About this course
Zoology is key to tackling some of the major challenges facing our planet today. These include the effects of global warming on animal life and the ecological impact of expanding populations. On this course, you'll explore animal physiology and behaviour. You'll discover how they interact with their environments on a range of field trips, to places like Spain, Belize and the New Forest.
This 3-year zoology degree will let you explore all areas of animal life from cell biology to entire ecosystems. You'll get in-depth training in the biological processes behind animal development, growth and function.
Our tutors are leading experts in a wide range of fields in zoology, including:
-
evolution
-
behaviour
-
conservation
-
neuroscience
-
development
With this course you can:
-
use the £50 million facilities in our Institute for Life Sciences building
-
work with our active research staff on an independent research project
-
choose from a selection of modules that tailor your degree to your passions
-
spend a semester studying at a university in Europe or Australasia
-
develop vital skills that employers look for
We also have close links with nearby conservation charity and zoo, Marwell Wildlife. This can provide even more opportunities to enhance your learning.
Accreditations
Course location
This course is based at Highfield.
Awarding body
This qualification is awarded by the University of Southampton.
Download the Course Description Document
The Course Description Document details your course overview, your course structure and how your course is taught and assessed.
Changes due to COVID-19
Although the COVID-19 situation is improving, any future restrictions could mean we might have to change the way parts of our teaching and learning take place in 2022 to 2023. This means that some of the information on this course page may be subject to change.
Find out more on our COVID advice page.
Entry requirements
For Academic year 202324
A-levels
AAB including Biology and one further science subject.
A-levels additional information
Offers typically exclude General Studies and Critical Thinking. A level science subjects considered include Chemistry, Physics, Maths, Psychology, Environmental Studies, Geography and Geology. Where this offer is satisfied by including grades achieved in either Biology, Chemistry or Physics, a Pass in the practical science assessment is additionally required.
A-levels with Extended Project Qualification
If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer: ABB including Biology and one further science subject, and grade A in the EPQ
A-levels contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme, as follows: ABB including Biology and one further science subject.
International Baccalaureate Diploma
Pass with overall score of 34 points, with 17 points required at Higher Level, including 5 and 6 points at Higher Level in Biology and one further science subject
International Baccalaureate Diploma additional information
Science subjects considered include Chemistry, Physics, Maths (Analysis and Approaches or Applications and Interpretation) , Psychology, Environmental Studies, Geography and Geology.
International Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Career Programme (IBCP) statement
Offers will be made on the individual Diploma Course subject(s) and the career-related study qualification. The CP core will not form part of the offer. Where there is a subject pre-requisite(s), applicants will be required to study the subject(s) at Higher Level in the Diploma course subject and/or take a specified unit in the career-related study qualification. Applicants may also be asked to achieve a specific grade in those elements. Please see the University of Southampton International Baccalaureate Career-Related Programme (IBCP) Statement for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
BTEC
D in the BTEC Extended Certificate plus AA in A Level Biology and one further science subject We do not accept the BTEC National Diploma/ BTEC National Extended Diploma without two AA grades in A Level Biology and one further science subject,
RQF BTEC
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Additional information
Acceptable science subjects are Chemistry, Biology, Maths, Physics, Psychology, Environmental Studies, Geography and Geology. Where this offer is satisfied by including grades achieved in either Biology, Chemistry or Physics, a Pass in the practical science assessment is additionally required. Offers typically exclude General Studies and Critical Thinking
QCF BTEC
D in the BTEC Subsidiary Diploma plus AA in A Level Biology and one further science subject. We do not accept the BTEC Diploma/BTEC Extended Diploma without two AA grades in A Level Biology and one further science subject.
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Access to HE Diploma
60 credits with a minimum of 45 credits at Level 3 of which 45 credits must be at Distinction.
Access to HE additional information
A core science Access to HE Diploma must be studied.
Irish Leaving Certificate
Irish Leaving Certificate (first awarded 2017)
H1, H2, H2, H2, H2, H2 to include Biology and one further science subject.
Irish Leaving Certificate (first awarded 2016)
AAAABB to include Biology and one further science subject
Irish certificate additional information
Acceptable science subjects considered include Biology, Chemistry, Maths, Physics, Psychology, Environmental Studies, Geography and Geology. Applicants will be required to have achieved a pass in Mathematics and English at ILC Grade C or 04, the equivalent of GCSE grade C/grade 4.
Scottish Qualification
Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education.
Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
Cambridge Pre-U
D3, D3, M2 to include Biology and one further science subject.
Cambridge Pre-U additional information
Science subjects considered include Biology, Human Biology, Chemistry, Maths, Physics, Psychology and Geography. Cambridge Pre-U's can be used in combination with other qualifications such as A Levels to achieve the equivalent of the typical offer, where D3 can be used in lieu of A Level grade A or grade M2 can be used in lieu of grade B.
Welsh Baccalaureate
AAB from 3 A levels including Biology and one further science subject or AA from two A levels including Biology and one further a science subject and B from the Advanced Welsh Baccalaureate Skills Challenge Certificate
Welsh Baccalaureate additional information
A level science subjects considered include Chemistry, Physics, Maths, Psychology, Environmental Studies, Geography and Geology. Where this offer is satisfied by including grades achieved in either Biology, Chemistry or Physics, a Pass in the practical science assessment is additionally required. General Studies, Critical Thinking are excluded for entry.
