About this course
Study the mathematical techniques that are driving advances in modern chemistry. You'll explore topics ranging from the use of artificial intelligence to predict chemical reactions, to the discovery of new drugs through quantum mechanical modelling.
On this three-year degree you’ll combine your passion for chemistry with your talent for maths. This subject has important applications in fields such as:
- analytical chemistry
- biotechnology
- drug discovery
- nanotechnology
- programming and computational chemistry
You'll gain advanced analytical and statistical skills, with the chance to apply these to practical problems. By choosing from complementary chemistry and maths options you can also tailor your studies to suit your interests.
You'll have the opportunity to:
- develop knowledge that is highly valued in the chemical industries
- learn from academics at the forefront of chemistry research
- study in modern, spacious teaching laboratories, using state-of-the-art equipment.
Course location
This course is based at Highfield.
Awarding body
This qualification is awarded by the University of Southampton.
Entry requirements
For Academic year 202324
A-levels
ABB including chemistry and mathematics
A-levels additional information
A pass in the science Practical is required where it is separately endorsed. Offers typically exclude General Studies and Critical Thinking.
A-levels with Extended Project Qualification
If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer: BBB including chemistry and mathematics, plus grade A in the EPQ
A-levels contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme, as follows: BBB, including chemistry and mathematics
International Baccalaureate Diploma
Pass, with 32 points overall with 6,5,5 in three Higher Level subjects including chemistry and mathematics (Analysis and Approaches is preferred)
International Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Career Programme (IBCP) statement
Offers will be made on the individual Diploma Course subject(s) and the career-related study qualification. The CP core will not form part of the offer. Where there is a subject pre-requisite(s), applicants will be required to study the subject(s) at Higher Level in the Diploma course subject and/or take a specified unit in the career-related study qualification. Applicants may also be asked to achieve a specific grade in those elements. Please see the University of Southampton International Baccalaureate Career-Related Programme (IBCP) Statement for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
BTEC
D in the BTEC Extended Certificate plus A in A-level chemistry and A in A-level mathematics.
We will consider the BTEC Diploma if studied alongside A-level chemistry and A-level mathematics.
We will consider the BTEC Extended Diploma if studied alongside A-level chemistry and A-level mathematics.
RQF BTEC
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme
Additional information
A pass in the science Practical is required where it is separately endorsed. Applicants who have not studied A-level chemistry and/or mathematics can apply for the Science Foundation Year. Please visit the Science Foundation Year page for more information.
QCF BTEC
D in the BTEC Subsidiary Diploma plus A in A-level chemistry with a pass in the chemistry Practical and A in A-level mathematics.
We will consider the BTEC Diploma if studied alongside A-level chemistry and A-level mathematics.
We will consider the BTEC Extended Diploma if studied alongside A-level chemistry and A-level mathematics.
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme
Access to HE Diploma
Applicants with an Access to HE Diploma should apply for BSc Chemistry
Access to HE additional information
Irish Leaving Certificate
Irish Leaving Certificate (first awarded 2017)
H1 H2 H2 H2 H3 H3 including chemistry and mathematics
Irish Leaving Certificate (first awarded 2016)
Scottish Qualification
Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education.
Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
Cambridge Pre-U
D3 M2 M2 in three Principal subjects including chemistry and mathematics
Cambridge Pre-U additional information
Cambridge Pre-U's can be used in combination with other qualifications such as A-levels to achieve the equivalent of the typical offer, where D3 can be used in lieu of A-level grade A or grade M2 can be used in lieu of grade B.
Welsh Baccalaureate
ABB from three A-levels including chemistry and mathematics or AB from two A-levels including chemistry and mathematics plus B in the Advanced Welsh Baccalaureate Skills Challenge Certificate
Welsh Baccalaureate additional information
A pass in the science Practical is required where it is separately endorsed. Offers typically exclude General Studies and Critical Thinking.
Welsh Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Other requirements
GCSE requirements
Applicants must hold GCSE English language (or GCSE English) (minimum grade 4/C) and mathematics (minimum grade 4/C)
Find the equivalent international qualifications for our entry requirements.
