Skip to main navigationSkip to main content
The University of Southampton

SESM6036 Biomedical Implants and Devices

Module Overview

This module provides an introduction to the ways in which engineering methods are used in the design of a wide range of biomedical implants and devices for the treatment of various human diseases. In particular, you will learn about the design and function of auditory implants, cardiovascular implants and devices, prosthetic limbs and how regenerative medicine and tissue engineering are influencing the development of biomedical implants. The relevant background to anatomy, disease, injury and the mechanical properties of biological materials will be covered such that engineering solutions can be presented with respect to the associated clinical needs. In addition to lectures, you will have hands-on lab-based tasks and talks by specialist clinicians.

Aims and Objectives

Learning Outcomes

Knowledge and Understanding

Having successfully completed this module, you will be able to demonstrate knowledge and understanding of:

  • Human anatomy, physiology and pathology relevant to the implants studied herein;
  • A range of transferrable skills linked to different engineering disciplines but also across the boundaries between engineering and medicine;
  • The high standards demanded of devices with respect to production, storage and performance, all related to approval from government agencies
  • Issues related to intellectual property and the protection of ideas;
  • Creative solutions to challenging biomedical design problems.
  • Mechanical properties of biological tissue;
  • The clinical needs for implants across a range of human diseases;
  • The role of engineering in providing solutions to these particular clinical needs;
  • Auditory implants (including cochlear implants);
  • Cardiovascular implants and devices (including stents and heart valves);
  • Prosthetic limbs
  • Stem cells in regenerative medicine;
  • How to apply and integrate knowledge, understanding and application of engineering methods from other disciplines in a multi-disciplinary arena (e.g., the use of CAD, FEA and CFD applied to the design of biomedical devices);


Introduction (2 lectures): Overview of biomedical implants and devices and what is covered in the module; Introduction to biology for engineers. Regenerative medicine and tissue engineering (2 lectures): Stem cells in regenerative medicine; Tissue engineering; Tissue engineered implants. Properties of biological materials (9 lectures): Biophysical properties; Constitutive theories and modelling of hard and soft tissue; Calibration of constitutive models from experimental data; Finite element modelling of soft tissue Material calibration case study (computer lab) Audiology implants (3 lectures): Cochlear implant candidacy, hardware, data transmission, speech processing, monitoring; Acoustic vs electric stimulation; Limitations and new developments; Other audiology implants. Acoustic simulations of cochlear implants case study (computer lab) Cardiovascular implants and devices (10 lectures): The heart and the cardiovascular system; Cardiovascular disease; Devices (including pacemakers, defibrillators, stents, heart valves, filters); Monitoring cardiovascular health; Computational modelling. Cardiovascular device case study (computer lab) Prosthetic limbs (2 lectures) Guest lectures from clinicians (2 lectures) Anatomy: Hands-on study of anatomy at the Anatomy Science Lab at SGH

Learning and Teaching

Teaching and learning methods

Teaching methods include • Lectures (3 per week) - Including guest talks from clinicians • Computing labs (3 case studies) - Hands-on computing case studies related to the main implants and devices taught in the module. Assessed tasks will be set for each case study. • Visit to the Anatomical Sciences Laboratory at Southampton General Hospital • Online resources

Practical classes and workshops8
External visits2
Follow-up work24
Completion of assessment task36
Wider reading or practice18
Preparation for scheduled sessions12
Total study time150


Assessment Strategy

Three case studies will be presented in three double lab sessions followed by related assessed tasks of equal value (i.e. 20% each of the final module mark). A one hour exam will be taken as the final assessment and worth 40% of the module mark.


MethodPercentage contribution
Continuous Assessment 60%
Final Assessment  40%


MethodPercentage contribution
Set Task 100%

Repeat Information

Repeat type: Internal & External


Costs associated with this module

Students are responsible for meeting the cost of essential textbooks, and of producing such essays, assignments, laboratory reports and dissertations as are required to fulfil the academic requirements for each programme of study.

In addition to this, students registered for this module typically also have to pay for:

Travel Costs for placements

Programme costs are covered for a two hour visit to the anatomy lab at Southampton General Hospital (SGH). Students are responsible for payment of their own travel costs to and from SGH. (travel)

Please also ensure you read the section on additional costs in the University’s Fees, Charges and Expenses Regulations in the University Calendar available at

Share this module Share this on Facebook Share this on Twitter Share this on Weibo
Privacy Settings