Welsh Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Other requirements
GCSE requirements
Applicants must hold GCSE English Language (or GCSE English), Mathematics and Science (minimum grade C/4).
Find the equivalent international qualifications for our entry requirements.
English language requirements
If English isn't your first language, you'll need to complete an International English Language Testing System (IELTS) to demonstrate your competence in English. You'll need all of the following scores as a minimum:
IELTS score requirements
- overall score
- 6.5
- reading
- 6.0
- writing
- 6.0
- speaking
- 6.0
- listening
- 6.0
We accept other English language tests. Find out which English language tests we accept.
You might meet our criteria in other ways if you do not have the qualifications we need. Find out more about:
- our Access to Southampton scheme for students living permanently in the UK (including residential summer school, application support and scholarship)
- skills you might have gained through work or other life experiences (otherwise known as recognition of prior learning)
Find out more about our Admissions Policy.
Science Foundation Year
The Science Foundation Year will give you the skills and knowledge to progress to this course if you don't have the right qualifications for direct entry.
It could be the right option if you:
-
are studying for A levels in subjects other than those we normally ask for
-
are a mature applicant with skills and experience from employment and can show recent study
-
you come from a part of the world where the education system is different from the British A level system
Find full details on our Science Foundation Year page.
For Academic year 202425
A-levels
AAB including Biology and one further science subject.
A-levels additional information
Offers typically exclude General Studies and Critical Thinking. A level science subjects considered include Chemistry, Physics, Maths, Psychology, Environmental Studies, Geography and Geology. Where this offer is satisfied by including grades achieved in either Biology, Chemistry or Physics, a Pass in the practical science assessment is additionally required.
A-levels with Extended Project Qualification
If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer: ABB including Biology and one further science subject, and grade A in the EPQ
A-levels contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Diploma
Pass with overall score of 34 points, with 17 points required at Higher Level, including 5 and 6 points at Higher Level in Biology and one further science subject
International Baccalaureate Diploma additional information
Science subjects considered include Chemistry, Physics, Maths (Analysis and Approaches or Applications and Interpretation) , Psychology, Environmental Studies, Geography and Geology.
International Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Career Programme (IBCP) statement
Offers will be made on the individual Diploma Course subject(s) and the career-related study qualification. The CP core will not form part of the offer. Where there is a subject pre-requisite(s), applicants will be required to study the subject(s) at Higher Level in the Diploma course subject and/or take a specified unit in the career-related study qualification. Applicants may also be asked to achieve a specific grade in those elements. Please see the University of Southampton International Baccalaureate Career-Related Programme (IBCP) Statement for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
BTEC
D in the BTEC Extended Certificate plus AA in A Level Biology and one further science subject We do not accept the BTEC National Diploma/ BTEC National Extended Diploma without two AA grades in A Level Biology and one further science subject,
RQF BTEC
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Additional information
Acceptable science subjects are Chemistry, Biology, Maths, Physics, Psychology, Environmental Studies, Geography and Geology. Where this offer is satisfied by including grades achieved in either Biology, Chemistry or Physics, a Pass in the practical science assessment is additionally required. Offers typically exclude General Studies and Critical Thinking
QCF BTEC
D in the BTEC Subsidiary Diploma plus AA in A Level Biology and one further science subject. We do not accept the BTEC Diploma/BTEC Extended Diploma without two AA grades in A Level Biology and one further science subject.
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Access to HE Diploma
60 credits with a minimum of 45 credits at Level 3 of which 45 credits must be at Distinction.
Access to HE additional information
A core science Access to HE Diploma must be studied.
Irish Leaving Certificate
Irish Leaving Certificate (first awarded 2017)
H1, H2, H2, H2, H2, H2 to include Biology and one further science subject.
Irish Leaving Certificate (first awarded 2016)
AAAABB to include Biology and one further science subject
Irish certificate additional information
Acceptable science subjects considered include Biology, Chemistry, Maths, Physics, Psychology, Environmental Studies, Geography and Geology. Applicants will be required to have achieved a pass in Mathematics and English at ILC Grade C or O4, the equivalent of GCSE grade C/grade 4.
Scottish Qualification
Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education.
Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
Cambridge Pre-U
D3, D3, M2 to include Biology and one further science subject.
Cambridge Pre-U additional information
Science subjects considered include Biology, Human Biology, Chemistry, Maths, Physics, Psychology and Geography. Cambridge Pre-U's can be used in combination with other qualifications such as A Levels to achieve the equivalent of the typical offer, where D3 can be used in lieu of A Level grade A or grade M2 can be used in lieu of grade B.
Welsh Baccalaureate
AAB from 3 A levels including Biology and one further science subject or AA from two A levels including Biology and one further a science subject and B from the Advanced Welsh Baccalaureate Skills Challenge Certificate
Welsh Baccalaureate additional information
A level science subjects considered include Chemistry, Physics, Maths, Psychology, Environmental Studies, Geography and Geology. Where this offer is satisfied by including grades achieved in either Biology, Chemistry or Physics, a Pass in the practical science assessment is additionally required. General Studies, Critical Thinking are excluded for entry.
Welsh Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Other requirements
GCSE requirements
Applicants must hold GCSE English Language (or GCSE English), Mathematics and Science at minimum grade C/4.