English language requirements
If English isn't your first language, you'll need to complete an International English Language Testing System (IELTS) to demonstrate your competence in English. You'll need all of the following scores as a minimum:
IELTS score requirements
- overall score
- 6.5
- reading
- 6.0
- writing
- 6.0
- speaking
- 6.0
- listening
- 6.0
We accept other English language tests. Find out which English language tests we accept.
You might meet our criteria in other ways if you do not have the qualifications we need. Find out more about:
- our Access to Southampton scheme for students living permanently in the UK (including residential summer school, application support and scholarship)
- skills you might have gained through work or other life experiences (otherwise known as recognition of prior learning)
Find out more about our Admissions Policy.
For Academic year 202425
A-levels
ABB including chemistry and mathematics
A-levels additional information
A pass in the science Practical is required where it is separately endorsed. Offers typically exclude General Studies and Critical Thinking.
A-levels with Extended Project Qualification
If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer: BBB including chemistry and mathematics, plus grade A in the EPQ
A-levels contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Diploma
Pass, with 32 points overall with 6,5,5 in three Higher Level subjects including chemistry and mathematics (Analysis and Approaches is preferred)
International Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Career Programme (IBCP) statement
Offers will be made on the individual Diploma Course subject(s) and the career-related study qualification. The CP core will not form part of the offer. Where there is a subject pre-requisite(s), applicants will be required to study the subject(s) at Higher Level in the Diploma course subject and/or take a specified unit in the career-related study qualification. Applicants may also be asked to achieve a specific grade in those elements. Please see the University of Southampton International Baccalaureate Career-Related Programme (IBCP) Statement for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
BTEC
D in the BTEC Extended Certificate plus A in A-level chemistry and A in A-level mathematics.
We will consider the BTEC Diploma if studied alongside A-level chemistry and A-level mathematics.
We will consider the BTEC Extended Diploma if studied alongside A-level chemistry and A-level mathematics.
RQF BTEC
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme
Additional information
A pass in the science Practical is required where it is separately endorsed. Applicants who have not studied A-level chemistry and/or mathematics can apply for the Science Foundation Year. Please visit the Science Foundation Year page for more information.
QCF BTEC
D in the BTEC Subsidiary Diploma plus A in A-level chemistry with a pass in the chemistry Practical and A in A-level mathematics.
We will consider the BTEC Diploma if studied alongside A-level chemistry and A-level mathematics.
We will consider the BTEC Extended Diploma if studied alongside A-level chemistry and A-level mathematics.
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme
Access to HE Diploma
Applicants with an Access to HE Diploma should apply for BSc Chemistry
Access to HE additional information
Irish Leaving Certificate
Irish Leaving Certificate (first awarded 2017)
H1 H2 H2 H2 H3 H3 including chemistry and mathematics
Irish Leaving Certificate (first awarded 2016)
Scottish Qualification
Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education.
Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
Cambridge Pre-U
D3 M2 M2 in three Principal subjects including chemistry and mathematics
Cambridge Pre-U additional information
Cambridge Pre-U's can be used in combination with other qualifications such as A-levels to achieve the equivalent of the typical offer, where D3 can be used in lieu of A-level grade A or grade M2 can be used in lieu of grade B.
Welsh Baccalaureate
ABB from three A-levels including chemistry and mathematics or AB from two A-levels including chemistry and mathematics plus B in the Advanced Welsh Baccalaureate Skills Challenge Certificate
Welsh Baccalaureate additional information
A pass in the science Practical is required where it is separately endorsed. Offers typically exclude General Studies and Critical Thinking.
Welsh Baccalaureate contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Other requirements
GCSE requirements
Applicants must hold GCSE English language (or GCSE English) (minimum grade 4/C) and mathematics (minimum grade 4/C)
Find the equivalent international qualifications for our entry requirements.
English language requirements
If English isn't your first language, you'll need to complete an International English Language Testing System (IELTS) to demonstrate your competence in English. You'll need all of the following scores as a minimum:
IELTS score requirements
- overall score
- 6.5
- reading
- 6.0
- writing
- 6.0
- speaking
- 6.0
- listening
- 6.0
We accept other English language tests. Find out which English language tests we accept.
