scenarios. This means that some of the information on this course page may be subject to change.
Find out more on our COVID advice page.
For entry in Academic Year 2022-23
Year 1 modules
You must study the following modules in year 1:
Analytical Chemistry is a measurement science consisting of a set of powerful ideas and methods that provide qualitative or quantitative information about the chemical composition of a sample. Analytical measurements are required in a wide range of fields...
This module provides a bridge between A-level mathematics and university mathematics. Some of the material will be similar to that in A-level Maths and Further Maths but will be treated in more depth, and some of the material will be new. Topics of study ...
Physical Chemistry is concerned with the application of physics to the study of chemical systems. Through physical chemistry one can understand and predict the behaviour of chemical systems, thereby allowing these systems to be optimised. This module will...
Physical Chemistry is concerned with the application of physics to the study of chemical systems. Through physical chemistry one can understand and predict the behaviour of chemical systems, thereby allowing these systems to be optimised. This module will...
This course is an introduction to practical chemistry, involving direct laboratory teaching (with detailed instructions) of a range of basic skills to set foundations for further learning. It includes the teaching of common experimental techniques, use of...
This course follows on from CHEM1051 and teaches slightly more advanced basic skills, with the application of the Semester 1 skills and knowledge. More complex work-ups will be undertaken, with more emphasis on student input (or decision making) in the pr...
This module will provide an introduction into the fundamentals of main group and transition metal chemistry, and introduce NMR.
The module provides advanced mathematics training necessary for students planning to specialise in physical chemistry, computational chemistry, spectroscopy, data science and quantitative finance. It also aims to provide training of rational reasoning ski...
Year 2 modules
You must study the following modules in year 2:
This module will build on the principles of Transition Metal chemistry covered in Part 1. Through developing a molecular orbital approach, you will be taken from the basics of ligand interactions and binding modes to understanding a transition metal's...
Linear maps on vector spaces are the basis for a large area of mathematics, in particular linear equations and linear differential equations, which form the basic language of the physical sciences. This module restricts itself to the vector space R^n to ...
This module provides training in advanced mathematics and numerical methods that will allow in-depth understanding and solving of problems in physical chemistry, computational chemistry, and spectroscopy. It will also provide transferable skills that can ...
This module introduces the main ideas and techniques of differential and integral calculus of functions of two or more variables. One of the pre-requisites for MATH2003, MATH2011, MATH2014, MATH3033, MATH2038, MATH2039, MATH2045 and MATH2040
Physical Chemistry is concerned with the application of physics to the study of chemical systems. Through physical chemistry one can understand and predict the behaviour of chemical systems, thereby allowing these systems to be optimised. This module prov...
In this module you will learn about the fundamental theory of bonding in solids – band theory, and show how this can be used to understand the optical, magnetic and optical properties of solid phase materials. You will also be taught about X-ray diffracti...
You must also choose from the following modules in year 2:
Human society has many negative environmental effects, we will focus on the background chemistry involved in three main themes including the use of agrochemicals, herbicides and pesticides in food production, plastic production and waste, and also carbon ...
The chemical and photochemical processes that occur in the atmosphere at different altitudes have profound and fundamental effects on life, and on the planet. This module examines atmospheric structure, circulation, processes and chemistry, inorganic and...
In this module we will discuss environmental issues associated with the air and water. This will cover the chemical and physical sciences context of the issues around global climate change, ozone hole formation and photochemical smog as well as routes to ...
Starting from the underlying themes in Jekyll and Hyde, wherein a scientific discovery can be seen as having both beneficial (Dr. Jekyll) and detrimental aspects (Mr. Hyde), this module delves into the general area of the ethics and social responsibility ...
The aim of this module is initially to explain the characteristics and roles of molecules that constitute living cells, including DNA, proteins, lipids and carbohydrates. Subsequently, the fundamental metabolic pathways will be explored, along with the co...
The global challenge that is 'sustainability' impacts every dimension of all of our lives. Regardless of your degree, the social, cultural, economic and environmental dimensions of sustainability have important implications for your studies, your daily ...
The module shows how simple physical principles can be used to learn about the Universe. The focus is upon how one can measure physical quantities such as size, distance, temperature, age and mass for the variety of objects in the Universe. By its end stu...
Is it necessary -- and is it possible -- for the UK and other countries to make the change from fossil fuels to renewable energy sources? And what sort of changes would be involved, on a global, national and personal scale? Is there any one renewable ener...
The module provides advanced mathematics training necessary for students planning to specialise in physical chemistry, computational chemistry, spectroscopy, data science and quantitative finance. It also aims to provide training of rational reasoning ski...