Find the equivalent international qualifications for our entry requirements.
English language requirements
If English isn't your first language, you'll need to complete an International English Language Testing System (IELTS) to demonstrate your competence in English. You'll need all of the following scores as a minimum:
IELTS score requirements
- overall score
- 6.5
- reading
- 6.0
- writing
- 6.0
- speaking
- 6.0
- listening
- 6.0
We accept other English language tests. Find out which English language tests we accept.
You might meet our criteria in other ways if you do not have the qualifications we need. Find out more about:
- our Access to Southampton scheme for students living permanently in the UK (including residential summer school, application support and scholarship)
- skills you might have gained through work or other life experiences (otherwise known as recognition of prior learning)
Find out more about our Admissions Policy.
Science Foundation Year
The Science Foundation Year will give you the skills and knowledge to progress to this course if you don't have the right qualifications for direct entry.
It could be the right option if you:
-
are studying for A levels in subjects other than those we normally ask for
-
are a mature applicant with skills and experience from employment and can show recent study
-
you come from a part of the world where the education system is different from the British A level system
Find full details on our Science Foundation Year page.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Course structure
You'll study compulsory and optional modules, and as the course progresses, you can focus more on your particular areas of interest.
This course is part of our Innovation Curriculum, so you can choose modules from other subject areas.
You do not need to select your modules when you apply. Your academic tutor will help you customise your course.
In year 3 you'll complete an independent research project.
Year 1 overview
Compulsory modules will give you a solid understanding of the key principles of zoology, covering:
-
physiology
-
molecular science
-
cell biology
-
ecology
-
genetics
You'll look at the patterns of life, and learn vital biomolecular techniques.
There is also a UK residential field trip, that will develop your fieldwork skills.
Year 2 overview
You'll take a number of compulsory modules, which explore areas such as:
-
animal behaviour
-
marine vertebrates
-
evolution
-
quantitative methods
Optional modules will allow you to further develop your personal interests. These include topics like:
-
pollution
-
neuroscience
-
genetic information
-
behaviour
-
palaeobiology
-
geographic information systems
You can enhance your fieldwork experience with field courses in the New Forest or Spain.
Year 3 overview
In your final year you'll complete an independent research project. There will be a wide range of project types to choose from, including:
-
laboratory
-
field
-
computer-based
-
bioscience education
-
science communication
You'll also choose from a wide range of optional modules to build on what you've learned so far. These include:
-
cell biology
-
ecology and evolution
-
toxicity
-
behavioural ecology
-
global challenges
You can also choose to take a 14-day field trip to Belize to study tropical ecology.
Want more detail? See all the modules in the course.
Modules
For entry in Academic Year 2022-23
Year 1 modules
You must study the following modules in year 1:
Fundamentals of Biochemistry
The aim of this module is initially to explain the characteristics and roles of molecules that constitute living cells, including DNA, proteins, lipids and carbohydrates. Subsequently, the fundamental metabolic pathways will be explored, along with the co...
Fundamentals of Cell Biology and Physiology
This module develops understanding of the components important for cell function and looks at how cells function in organs and whole organisms.
How to Think Like a Scientist
The module teaches how to formulate hypotheses and structure an experimental proposal, ultimately leading to data dissemination in form of a presentation / report / scientific paper. The module connects to real problems, where success in own experimental...
Origins of Biodiversity
In this module you will explore and explain patterns of global biodiversity over space and time, affecting a wide variety of lineages. We will begin as 18th century natural historians, considering the impact of new discoveries, due to the invention of the...
You must also choose from the following modules in year 1:
Year 2 modules
You must study the following modules in year 2:
Animal Behaviour
This module provides an introduction to the study of animal behaviour taking an integrative approach that addresses animal behaviour from ethological, ecological and evolutionary angles and to review the basic concepts of behaviour as a science.
Behaviour and Ecology Field Course
A 5 day field course held in Bolonia on the Andalucian coast of Southern Spain, within the Estrecho natural park. The field course will take place during the Easter holidays, when there is a large diversity of flora and fauna to survey. As a residential f...
Evolution
The module seeks to: - explore the main evolutionary processes - consider evolution at the phenotypic as well as the molecular level - consider evolutionary processes occurring at different time scales
Quantitative Methods in Biological and Environmental Science
This module develops analytical skills required for the final year Honours Project, scientific research in general, and your future career. The major skills are computer literacy and graphical presentation, understanding of scientific method and hypothes...
Vertebrate Development
This module provides the second year student with the basic concepts of human and other vertebrate animal development. Students will come to understand the main mechanisms behind both animal development and organised cellular differentiation and how these...
Vertebrate Zoology
Vertebrates are amongst the most successful animal groups. From fish, amphibians, lizards, crocodiles, birds and mammals, you will gain an understanding how the basal members of the clade have diversified and evolved to fill every imaginable niche on land...
You must also choose from the following modules in year 2:
Adaptive Physiology
This module provides insight in various aspects of adaptive animal physiology including the regulation of immunity, circulation, osmotic state, respiration, body temperature, feeding and metabolism, and developmental transitions. The way that these system...
Bioinformatics
The module includes an introduction to bioinformatics and its role in modern 'Omics' technologies; developments in DNA sequencing technologies; bioinformatic analyses of DNA; sequence alignment and biological databases.