You might meet our criteria in other ways if you do not have the qualifications we need. Find out more about:
- our Access to Southampton scheme for students living permanently in the UK (including residential summer school, application support and scholarship)
- skills you might have gained through work or other life experiences (otherwise known as recognition of prior learning)
Find out more about our Admissions Policy.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Course structure
This three-year degree will provide you with in-depth knowledge and practical training in chemistry with mathematics, and develop your understanding of its impact on modern society.
Core modules in the first and second year are shared across most of our chemistry degrees. This makes it easy to transfer if you decide you’d like to move onto the MChem programme.
Switching to other chemistry degrees can also be possible, depending on the optional modules you have chosen.
Year 1 overview
You'll get a thorough grounding in all aspects of chemistry with a comprehensive set of core modules.
With 25% of your degree made up of mathematics and statistics, you will also develop a strong mathematical underpinning for your future.
Topics include:
- Molecular structure
- Calculus and multivariable calculus
- Reactivity
- Thermodynamics
- Chemistry of the elements
- Atomic structure
Year 2 overview
Study core topics in chemistry and mathematics, including:
- Organic Reaction Mechanisms and Organic Synthesis
- Atomic and Molecular Interactions, Change and Equilibrium
- Symmetry in Chemistry
- Linear algebra
- Probability and statistics
- Dynamics and relativity
You’ll also have the chance to shape your degree to suit your interests in both chemistry and mathematics by choosing from a range of optional modules. These may include:
- Mathematical Methods in Chemistry
- Ethics in Sciences
- Engineering and Technology
- Aquatic Chemistry
- Pharmacology
Year 3 overview
Study more advanced modules in core practical and theoretical areas of chemistry, including:
- Pigments and F-block Chemistry
- Natural Product Chemistry
- Electrochemistry, Energy Storage, Pollution Control and Fuel Cells
- Organometallic Chemistry
- DNA and RNA
In the advanced practical module you'll undertake research-oriented, open-ended experiments which allow you to develop new practical skills, manage your own learning and present your results. You'll choose from mathematics and statistics topics such as:
- Statistical Distribution Theory or Analysis
- Statistical Modelling
- Partial Differential Equations
Want more detail? See all the modules in the course.
Modules
For entry in Academic Year 2022-23
Year 1 modules
You must study the following modules in year 1:
Analytical Chemistry
Analytical Chemistry is a measurement science consisting of a set of powerful ideas and methods that provide qualitative or quantitative information about the chemical composition of a sample. Analytical measurements are required in a wide range of fields...
Calculus
This module provides a bridge between A-level mathematics and university mathematics. Some of the material will be similar to that in A-level Maths and Further Maths but will be treated in more depth, and some of the material will be new. Topics of study ...
Fundamentals of Kinetics and Quantum Mechanics
Physical Chemistry is concerned with the application of physics to the study of chemical systems. Through physical chemistry one can understand and predict the behaviour of chemical systems, thereby allowing these systems to be optimised. This module will...
Fundamentals of Thermodynamics and Equilibrium
Physical Chemistry is concerned with the application of physics to the study of chemical systems. Through physical chemistry one can understand and predict the behaviour of chemical systems, thereby allowing these systems to be optimised. This module will...
Introduction to Practical Chemistry I
This course is an introduction to practical chemistry, involving direct laboratory teaching (with detailed instructions) of a range of basic skills to set foundations for further learning. It includes the teaching of common experimental techniques, use of...
Introduction to Practical Chemistry II
This course follows on from CHEM1051 and teaches slightly more advanced basic skills, with the application of the Semester 1 skills and knowledge. More complex work-ups will be undertaken, with more emphasis on student input (or decision making) in the pr...
Main Group and Transition Metal Chemistry
This module will provide an introduction into the fundamentals of main group and transition metal chemistry, and introduce NMR.
Year 2 modules
You must study the following modules in year 2:
Coordination Chemistry
This module will build on the principles of Transition Metal chemistry covered in Part 1. Through developing a molecular orbital approach, you will be taken from the basics of ligand interactions and binding modes to understanding a transition metal's...