This module provides training in advanced mathematics and numerical methods that will allow in-depth understanding and solving of problems in physical chemistry, computational chemistry, and spectroscopy. It will also provide transferable skills that can ...
Year 3 modules
You must study the following modules in year 3:
Fundamentals of Bio-organic Chemistry Nucleic Acids Chemistry • Chemical structure and properties of nucleosides, nucleotides, nucleic acids. • Structure and properties of DNA – A, B, and Z-DNA structures, Watson-Crick base pairing. • The biological...
The course deals with the nature of surfaces, both real and ideal, the energetics of adsorption at surfaces and adsorption isotherms, and the charge distribution at the liquid/solid interface. The kinetics of reactions at interfaces, including the role of...
This module represents an advanced practical course designed to build on the practical skills developed through lab modules undertaken in years 1 and 2 of the Chemistry degree programmes. The course will extend this vital skill by enabling students to un...
This module requires students to produce a dissertation under the guidance of a supervisor extending the skills developed in the Advanced Practical module. The dissertation may take the form of a literature review or other extended written report, the pr...
The project involves approximately 300 hours of commitment between the beginning of week 1 and the end of the last week before the Easter vacation (the finish date is to be confirmed). This corresponds to a minimum of 150 hours in the laboratory/ researc...
This module builds on the student’s core understanding of the structure of atoms and molecules to predict their behaviour using state-of-the art computational chemistry methods. This will involve learning how quantum chemistry methods can be used to st...
This module is an introduction to functional analysis on Hilbert spaces. The subject of functional analysis builds on the linear algebra studied in the first year and the analysis studied in the second year. The module introduces the concept of Hilbert...
Medicinal Chemistry is pivotal in the design, synthesis and evaluation of new medicines, and involves multidisciplinary research at the interface of Chemistry, Biology and Medicine. This module will introduce key molecular concepts and methods in Medicina...
Differential equations occupy a central role in mathematics because they allow us to describe a wide variety of real-world systems. The module will aim to stress the importance of both theory and applications of differential equations. The module begin...
The aim of this module is to build on the first year introduction to pharmacology to progress students understanding of pharmacology. The course is structured to firstly provide a platform of core concepts that widely pertain before developing this to som...
You must also choose from the following modules in year 3:
The notion of limit and convergence are two key ideas on which rest most of modern Analysis. This module aims to present these notions building on the experience gained by students in first year Calculus module. The context of our study is: limits and co...
This module aims to develop an intermediate-level understanding of quantum mechanics, including familiarity with its mathematical formulation. It is intended to bridge the gap between the qualitative, pictorial approach used in the core modules of the fir...
This module will deliver a comprehensive analysis of selected topics associated with the cellular and molecular mechanisms that drive cancer development and lead to tumour progression. This will involve exploring the genetic drivers of disease, the mechan...
This module builds on the student’s core understanding of the structure of atoms and molecules to predict their behaviour using state-of-the art computational chemistry methods. This will involve learning how quantum chemistry methods can be used to st...
Complex Analysis is the theory of functions in a complex variable. While the initial theory is very similar to Analysis (i.e, the theory of functions in one real variable as seen in the second year), the main theorems provide a surprisingly elegant, found...
This module aims to teach students the fundamentals of writing structured computer programs, applicable using any high level programming language. However, students will be shown the special features of Python that makes this language especially useful fo...
This module explores some of the distinguishing features of metal ion complexes bearing macrocyclic ligands and some of the key structural and functional roles of metal ions in biology and medicine. The module serves as an introduction to these important ...
Biology is undergoing a quantitative revolution, generating vast quantities of data that are analysed using bioinformatics techniques and modelled using mathematics to give insight into the underlying biological processes. This module aims to give a flavo...
Medicinal Chemistry is pivotal in the design, synthesis and evaluation of new medicines, and involves multidisciplinary research at the interface of Chemistry, Biology and Medicine. This module will introduce key molecular concepts and methods in Medicina...
The organisation of the eukaryotic cell has always fascinated researchers. This module illustrates the upkeep of cellular structure and function.
Nonlinear programming is used in a variety of applications, ranging from machine learning and data science to finance and engineering. This course provides an introduction to nonlinear programming and covers modelling techniques as well as solution algori...
Module Contents: This module discusses continuous optimization problems where either the objective function or constraint functions or both are nonlinear. It explains optimality conditions, that is, which conditions an optimal solution must satisfy. It in...