Conservation management field course
This module will provide you with valuable ecological surveying and species identification techniques within the context of conservation priorities for a local and unique national park, the New Forest, through a series of day trips in order to complete a ...
Flow of Genetic Information
This module focuses on nucleic acid and protein biogenesis with particular emphasis on the flow of genetic information from DNA to RNA to proteins and key regulatory steps. Material relating to both prokaryotic and eukaryotic organisms will be covered.
Global Climate Change: Science, Impacts and Policy
The topic is addressed from three perspectives: the science of climate change, impact and adaptation, and policy towards adaptation and mitigation. One of the pre-requisites for GEOG3057
Immunology, Infection and Inflammation
The course will give students an introduction to basic immune mechanisms and emphasizes the basic principles of immunology, including the cells and molecules that make up the innate and adaptive immune system. This first part will show how the immune syst...
Introductory Geographic Information Systems
The module will introduce the basic concepts and techniques underpinning geographic information systems.
Plant Development and Function
This module provides an understanding of plant function and development at a molecular, cellular and whole organism level.
Principles of Neuroscience
This module conveys the concept of neuroscience as an integrative discipline by providing a description of mammalian nervous system function from molecular aspects of synaptic signalling to information integration and system level processing.
Pure and Applied Population Ecology
This module builds on the basic principles of population ecology introduced in year 1, to achieve a broad appreciation of current theory and practice in population and community ecology. Lectures and practicals will explore the processes involved in the d...
Remote Sensing for Earth Observation
The module will look at the basic theory and practical application of remote sensing for monitoring the terrestrial environment. Pre-requisite for GEOG3065
Water Pollution
An understanding of the physical, chemical and biological processes involved during contamination of air, water and soil is essential if society is going to effectively monitor and control the effects of pollution using modern technology and engineering p...
Year 3 modules
You must choose your modules from the following modules in year 3:
Applied Plant Biology
This module provides a broad introduction to the applied use of plants in the modern world. The module will cover the production of transgenic (GM) plants and their applications in a variety of areas including medical biotechnology, nutrition, phytoremedi...
Behavioural Ecology
Behavioural ecology considers the evolutionary pressures that shape behaviour. This module will explore animal behaviours from evolutionary biology and population ecological perspectives. Each week, lectures will consider a different behavioural ecology t...
Biodiversity and Conservation
This module concerns global biodiversity, what we understand by it and why it is in crisis, and current efforts to conserve and manage it. We begin with an appraisal of different values of diversity at scales from genetic to species, communities and ecosy...
Biofilms and Microbial Communities
This module aims to provide an understanding of bacterial biofilms and the environmental, industrial and health care problems related to complex microbial consortia of societal importance. Students will learn to describe and explain the basis for biofilm ...
Bioinformatics and Systems Biology
Large-scale approaches at the molecular, cellular, organismal and ecological level are revolutionizing biology by enabling systems-level questions to be addressed. In many cases, these approaches are driven by technologies that allow the components of bio...
Biomedical Parasitology
This module will introduce the main issues in parasitology, the host parasite interaction and how it drives evolutionary changes, the disease burden caused by parasites and how parasite infections can be treated/minimised.
Biomedical Technology
This course is designed to illustrate the ways in which the theoretical principles of biochemistry, cellular and molecular biology presented in previous courses can be applied to yield important commercial or therapeutic products or processes.
Bioscience Business
The aim of this module is to provide third year students with an introduction to commercialization of biosciences. The current focus is on the process of drug discovery, the subsequent management of clinical trials and marketing of commercial drug product...
Bioscience Education
The students will be expected to carry out an in-depth literature review into a biological concept or topic in semester 1, and to then design an innovative educational activity to convey their research to groups of people in semester 2.
Cancer Chromosome Biology
This module will deliver a comprehensive analysis of selected topics associated with the cellular and molecular mechanisms that drive cancer development and lead to tumour progression. This will involve exploring the genetic drivers of disease, the mechan...
Cell Signalling in Health and Disease
This module comprises an introduction/revision to inflammatory mediators and a detailed survey of the way that they interact in different diseases. This information is integrated in the context of a number of inflammatory diseases affecting a range of dif...
Cellular and Molecular Neuroscience
The aim of this module is to provide an understanding of the molecular and cellular basis of brain function. We will use examples of specific molecules and cell-cell interactions to provide explicit details of such function to highlight core principles of...
Current Topics in Cell and Developmental Biology
This module provides a detailed and up-to-date study of a small number of topics in modern cell biology
Evolution and Development
This module will deliver a comprehensive analysis of the topics associated with evolutionary developmental biology. This will involve exploring the theory of evolution; embryology and molecular pathways of development; what the fossil record tells us abou...
Evolution and Genetics
Evolution typically happens over long time periods, with organisms being selected based on their environments. But climate change and human factors can also increase the rate of evolution. In this module we show how organisms evolve in terms of their envi...
Extended Science Communication
Science Communication involves the dissemination of science to a lay audience. Equally as important; a good scientist is a good communicator. Science Communication is essential as an aid for governmental and industrial policy making. It is needed to coun...
External Research Project
Each student undertakes an independent research investigation using, for example, a collection at a museum, or similar. The research includes both literature survey and practical components. The literature component will consist of a critical review of w...
Field Research Project
Each student undertakes an investigation which includes both practical and theoretical components. The theory component will consist of a critical review of the literature relating to the proposed experimental component of the project. The fieldwork is re...