Linear Algebra I
Linear maps on vector spaces are the basis for a large area of mathematics, in particular linear equations and linear differential equations, which form the basic language of the physical sciences. This module restricts itself to the vector space R^n to ...
Multivariable Calculus
This module introduces the main ideas and techniques of differential and integral calculus of functions of two or more variables. One of the pre-requisites for MATH2003, MATH2011, MATH2014, MATH3033, MATH2038, MATH2039, MATH2045 and MATH2040
Quantum Mechanics and Molecular Spectroscopy
Physical Chemistry is concerned with the application of physics to the study of chemical systems. Through physical chemistry one can understand and predict the behaviour of chemical systems, thereby allowing these systems to be optimised. This module prov...
Solid State and Organometallic Chemistry
In this module you will learn about the fundamental theory of bonding in solids – band theory, and show how this can be used to understand the optical, magnetic and optical properties of solid phase materials. You will also be taught about X-ray diffracti...
Year 3 modules
You must study the following modules in year 3:
Advanced Physical Chemistry
The course deals with the nature of surfaces, both real and ideal, the energetics of adsorption at surfaces and adsorption isotherms, and the charge distribution at the liquid/solid interface. The kinetics of reactions at interfaces, including the role of...
Advanced Practical Chemistry
This module represents an advanced practical course designed to build on the practical skills developed through lab modules undertaken in years 1 and 2 of the Chemistry degree programmes. The course will extend this vital skill by enabling students to un...
Chemistry Literature Project
This module requires students to produce a dissertation under the guidance of a supervisor extending the skills developed in the Advanced Practical module. The dissertation may take the form of a literature review or other extended written report, the pr...
Chemistry Research Project
The project involves approximately 300 hours of commitment between the beginning of week 1 and the end of the last week before the Easter vacation (the finish date is to be confirmed). This corresponds to a minimum of 150 hours in the laboratory/ researc...
Hilbert Spaces
This module is an introduction to functional analysis on Hilbert spaces. The subject of functional analysis builds on the linear algebra studied in the first year and the analysis studied in the second year. The module introduces the concept of Hilbert...
Partial Differential Equations
Differential equations occupy a central role in mathematics because they allow us to describe a wide variety of real-world systems. The module will aim to stress the importance of both theory and applications of differential equations. The module begin...
You must also choose from the following modules in year 3:
Analysis
The notion of limit and convergence are two key ideas on which rest most of modern Analysis. This module aims to present these notions building on the experience gained by students in first year Calculus module. The context of our study is: limits and co...
Atoms, Molecules and Spins: Quantum Mechanics in Chemistry and Spectroscopy
This module aims to develop an intermediate-level understanding of quantum mechanics, including familiarity with its mathematical formulation. It is intended to bridge the gap between the qualitative, pictorial approach used in the core modules of the fir...
Complex Analysis
Complex Analysis is the theory of functions in a complex variable. While the initial theory is very similar to Analysis (i.e, the theory of functions in one real variable as seen in the second year), the main theorems provide a surprisingly elegant, found...
Computational Machine Learning and Optimisation
This module will introduce you to some of the main approaches used for data analysis and machine learning. Students will gain knowledge and understanding of different computational machine learning methods, and gain skills in applying them to analyse dat...
Mathematical Biology
Biology is undergoing a quantitative revolution, generating vast quantities of data that are analysed using bioinformatics techniques and modelled using mathematics to give insight into the underlying biological processes. This module aims to give a flavo...
Medicinal Chemistry
Medicinal Chemistry is pivotal in the design, synthesis and evaluation of new medicines, and involves multidisciplinary research at the interface of Chemistry, Biology and Medicine. This module will introduce key molecular concepts and methods in Medicina...
Optimization
Module Contents: This module discusses continuous optimization problems where either the objective function or constraint functions or both are nonlinear. It explains optimality conditions, that is, which conditions an optimal solution must satisfy. It in...
Synthetic Methods in Organic Chemistry
Carbon-carbon bond forming reactions lie at the heart of organic synthesis. In this course we will cover methods for carbon-carbon bond formation using carbanions and radicals, and through thermally and photochemically induced pericyclic processes. The si...