This module is concerned with the mechanism of action of several chemotherapeutic agents, targeted at various disease states. Topics covered include anticancer agents, anthelmintics, antimalarials, antisense oligonucleotides and antiviral compounds. The m...
Carbon-carbon bond forming reactions lie at the heart of organic synthesis. In this course we will cover methods for carbon-carbon bond formation using carbanions and radicals, and through thermally and photochemically induced pericyclic processes. The si...
Year 4 modules
You must study the following modules in year 4:
The aim of the module is to expose the students to modern chemical informatics, machine learning (ML) and artificial intelligence (AI) driven approaches for computational modelling and prediction, illustrated with applications to research in to the discov...
The project involves approximately 600 hours of commitment including 14 weeks of full-time practically based research work.
The module seeks to increase student’s awareness of the chemical industry and to develop their professional skills through reflective practice.
You must also choose from the following modules in year 4:
Modern spectroscopic techniques underpin a wide range of chemical and biological research as well as serving as a valuable analytical tool. This module will introduce some of the key principles, tools and techniques that govern spectroscopic measurements ...
The aim of the module is to expose the students to modern chemical informatics, machine learning (ML) and artificial intelligence (AI) driven approaches for computational modelling and prediction, illustrated with applications to research in to the discov...
BIOL6047 ‘Biofilms and Microbial Communities’ aims to provide an understanding of bacterial biofilms and the environmental, industrial and health care problems related to complex microbial consortia of societal importance. Students will learn to describe ...
The aim of this module is introduce third year students to the main clinically relevant parasite classes, it will consider their lifecycles, the human/veterinary pathology caused and the treatment methods both of the primary and where applicable intermedi...
This course is designed to illustrate the ways in which the theoretical principles of biochemistry, cellular and molecular biology presented in previous courses can be applied to yield important commercial or therapeutic products or processes.
Many classes of problems are difficult to solve in their original domain. An integral transform maps the problem from its original domain into a new domain in which solution is easier. The solution is then mapped back to the original domain with the inver...
This module aims to teach students the fundamentals of writing structured computer programs, applicable using any high level programming language. However, students will be shown the special features of Python that makes this language especially useful fo...
This module provides fourth year students with an introduction to the molecular basis of receptor pharmacology. The module detailed analysis of the mechanisms of drug action at the molecular level through the application of biochemical and molecular biolo...
Most biological processes involve interactions between macromolecules. The module discusses selected examples and explains techniques used to study molecular interactions.
This module describes the neurobiology that underpins the aetiology and pathogenesis of neurodegenerative disease that has been a focus of intense and exciting research activity over the last several decades. The course is largely a research-led unit wher...
Nonlinear programming is used in a variety of applications, ranging from machine learning and data science to finance and engineering. This course provides an introduction to nonlinear programming and covers modelling techniques as well as solution algori...
Electrochemistry is an important area of science covering many interesting and important topics of current scientific research. For example, it is key to the development of new power sources (for example new batteries, fuel cells and supercapacitors) as ...
This module will explore the fundamental basis of intermolecular interactions and illustrate how these can be exploited to form diverse supramolecular assemblies ranging from small molecules, soft gels and hard extended inorganic solids. The course will p...
The course provides an insight into how molecular studies can be employed to further medical research and aid in the development of novel treatments and therapeutics. The course will cover a number of areas including the role of epigenetic in disease, amy...
Learning and assessment
The learning activities for this course include the following:
- lectures
- classes and tutorials
- coursework
- individual and group projects
- independent learning (studying on your own)
Course time
How you'll spend your course time:
Year 1
Study time
Your scheduled learning, teaching and independent study for year 1:
How we'll assess you
- coursework, laboratory reports and essays
- design and problem-solving exercises
- essays
- individual and group projects
- oral presentations
- written and practical exams
- placement assessment
Your assessment breakdown
Year 1:
Year 2
Study time
Your scheduled learning, teaching and independent study for year 2:
How we'll assess you
- coursework, laboratory reports and essays
- design and problem-solving exercises
- essays
- individual and group projects
- oral presentations
- written and practical exams
- placement assessment
Your assessment breakdown
Year 2:
Year 3
Study time
Your scheduled learning, teaching and independent study for year 3:
How we'll assess you
- coursework, laboratory reports and essays
- design and problem-solving exercises
- essays
- individual and group projects
- oral presentations
- written and practical exams
- placement assessment
Your assessment breakdown
Year 3:
Year 4
Study time
Your scheduled learning, teaching and independent study for year 4:
How we'll assess you
- coursework, laboratory reports and essays
- design and problem-solving exercises
- essays
- individual and group projects
- oral presentations
- written and practical exams
- placement assessment
Your assessment breakdown
Year 4:
Academic support
You’ll be supported by a personal academic tutor and have access to a senior tutor.
