Skip to main navigationSkip to main content
The University of Southampton
Courses

CHEM1036 Fundamentals of Inorganic Chemistry II

Module Overview

Aims and Objectives

Learning Outcomes

Learning Outcomes

Having successfully completed this module you will be able to:

  • Describe the physical basis, the limitations and the information available from NMR spectroscopy as a structural method.
  • Present the results of a practical investigation in a concise manner.
  • Qualitatively predict and/or interpret the NMR spectra of simple molecular species.
  • Qualitatively discuss simple trends in the physical properties of transition metals and their formation of coordination complexes with ligands.
  • Describe bonding models that can be applied to a consideration of the properties of transition metal compounds.
  • Recognise fundamental variables and general trends across the periodic table and predict molecular geometries and structures, recognising the importance of inert-pair effect, coordination geometries, oxidation state, electronegativity, ionisation energy, VSEPR, etc..
  • Identify the structures and properties of some important Groups 13-18 elements and their compounds with a view to gaining a better understanding of broad diversity in their chemical properties, their importance in the natural environment and their role in the development of bonding theories.
  • Evaluate the risks associated with an experiment and understand how to mitigate against those risks.
  • Set up glassware and apparatus to conduct experiments in Inorganic Chemistry.
  • Interpret data from a range of physical techniques to characterise inorganic componds.

Syllabus

• Topic 1 – Nuclear Magnetic Resonance Spectroscopy • Basis of Nuclear Magnetic Resonance (NMR) Spectroscopy • Chemical shift, chemical shielding, coupling, decoupling and isotopomers • Application to general molecular species including main group and transition metal examples • Emphasis placed on and spectral prediction from structure and structural elucidation from spectra • Topic 2 - Transition Metal Chemistry • Properties of the d-block elements, ligands, dn configurations, oxidation states and trends • Electrode potentials, Latimer and Frost diagrams • Coordination geometries, isomerism in coordination complexes • Ligand classifications and bonding interactions • Crystal Field Theory; common crystal field splittings (octahedral, tetrahedral and square-planar) • High and low spin cases, Crystal Field Stabilisation Energy (CFSE), and its structural and thermodynamic consequences • The spectrochemical series, and other factors affecting the crystal field splitting parameter, Δ • The Jahn-Teller effect • Colour, electronic spectroscopy (d¹) and selection rules • Magnetism and determination of number of unpaired electrons • Complex stability and the chelate effect • Topic 3 - Main Group Chemistry • Periodicity – variations in electronegativity, oxidation state, metallic character, atomic size and ionisation energy within the periodic table • Comparative main group chemistry • Trends in the chemistry of the elements of Groups 13, 14, 15; bond character and strengths; acid-base chemistry, Brønsted-Lowry systems, Lewis systems and donor-acceptor compounds • Trends in the chemistry of the elements of Groups 16, 17 and 18; investigation of their natural occurrence, halides, hydrides, oxides, oxoacids and interhalogen chemistry • Completion of four practical experiments and associated reports covering a range of topics and skills in inorganic chemistry including the application of a variety of advanced techniques and methodologies (including spectroscopy) to the synthesis and analysis of molecules and materials; the ability to understand and communicate the experimental methods and outcomes; understanding the importance of experimental safety and time management.

Learning and Teaching

Teaching and learning methods

Lectures, problem-solving Seminars with group working and tutor support Practical chemistry: Prelaboratory e-learning; pre-lab skills lectures/ Seminars; practical sessions, supporting demonstrations, group and one-to-one tuition

TypeHours
Practical24
Revision10
Preparation for scheduled sessions48
Follow-up work24
Lecture24
Tutorial5
Wider reading or practice15
Total study time150

Resources & Reading list

James Keeler and Peter Wothers (2008). Chemical Stucture and Reactivity. 

C. E. Housecroft and A. G. Sharpe (2012). Inorganic Chemistry. 

Andrew Burrows, John Holman, Andrew Parsons, Gwen Pilling, and Gareth Price (2013). Chemistry3: Introducing inorganic, organic, and physical chemistry. 

J S Ogden. Introduction to Molecular Symmetry. 

M J Winter. Chemical Bonding. 

D M P Mingos (1995). Essentials of Inorganic Chemistry 1. 

W G Richards and P R Scott. Energy Levels in Atoms and Molecules. 

Assessment

Assessment Strategy

All absences from practical sessions must be validated. Unexcused absences will result in failure of the module. Repeat year externally: allowed if practical component passed. The practical marks are retained, the theory assessment is exam only. Repeat year internally: note that practical may be reassessed by resubmission of reports or repeated.

Formative

Tutorial

Summative

MethodPercentage contribution
Assessed Tutorials 10%
Examination  (2 hours) 65%
Lab proficiency %
Practical write-ups 25%

Referral

MethodPercentage contribution
Examination  (2 hours) 100%
Lab proficiency %

Repeat Information

Repeat type: Internal & External

Share this module Share this on Facebook Share this on Twitter Share this on Weibo
Privacy Settings