Learning and assessment
The learning activities for this course include the following:
- lectures
- classes and tutorials
- coursework
- individual and group projects
- independent learning (studying on your own)
Academic support
You’ll be supported by a personal academic tutor and have access to a senior tutor.
Course leader
Peter Birkin is the course leader.
Careers
There are a large number of roles outside of scientific research where a strong scientific underpinning is beneficial. This bachelor’s level degree gives an excellent grounding in chemistry and mathematics, and is ideal for those who may not want to pursue research, but see a place for science in their future career.
Your mathematical and chemistry skills and knowledge will be valuable in a range of careers including:
- Accountancy
- Banking
- Business analysis
- Engineering
- Human resources
- Management consultancy
- Marketing
- Programming and software development
- Project management
- Scientific journalism
- Scientific sales
- Teaching
If you’re not sure what path to choose, a career-focused module in year two will help you understand the options and map them to your strengths and interests. This module includes talks from industry speakers, giving you a flavour of different career paths.
Students interested in teaching can enhance their CVs by volunteering in outreach or chemical education research. There will also be opportunities to get involved in research.
Careers services at Southampton
Fees, costs and funding
Tuition fees
Fees for a year's study:
- UK students pay £9,250.
- EU and international students pay £23,720.
What your fees pay for
Your tuition fees pay for the full cost of tuition and all examinations.
Find out how to:
Accommodation and living costs, such as travel and food, are not included in your tuition fees. Explore:
Bursaries, scholarships and other funding
If you're a UK or EU student and your household income is under £25,000 a year, you may be able to get a University of Southampton bursary to help with your living costs. Find out about bursaries and other funding we offer at Southampton.
If you're a care leaver or estranged from your parents, you may be able to get a specific bursary.
Get in touch for advice about student money matters.
Scholarships and grants
You may be able to get a scholarship or grant to help fund your studies.
We award scholarships and grants for travel, academic excellence, or to students from under-represented backgrounds.
Support during your course
The Student Services Centre offers support and advice on money to students. You may be able to access our Student Support fund and other sources of financial support during your course.
Funding for EU and international students
Find out about funding you could get as an international student.
How to apply
When you apply use:
- UCAS course code: F107
- UCAS institution code: S27
What happens after you apply?
We will assess your application on the strength of your:
- predicted grades
- academic achievements
- personal statement
- academic reference
We'll aim to process your application within 2 to 6 weeks, but this will depend on when it is submitted. Applications submitted in January, particularly near to the UCAS equal consideration deadline, might take substantially longer to be processed due to the high volume received at that time.
Equality and diversity
We treat and select everyone in line with our Equality and Diversity Statement.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Related courses
-
Study
- View all courses
- Taught postgraduate study
- Pre-sessional English courses
- Subjects
-
PhDs and research degrees
- Create your own research project
- Enhancing UAV manoeuvres and control using distributed sensor arrays
-
Find a PhD project
- A missing link between continental shelves and the deep sea: Have we underestimated the importance of land-detached canyons?
- A seismic study of the continent-ocean transition southwest of the UK
- A study of rolling contact fatigue in electric vehicles (EVs)
- Acoustic monitoring of forest exploitation to establish community perspectives of sustainable hunting
- Acoustic sensing and characterisation of soil organic matter
- Advancing intersectional geographies of diaspora-led development in times of multiple crises
- Aero engine fan wake turbulence – Simulation and wind tunnel experiments
- Against Climate Change (DACC): improving the estimates of forest fire smoke emissions
- All-in-one Mars in-situ resource utilisation (ISRU) system and life-supporting using non-thermal plasma
- An electromagnetic study of the continent-ocean transition southwest of the UK
- An investigation of the relationship between health, home and law in the context of poor and precarious housing, and complex and advanced illness
- Antarctic ice sheet response to climate forcing
- Antibiotic resistance genes in chalk streams
- Assessing changes in astronomical tides on global scales
- Being autistic in care: Understanding differences in care experiences including breakdowns in placements for autistic and non-autistic children
- Biogeochemical cycling in the critical coastal zone: Developing novel methods to make reliable measurements of geochemical fluxes in permeable sediments
- Bloom and bust: seasonal cycles of phytoplankton and carbon flux
- British Black Lives Matter: The emergence of a modern civil rights movement
- Building physics for low carbon comfort using artificial intelligence
- Building-resolved large-eddy simulations of wind and dispersion over a city scale urban area
- Business studies and management: accounting
- Business studies and management: banking and finance
- Business studies and management: decision analytics and risk
- Business studies and management: digital and data driven marketing
- Business studies and management: human resources (HR) management and organisational behaviour
- Business studies and management: strategy, innovation and entrepreneurship
- Carbon storage in reactive rock systems: determining the coupling of geo-chemo-mechanical processes in reactive transport
- Cascading hazards from the largest volcanic eruption in over a century: What happened when Hunga Tonga-Hunga Ha’apai erupted in January 2022?