Fluxes, Cycles and Microbial Communities
Microorganisms are key players in all the major biogeochemical cycles on Earth. Fluxes, Cycles, and Microbial Communities explores the microbial influence on the biological, chemical, and geological processes that shape natural environments on our planet....
Global Challenges in Biology
This module will consider human-caused global challenges and their impact on marine and terrestrial ecosystems. We will discuss the main causes of global change, including greenhouse gases, changes in temperature and rainfall, and human land use, as well ...
Immunology
The module will cover the major topics in cellular and molecular immunology, including antigen recognition, antigen processing and presentation to B and T cells, the molecular events leading to the generation of antibody and T cell receptor diversity, ant...
In-Silico Research Project
Each student undertakes an investigation which includes both practical and theoretical components. The theory component will consist of a critical review of the literature relating to the proposed experimental/analytical component of the project. The topi...
Laboratory Research Project
Each student undertakes an investigation which includes both practical and theoretical components. The theory component will consist of a critical review of the literature relating to the proposed experimental component of the project. The laboratory work...
Literature-based Research Project
This module provides an opportunity for study in depth of a topic chosen by the student after consultation with the coordinator and an appropriate supervisor.
Literature-based Research Project
This module provides an opportunity for study in depth of a topic chosen by the student after consultation with the coordinator and an appropriate supervisor
Molecular Cell Biology
The organisation of the eukaryotic cell has always fascinated researchers. This module illustrates the upkeep of cellular structure and function.
Molecular Pharmacology
The module is concerned with a detailed study of the mechanisms of drug action at the molecular level by application of biochemical and molecular biological techniques. Receptor binding, isolation and the application of molecular cloning methods are surve...
Molecular Recognition
Most biological processes involve interactions between macromolecules. The module discusses selected examples and explains techniques used to study molecular interactions.
Molecular and Structural Basis of Disease
The course provides an insight into how molecular studies can be employed to further medical research and aid in the development of novel treatments and therapeutics. The course will cover a number of areas including the analysis of genetic diseases, amyl...
Neurodegenerative Disease
The neurobiology that underpins the aetiology and pathogenesis of neurodegenerative disease has been a focus of intense and exciting research activity over the last several decades. The module is largely a research-led module whereby the contributing staf...
Neuropharmacology of CNS Disorders
The module provides an introduction to functional brain anatomy and important neurotransmitter signalling pathways. This is used as a framework on which to describe the symptoms and treatment of brain disorders with a particular focus on a subset of psych...
Plant Cell Biology
This module explores, in depth, selected topics in plant cell biology that are basic to our understanding of the way in which plant cells develop, function and interact with each other and with their surroundings. Areas covered include: vacuole and chlor...
Regulation of Gene Expression
To provide an understanding of i) the regulation of transcription in eukaryotic organisms, ii) post-transcriptional regulation, iii) the structure, formation and function of microRNAs, iv) how the process of translation is controlled
Science Communication
Science Communication involves the dissemination of science to a lay audience. Equally as important; a good scientist is a good communicator. Science Communication is essential as an aid for governmental and industrial policy making. It is needed to coun...
Selective Toxicity
This module is concerned with the mechanism of action of several chemotherapeutic agents, targeted at various disease states. Topics covered include anticancer agents, anthelmintics, antimalarials, antisense oligonucleotides and antiviral compounds. The m...
Short Field Research Project
Each student undertakes an investigation which includes both practical and theoretical components. The theory component will consist of a critical review of the literature relating to the proposed experimental component of the project. The fieldwork is re...
Systems Neuroscience
The aim of this module is to expose students to research level studies in a number of areas related to the function of the nervous system, necessary to understand the pathophysiology of neurological conditions. The course will describe CNS development, a...
Tropical Ecology Field Course
This module will provide first-hand experience of ecology and conservation in a tropical environment and give you a foundation in a range of topics including biodiversity, community ecology, ecosystem processes, anthropogenic impacts, in-situ and ex-situ ...
Learning and assessment
The learning activities for this course include the following:
- lectures
- classes and tutorials
- coursework
- individual and group projects
- independent learning (studying on your own)
Course time
How you'll spend your course time:
Year 1
Study time
Your scheduled learning, teaching and independent study for year 1:
How we'll assess you
- essays
- oral presentations
- written and practical exams
Your assessment breakdown
Year 1:
Year 2
Study time
Your scheduled learning, teaching and independent study for year 2:
How we'll assess you
- essays
- oral presentations
- written and practical exams
Your assessment breakdown
Year 2:
Year 3
Study time
Your scheduled learning, teaching and independent study for year 3:
How we'll assess you
- essays
- oral presentations
- written and practical exams
Your assessment breakdown
Year 3:
Academic support
You’ll be supported by a personal academic tutor and have access to a senior tutor.
Course leader
Neil Gostling is the course leader.
Careers
As a Southampton graduate, you’ll have a wide variety of job options. Some will directly use your scientific abilities, others will draw on the broader set of analytical skills gained throughout your course.
You'll also be ideally placed to continue your research with a master's or PhD.