Course leader
Peter Birkin is the course leader.
Careers
This versatile degree gives you a strong foundation for a rewarding career as a professional chemist. You'll also develop transferable skills that can be used for other types of careers.
Most of our graduates go on to chemistry-related roles, but many enter other areas. These include:
-
sciences
-
engineering
-
management
-
law
-
computing
-
technology
-
telecommunications
You can also decide to go into research by taking a PhD.
The degree is supported by our key skills training, which helps you develop the essential attributes needed for career success.
Find out more about careers in chemistry.
Careers services at Southampton
We are a top 20 UK university for employability (QS Graduate Employability Rankings 2019). Our Careers and Employability Service will support you throughout your time as a student and for up to 5 years after graduation. This support includes:
work experience schemes
CV and interview skills and workshops
networking events
careers fairs attended by top employers
a wealth of volunteering opportunities
study abroad and summer school opportunities
We have a vibrant entrepreneurship culture and our dedicated start-up supporter, Futureworlds, is open to every student.
Work in industry
In your final year you’ll take a year-long paid placement in a company of your choice to give you a head start in the graduate market. During your placement, you can apply the knowledge and skills you’ve developed during your degree, and gain vital professional experience.
Fees, costs and funding
Tuition fees
Fees for a year's study:
- UK students pay £9,250.
- EU and international students pay £22,760.
What your fees pay for
Your tuition fees pay for the full cost of tuition and all examinations.
Find out how to:
Accommodation and living costs, such as travel and food, are not included in your tuition fees. Explore:
Bursaries, scholarships and other funding
If you're a UK or EU student and your household income is under £25,000 a year, you may be able to get a University of Southampton bursary to help with your living costs. Find out about bursaries and other funding we offer at Southampton.
If you're a care leaver or estranged from your parents, you may be able to get a specific bursary.
Get in touch for advice about student money matters.
Scholarships and grants
You may be able to get a scholarship or grant that's linked to your chosen subject area.
We award scholarships and grants for travel, academic excellence, or to students from underrepresented backgrounds.
Support during your course
The Student Services Centre offers support and advice on money to students. You may be able to access our Student Support fund and other sources of financial support during your course.
Funding for EU and international students
Find out about funding you could get as an international student.
How to apply
When you apply use:
- UCAS course code: F102
- UCAS institution code: S27
What happens after you apply?
We will assess your application on the strength of your:
- predicted grades
- academic achievements
- personal statement
- academic reference
We'll aim to process your application within two to six weeks, but this will depend on when it is submitted. Applications submitted in January, particularly near to the UCAS equal consideration deadline, might take substantially longer to be processed due to the high volume received at that time.
Equality and diversity
We treat and select everyone in line with our Equality and Diversity Statement.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Related courses
-
Courses
- Undergraduate
- Postgraduate taught
-
Postgraduate research
-
Research degree projects
- A combined CFD and catalytic approach for H2 generation and CO2 utilisation
- Advancing the sustainability of cities – Understanding the impacts of urban light pollution on freshwater ecosystems
- An integrated predictive tool for City-scale CB Hazard dispersion and uncertainty quantification
- Bottom-up chemical synthesis of photonic metamaterials and metasurfaces from nanomaterials
- Building-resolved large-eddy simulations of wind and dispersion over a city scale urban area
- Clean and cheap lithium production using electrochemistry
- Deep UV QPM materials
- Enlightened fisheries engineering: the use of light to enhance fish passage in culverts
- Integrated microwave photonics
- Modulators and low-loss switching for Quantum Technology
- Multi-node Entangled Networks with Integrated Solid-State Quantum Photonic Devices
- Nitride-based Memristor for Space Electronics
- Nonlinear photon sources for quantum technologies
- Novel Radiation Sensor for Space Applications
- Stefan Cross Centre PhD Studentship in Law and Gender Equality
- Ultra-precision machining of photonics
-
Research degree projects
- Foundation Years
- Pre-sessional English language courses
- Exchanges
- Customise your degree
- Tuition fees
- Funding your studies
- How to apply
- Clearing
- Free online learning
- Continuing professional development
-
Student life
- Accommodation
- Our campuses
- Our cities
- Student community
- Sports and gyms
- Support and money
- Halls Filter
- Research
- Business
- Global
- Open days and visits
- Clearing
- Schools and colleges
- About
- Visit
- Alumni
- Departments
- News
- Events
- Contact