- Characterisation of cast austenitic stainless steels using ultrasonic backscatter and artificial intelligence
- Climate Change effects on the developmental physiology of the small-spotted catshark
- Climate at the time of the Human settlement of the Eastern Pacific
- Collaborative privacy in data marketplaces
- Compatibility of climate and biodiversity targets under future land use change
- Cost of living in modern and fossil animals
- Creative clusters in rural, coastal and post-industrial towns
- Deep oceanic convection: the outsized role of small-scale processes
- Defect categories and their realisation in supersymmetric gauge theory
- Defining the Marine Fisheries-Energy-Environment Nexus: Learning from shocks to enhance natural resource resilience
- Desert dune avalanche processes modern ancient environments
- Design and fabrication of next generation optical fibres
- Developing a practical application of unmanned aerial vehicle technologies for conservation research and monitoring of endangered wildlife
- Development and evolution of animal biomineral skeletons
- Development of all-in-one in-situ resource utilisation system for crewed Mars exploration missions
- Disturbance and recovery of benthic habitats in submarine canyon settings
- Ecological role of offshore artificial structures
- Effect of embankment and subgrade weathering on railway track performance
- Efficient ‘whole-life’ anchoring systems for offshore floating renewables
- Electrochemical sensing of the sea surface microlayer
- Engagement with nature among children from minority ethnic backgrounds
- Ensuring the Safety and Security of Autonomous Cyber-Physical Systems
- Environmental and genetic determinants of Brassica crop damage by the agricultural pest Diamondback moth
- Estimating marine mammal abundance and distribution from passive acoustic and biotelemetry data
- Evolution of symbiosis in a warmer world
- Examining evolutionary loss of calcification in coccolithophores
- Explainable AI (XAI) for health
- Explaining process, pattern and dynamics of marine predator hotspots in the Southern Ocean
- Exploring dynamics of natural capital in coastal barrier systems
- Exploring the mechanisms of microplastics incorporation and their influence on the functioning of coral holobionts
- Exploring the potential electrical activity of gut for healthcare and wellbeing
- Exploring the trans-local nature of cultural scene
- Facilitating forest restoration sustainability of tropical swidden agriculture
- Faulting, fluids and geohazards within subduction zone forearcs
- Faulting, magmatism and fluid flow during volcanic rifting in East Africa
- Fingerprinting environmental releases from nuclear facilities
- Flexible hybrid thermoelectric materials for wearable energy harvesting
- Floating hydrokinetic power converter
- Glacial sedimentology associated subglacial hydrology
- Green and sustainable Internet of Things
- How do antimicrobial peptides alter T cell cytokine production?
- How do calcifying marine organisms grow? Determining the role of non-classical precipitation processes in biogenic marine calcite formation
- How do neutrophils alter T cell metabolism?
- How well can we predict future changes in biodiversity using machine learning?