Our Zoology BSc graduates find careers in areas such as:
-
teacher training
-
veterinary medicine
-
animal and farm management
-
conservation and the environment
-
agriculture
Careers services at Southampton
We are a top 20 UK university for employability (QS Graduate Employability Rankings 2022). Our Careers and Employability Service will support you throughout your time as a student and for up to 5 years after graduation. This support includes:
-
work experience schemes
-
CV and interview skills and workshops
-
networking events
-
careers fairs attended by top employers
-
a wealth of volunteering opportunities
-
study abroad and summer school opportunities
We have a vibrant entrepreneurship culture and our dedicated start-up supporter, Futureworlds, is open to every student.
Fees, costs and funding
Tuition fees
Fees for a year's study:
- UK students pay £9,250.
- EU and international students pay £25,000.
What your fees pay for
Your tuition fees pay for the full cost of tuition and all examinations.
Find out how to:
Accommodation and living costs, such as travel and food, are not included in your tuition fees. Explore:
Bursaries, scholarships and other funding
If you're a UK or EU student and your household income is under £25,000 a year, you may be able to get a University of Southampton bursary to help with your living costs. Find out about bursaries and other funding we offer at Southampton.
If you're a care leaver or estranged from your parents, you may be able to get a specific bursary.
Get in touch for advice about student money matters.
Scholarships and grants
You may be able to get a scholarship or grant to help fund your studies.
We award scholarships and grants for travel, academic excellence, or to students from under-represented backgrounds.
Support during your course
The Student Services Centre offers support and advice on money to students. You may be able to access our Student Support fund and other sources of financial support during your course.
Funding for EU and international students
Find out about funding you could get as an international student.
How to apply
When you apply use:
- UCAS course code: C300
- UCAS institution code: S27
What happens after you apply?
We will assess your application on the strength of your:
- predicted grades
- academic achievements
- personal statement
- academic reference
We'll aim to process your application within 2 to 6 weeks, but this will depend on when it is submitted. Applications submitted in January, particularly near to the UCAS equal consideration deadline, might take substantially longer to be processed due to the high volume received at that time.
Equality and diversity
We treat and select everyone in line with our Equality and Diversity Statement.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Related courses
-
Study
- View all courses
- Taught postgraduate study
- Pre-sessional English courses
- Subjects
-
PhDs and research degrees
- Create your own research project
- Enhancing UAV manoeuvres and control using distributed sensor arrays
-
Find a PhD project
- A missing link between continental shelves and the deep sea: Have we underestimated the importance of land-detached canyons?
- A seismic study of the continent-ocean transition southwest of the UK
- A study of rolling contact fatigue in electric vehicles (EVs)
- Acoustic monitoring of forest exploitation to establish community perspectives of sustainable hunting
- Acoustic sensing and characterisation of soil organic matter
- Advancing intersectional geographies of diaspora-led development in times of multiple crises
- Aero engine fan wake turbulence – Simulation and wind tunnel experiments
- Against Climate Change (DACC): improving the estimates of forest fire smoke emissions
- All-in-one Mars in-situ resource utilisation (ISRU) system and life-supporting using non-thermal plasma
- An electromagnetic study of the continent-ocean transition southwest of the UK
- An investigation of the relationship between health, home and law in the context of poor and precarious housing, and complex and advanced illness
- Antarctic ice sheet response to climate forcing
- Antibiotic resistance genes in chalk streams
- Assessing changes in astronomical tides on global scales
- Being autistic in care: Understanding differences in care experiences including breakdowns in placements for autistic and non-autistic children
- Biogeochemical cycling in the critical coastal zone: Developing novel methods to make reliable measurements of geochemical fluxes in permeable sediments
- Bloom and bust: seasonal cycles of phytoplankton and carbon flux
- British Black Lives Matter: The emergence of a modern civil rights movement
- Building physics for low carbon comfort using artificial intelligence
- Building-resolved large-eddy simulations of wind and dispersion over a city scale urban area
- Business studies and management: accounting
- Business studies and management: banking and finance
- Business studies and management: decision analytics and risk
- Business studies and management: digital and data driven marketing
- Business studies and management: human resources (HR) management and organisational behaviour
- Business studies and management: strategy, innovation and entrepreneurship
- Carbon storage in reactive rock systems: determining the coupling of geo-chemo-mechanical processes in reactive transport
- Cascading hazards from the largest volcanic eruption in over a century: What happened when Hunga Tonga-Hunga Ha’apai erupted in January 2022?
- Characterisation of cast austenitic stainless steels using ultrasonic backscatter and artificial intelligence
- Climate Change effects on the developmental physiology of the small-spotted catshark
- Climate at the time of the Human settlement of the Eastern Pacific
- Collaborative privacy in data marketplaces
- Compatibility of climate and biodiversity targets under future land use change
- Cost of living in modern and fossil animals
- Creative clusters in rural, coastal and post-industrial towns
- Deep oceanic convection: the outsized role of small-scale processes
- Defect categories and their realisation in supersymmetric gauge theory
- Defining the Marine Fisheries-Energy-Environment Nexus: Learning from shocks to enhance natural resource resilience
- Desert dune avalanche processes modern ancient environments
- Design and fabrication of next generation optical fibres
- Developing a practical application of unmanned aerial vehicle technologies for conservation research and monitoring of endangered wildlife
- Development and evolution of animal biomineral skeletons
- Development of all-in-one in-situ resource utilisation system for crewed Mars exploration missions
- Disturbance and recovery of benthic habitats in submarine canyon settings
- Ecological role of offshore artificial structures
- Effect of embankment and subgrade weathering on railway track performance
- Efficient ‘whole-life’ anchoring systems for offshore floating renewables
- Electrochemical sensing of the sea surface microlayer
- Engagement with nature among children from minority ethnic backgrounds
- Ensuring the Safety and Security of Autonomous Cyber-Physical Systems
- Environmental and genetic determinants of Brassica crop damage by the agricultural pest Diamondback moth
- Estimating marine mammal abundance and distribution from passive acoustic and biotelemetry data
- Evolution of symbiosis in a warmer world
- Examining evolutionary loss of calcification in coccolithophores
- Explainable AI (XAI) for health
- Explaining process, pattern and dynamics of marine predator hotspots in the Southern Ocean
- Exploring dynamics of natural capital in coastal barrier systems
- Exploring the mechanisms of microplastics incorporation and their influence on the functioning of coral holobionts
- Exploring the potential electrical activity of gut for healthcare and wellbeing
- Exploring the trans-local nature of cultural scene
- Facilitating forest restoration sustainability of tropical swidden agriculture
- Faulting, fluids and geohazards within subduction zone forearcs
- Faulting, magmatism and fluid flow during volcanic rifting in East Africa
- Fingerprinting environmental releases from nuclear facilities
- Flexible hybrid thermoelectric materials for wearable energy harvesting
- Floating hydrokinetic power converter
- Glacial sedimentology associated subglacial hydrology
- Green and sustainable Internet of Things
- How do antimicrobial peptides alter T cell cytokine production?
- How do calcifying marine organisms grow? Determining the role of non-classical precipitation processes in biogenic marine calcite formation
- How do neutrophils alter T cell metabolism?
- How well can we predict future changes in biodiversity using machine learning?
- Hydrant dynamics for acoustic leak detection in water pipes
- If ‘Black Lives Matter’, do ‘Asian Lives Matter’ too? Impact trajectories of organisation activism on wellbeing of ethnic minority communities
- Illuminating luciferin bioluminescence in dinoflagellates
- Imaging quantum materials with an XFEL
- Impact of neuromodulating drugs on gut microbiome homeostasis
- Impact of pharmaceuticals in the marine environment in a changing world
- Impacts of environmental change on coastal habitat restoration
- Improving subsea navigation using environment observations for long term autonomy
- Information theoretic methods for sensor management
- Installation effect on the noise of small high speed fans
- Integrated earth observation mapping change land sea
- Interconnections of past greenhouse climates
- Inverse simulation: going from camera observations of a deformation to material properties using a new theoretical approach
- Investigating IgG cell depletion mechanisms
- Is ocean mixing upside down? How mixing processes drive upwelling in a deep-ocean basin
- Landing gear aerodynamics and aeroacoustics
- Lightweight gas storage: real-world strategies for the hydrogen economy
- Long-term change in the benthos – creating robust data from varying camera systems
- Machine learning for multi-robot perception
- Machine learning for multi-robot perception
- Mapping Fishing Industry Response to Shocks: Learning Lessons to Enhance Marine Resource Resilience
- Marine ecosystem responses to past climate change and its oceanographic impacts
- Mechanical effects in the surf zone - in situ electrochemical sensing
- Microfluidic cell isolation systems for sepsis
- Microplastics and carbon sequestration: identifying links and impacts
- Microplastics in the Southern Ocean: sources, fate and impacts
- Migrant entrepreneurship, gender and generation: context and family dynamics in small town Britain
- Miniaturisation in fishes: evolutionary and ecological perspectives
- Modelling high-power fibre laser and amplifier stability
- Modelling soil dewatering and recharge for cost-effective and climate resilient infrastructure
- Modelling the evolution of adaptive responses to climate change across spatial landscapes
- Nanomaterials sensors for biomedicine and/or the environment
- New high-resolution observations of ocean surface current and winds from innovative airborne and satellite measurements
- New perspectives on ocean photosynthesis
- Novel methods of detecting carbon cycling pathways in lakes and their impact on ecosystem change
- Novel technologies for cyber-physical security
- Novel transparent conducting films with unusual optoelectronic properties
- Novel wavelength fibre lasers for industrial applications
- Ocean circulation and the Southern Ocean carbon sink
- Ocean influence on recent climate extremes
- Ocean methane sensing using novel surface plasmon resonance technology
- Ocean physics and ecology: can robots disentangle the mix?
- Ocean-based Carbon Dioxide Removal: Assessing the utility of coastal enhanced weathering
- Offshore renewable energy (ORE) foundations on rock seabeds: advancing design through analogue testing and modelling
- Optical fibre sensing for acoustic leak detection in buried pipelines
- Optimal energy transfer in nonlinear systems
- Optimal energy transfer in nonlinear systems
- Optimizing machine learning for embedded systems
- Oxidation of fossil organic matter as a source of atmospheric CO2
- Partnership dissolution and re-formation in later life among individuals from minority ethnic communities in the UK
- Personalized multimodal human-robot interactions
- Preventing disease by enhancing the cleaning power of domestic water taps using sound
- Quantifying riparian vegetation dynamics and flow interactions for Nature Based Solutions using novel environmental sensing techniques
- Quantifying the response and sensitivity of tropical forest carbon sinks to various drivers
- Quantifying variability in phytoplankton electron requirements for carbon fixation
- Reconciling geotechnical and seismic data to accelerate green energy developments offshore
- Resilient and sustainable steel-framed building structures
- Resolving Antarctic meltwater events in Southern Ocean marine sediments and exploring their significance using climate models
- Robust acoustic leak detection in water pipes using contact sound guides
- Silicon synapses for artificial intelligence hardware
- Smart photon delivery via reconfigurable optical fibres
- Southern Ocean iron supply: does size fractionation matter?