- Hydrant dynamics for acoustic leak detection in water pipes
- If ‘Black Lives Matter’, do ‘Asian Lives Matter’ too? Impact trajectories of organisation activism on wellbeing of ethnic minority communities
- Illuminating luciferin bioluminescence in dinoflagellates
- Imaging quantum materials with an XFEL
- Impact of neuromodulating drugs on gut microbiome homeostasis
- Impact of pharmaceuticals in the marine environment in a changing world
- Impacts of environmental change on coastal habitat restoration
- Improving subsea navigation using environment observations for long term autonomy
- Information theoretic methods for sensor management
- Installation effect on the noise of small high speed fans
- Integrated earth observation mapping change land sea
- Interconnections of past greenhouse climates
- Inverse simulation: going from camera observations of a deformation to material properties using a new theoretical approach
- Investigating IgG cell depletion mechanisms
- Is ocean mixing upside down? How mixing processes drive upwelling in a deep-ocean basin
- Landing gear aerodynamics and aeroacoustics
- Lightweight gas storage: real-world strategies for the hydrogen economy
- Long-term change in the benthos – creating robust data from varying camera systems
- Machine learning for multi-robot perception
- Machine learning for multi-robot perception
- Mapping Fishing Industry Response to Shocks: Learning Lessons to Enhance Marine Resource Resilience
- Marine ecosystem responses to past climate change and its oceanographic impacts
- Mechanical effects in the surf zone - in situ electrochemical sensing
- Microfluidic cell isolation systems for sepsis
- Microplastics and carbon sequestration: identifying links and impacts
- Microplastics in the Southern Ocean: sources, fate and impacts
- Migrant entrepreneurship, gender and generation: context and family dynamics in small town Britain
- Miniaturisation in fishes: evolutionary and ecological perspectives
- Modelling high-power fibre laser and amplifier stability
- Modelling soil dewatering and recharge for cost-effective and climate resilient infrastructure
- Modelling the evolution of adaptive responses to climate change across spatial landscapes
- Nanomaterials sensors for biomedicine and/or the environment
- New high-resolution observations of ocean surface current and winds from innovative airborne and satellite measurements
- New perspectives on ocean photosynthesis
- Novel methods of detecting carbon cycling pathways in lakes and their impact on ecosystem change
- Novel technologies for cyber-physical security
- Novel transparent conducting films with unusual optoelectronic properties
- Novel wavelength fibre lasers for industrial applications
- Ocean circulation and the Southern Ocean carbon sink
- Ocean influence on recent climate extremes
- Ocean methane sensing using novel surface plasmon resonance technology
- Ocean physics and ecology: can robots disentangle the mix?
- Ocean-based Carbon Dioxide Removal: Assessing the utility of coastal enhanced weathering
- Offshore renewable energy (ORE) foundations on rock seabeds: advancing design through analogue testing and modelling
- Optical fibre sensing for acoustic leak detection in buried pipelines
- Optimal energy transfer in nonlinear systems
- Optimal energy transfer in nonlinear systems
- Optimizing machine learning for embedded systems
- Oxidation of fossil organic matter as a source of atmospheric CO2
- Partnership dissolution and re-formation in later life among individuals from minority ethnic communities in the UK
- Personalized multimodal human-robot interactions
- Preventing disease by enhancing the cleaning power of domestic water taps using sound
- Quantifying riparian vegetation dynamics and flow interactions for Nature Based Solutions using novel environmental sensing techniques
- Quantifying the response and sensitivity of tropical forest carbon sinks to various drivers
- Quantifying variability in phytoplankton electron requirements for carbon fixation
- Reconciling geotechnical and seismic data to accelerate green energy developments offshore
- Resilient and sustainable steel-framed building structures
- Resolving Antarctic meltwater events in Southern Ocean marine sediments and exploring their significance using climate models
- Robust acoustic leak detection in water pipes using contact sound guides
- Silicon synapses for artificial intelligence hardware
- Smart photon delivery via reconfigurable optical fibres
- Southern Ocean iron supply: does size fractionation matter?