- The Gulf Stream control of the North Atlantic carbon sink
- The Mayflower Studentship: a prestigious fully funded PhD studentship in bioscience
- The calming effect of group living in social fishes
- The duration of ridge flank hydrothermal exchange and its role in global biogeochemical cycles
- The evolution of symmetry in echinoderms
- The impact of early life stress on neuronal enhancer function
- The oceanic fingerprints on changing monsoons over South and Southeast Asia
- The role of iron in nitrogen fixation and photosynthesis in changing polar oceans
- The role of singlet oxygen signaling in plant responses to heat and drought stress
- Time variability on turbulent mixing of heat around melting ice in the West Antarctic
- Triggers and Feedbacks of Climate Tipping Points
- Uncovering the drivers of non-alcoholic fatty liver disease progression using patient derived organoids
- Understanding ionospheric dynamics machine learning
- Understanding recent land-use change in Snowdonia to plan a sustainable future for uplands: integrating palaeoecology and conservation practice
- Understanding the role of cell motility in resource acquisition by marine phytoplankton
- Understanding the structure and engagement of personal networks that support older people with complex care needs in marginalised communities and their ability to adapt to increasingly ‘digitalised’ health and social care
- Understanding variability in Earth’s climate and magnetic field using new archives from the Iberian Margin
- Unpicking the Anthropocene in the Hawaiian Archipelago
- Unraveling oceanic multi-element cycles using single cell ionomics
- Unravelling southwest Indian Ocean biological productivity and physics: a machine learning approach
- Up, up and away – the fate of upwelled nutrients in an African upwelling system and the biogeochemical and phytoplankton response
- Using acoustics to monitor how small cracks develop into bursts in pipelines
- Using machine learning to improve predictions of ocean carbon storage by marine life
- Vulnerability of low-lying coastal transportation networks to natural hazards
- Wideband fibre optical parametric amplifiers for Space Division Multiplexing technology
- Will it stick? Exploring the role of turbulence and biological glues on ocean carbon storage
- X-ray imaging and property characterisation of porous materials
- Funding your research degree
- How to apply for a PhD or research degree
- How to make a PhD enquiry
- Support while studying your PhD or research degree
- Exchanges and studying abroad
- Undergraduate study
-
Tuition fees and funding
-
Scholarships
- Postgraduate scholarships for UK students
- Undergraduate scholarships for UK students
- Competitive scholarships for international postgraduates
- Competitive scholarships for international undergraduates
- Merit scholarships for international postgraduates
- Merit scholarships for international undergraduates
- Scholarship terms and conditions
- Southampton Canadian Prestige Scholarship for Law
- Southampton Presidential International Scholarship
-
Scholarships
- Short courses
- Lunchtime evening and weekend courses
- Clearing
- Summer schools
- Get a prospectus
-
Student life
-
Accommodation
- Choose your halls of residence
- Apply for accommodation
- Guaranteed accommodation
- Your accommodation options
- International and pre-sessional students
- Postgraduate accommodation
- Couples and students with children
- Renting privately
- Our accommodation areas
- Privacy notice
- Terms and conditions
- Fees and contracts
- Our cities
- Sports and gyms
- Our campuses
- Join our student community
- Support and money
-
Accommodation
-
Research
- Our impact
- Research projects
- Research areas
- Research facilities
- Collaborate with us
-
Institutes, centres and groups
- Active Living
- Advanced Project Management Research Centre
- Autism Community Research Network @ Southampton (ACoRNS)
- Bladder & Bowel Management
- Centre for Digital Finance
- Centre for Eastern European and Eurasian Studies (CEEES)
- Centre for Empirical Research in Finance and Banking (CERFIB)
- Centre for Healthcare Analytics
- Centre for Human Development, Stem Cells and Regeneration
- Centre for Inclusive and Sustainable Entrepreneurship and Innovation (CISEI)
- Centre for International Law and Globalisation
- Centre for Political Ethnography (CPE)
- Centre for Research in Accounting, Accountability and Governance
- Centre for Research on Work and Organisations
- Child and Adolescent Research Group
- Computational Nonlinear Optics
- Data Science Group
- Economic Theory and Experimental Economics
- Economy, Society and Governance
- Gravity group
- Institute of Maritime Law (IML)
- Integrative Molecular Phenotyping Centre
- Interdisciplinary Musculoskeletal Health
- Law and Technology Centre
- Mathematical Modelling
- Medicines Management
- People, Property, Community
- Product Returns Research Group (PRRG)
- Southampton Imaging
- Stefan Cross Centre for Women, Equality and Law
- String theory and holography
- Ultrafast X-ray Group
- Support for researchers
- Faculties, schools and departments
- Research jobs
- Find people and expertise
- Business
- Global
- About
- Visit
- Alumni
- Departments
- News
- Events
- Contact