- The Gulf Stream control of the North Atlantic carbon sink
- The Mayflower Studentship: a prestigious fully funded PhD studentship in bioscience
- The calming effect of group living in social fishes
- The duration of ridge flank hydrothermal exchange and its role in global biogeochemical cycles
- The evolution of symmetry in echinoderms
- The impact of early life stress on neuronal enhancer function
- The oceanic fingerprints on changing monsoons over South and Southeast Asia
- The role of iron in nitrogen fixation and photosynthesis in changing polar oceans
- The role of singlet oxygen signaling in plant responses to heat and drought stress
- Time variability on turbulent mixing of heat around melting ice in the West Antarctic
- Triggers and Feedbacks of Climate Tipping Points
- Uncovering the drivers of non-alcoholic fatty liver disease progression using patient derived organoids
- Understanding ionospheric dynamics machine learning
- Understanding recent land-use change in Snowdonia to plan a sustainable future for uplands: integrating palaeoecology and conservation practice
- Understanding the role of cell motility in resource acquisition by marine phytoplankton
- Understanding the structure and engagement of personal networks that support older people with complex care needs in marginalised communities and their ability to adapt to increasingly ‘digitalised’ health and social care
- Understanding variability in Earth’s climate and magnetic field using new archives from the Iberian Margin
- Unpicking the Anthropocene in the Hawaiian Archipelago
- Unraveling oceanic multi-element cycles using single cell ionomics
- Unravelling southwest Indian Ocean biological productivity and physics: a machine learning approach
- Up, up and away – the fate of upwelled nutrients in an African upwelling system and the biogeochemical and phytoplankton response
- Using acoustics to monitor how small cracks develop into bursts in pipelines
- Using machine learning to improve predictions of ocean carbon storage by marine life
- Vulnerability of low-lying coastal transportation networks to natural hazards
- Wideband fibre optical parametric amplifiers for Space Division Multiplexing technology
- Will it stick? Exploring the role of turbulence and biological glues on ocean carbon storage
- X-ray imaging and property characterisation of porous materials
- Funding your research degree
- How to apply for a PhD or research degree
- How to make a PhD enquiry
- Support while studying your PhD or research degree
- Exchanges and studying abroad
- Undergraduate study
-
Tuition fees and funding
-
Scholarships
- Postgraduate scholarships for UK students
- Undergraduate scholarships for UK students
- Competitive scholarships for international postgraduates
- Competitive scholarships for international undergraduates
- Merit scholarships for international postgraduates
- Merit scholarships for international undergraduates
- Scholarship terms and conditions
- Southampton Canadian Prestige Scholarship for Law
- Southampton Presidential International Scholarship
-
Scholarships
- Short courses
- Lunchtime evening and weekend courses
- Clearing
- Summer schools
- Get a prospectus
-
Student life
-
Accommodation
- Choose your halls of residence
- Apply for accommodation
- Guaranteed accommodation
- Your accommodation options
- International and pre-sessional students
- Postgraduate accommodation
- Couples and students with children
- Renting privately
- Our accommodation areas
- Privacy notice
- Terms and conditions
- Fees and contracts
- Our cities
- Sports and gyms
- Our campuses
- Join our student community
- Support and money
-
Accommodation
-
Research
- Our impact
- Research projects
- Research areas
- Research facilities
- Collaborate with us
-
Institutes, centres and groups
- Active Living
- Advanced Project Management Research Centre
- Autism Community Research Network @ Southampton (ACoRNS)
- Bladder & Bowel Management
- Centre for Digital Finance
- Centre for Eastern European and Eurasian Studies (CEEES)
- Centre for Empirical Research in Finance and Banking (CERFIB)
- Centre for Healthcare Analytics
- Centre for Human Development, Stem Cells and Regeneration
- Centre for Inclusive and Sustainable Entrepreneurship and Innovation (CISEI)
- Centre for International Law and Globalisation
- Centre for Political Ethnography (CPE)
- Centre for Research in Accounting, Accountability and Governance
- Centre for Research on Work and Organisations
- Child and Adolescent Research Group
- Computational Nonlinear Optics
- Data Science Group
- Economic Theory and Experimental Economics
- Economy, Society and Governance
- Gravity group
- Institute of Maritime Law (IML)
- Integrative Molecular Phenotyping Centre
- Interdisciplinary Musculoskeletal Health
- Law and Technology Centre
- Mathematical Modelling
- Medicines Management
- People, Property, Community
- Product Returns Research Group (PRRG)
- Southampton Imaging
- Stefan Cross Centre for Women, Equality and Law
- String theory and holography
- Ultrafast X-ray Group
- Support for researchers
- Faculties, schools and departments
- Research jobs
- Find people and expertise
- Business
- Global
- About
- Visit
- Alumni
- Departments
- News
- Events
- Contact