CHEM2001 Organic Reaction Mechanisms
Module Overview
Aims and Objectives
Learning Outcomes
Learning Outcomes
Having successfully completed this module you will be able to:
- Use curly arrow reaction mechanisms and a knowledge of the relative stability of intermediates to predict and / or account for the products of reactions.
- Perform multi-step syntheses under normal or inert conditions using standard or microwave heating, or cooling baths using cardice;
- Monitor reactions by TLC;
- Separate by-products and to purify products by various methods (liquid-liquid extraction, inclusive of pH-manipulations during extractive work-up, column chromatography, recrystallisation, trituration)
- Safely handle flammable, corrosive, harmful, toxic and pyrophoric substances;
- Evaluate green credentials of reactions;
- Analyse the outcome of reactions via melting point, spectroscopic methods (1H-, 13C-NMR and DEPT experiments), IR (ATR) and mass spectrometry (ES and EI ionisation);
- Maintain a laboratory notebook and to write a formal report using appropriate text and chemistry artwork software;
- Present results formally and informally, individually or as a group;
- Suggest mechanisms for the reactions performed and to draw these using curly arrows.
- Generate full COSHH assessments;
- Design experiments to probe mechanisms, particularly using stereochemistry or isotopic labelling.
- Recognise neighboring group participation and rearrangement reactions.
- Use analytical information to assign or confirm structures.
- Combine reactions to achieve simple synthesis of target molecules.
- Predict the reactivity and regiochemistry of electrohilic addition to alkenes and aromatic systems.
- Predict outcomes and draw mechanisms for reactions of carbonyl compounds (condensations, additions, cyclisations).
- Predict outcomes and draw mechanisms for nucleophilic addition to alkenes and nucleophilic aromatic substitution reactions.
- Appreciate the scope and limitations of nucleophilic additions to pi-systems.
Syllabus
Mechanisms and reactive intermediates • SN2 mechanism. Orbital picture. Transition state. Inversion of configuration. Leaving groups. Nucleophiles. Steric hindrance. Activation by adjacent pi-systems; Dipolar aprotic solvents. • SN1 mechanism. Carbenium ions – relative stability of a wide range (delocalisation, stabilisation by lone pairs on adjacent heteroatoms; ‘hyperconjugation’, stabilisation of tertiary carbenium ions by release of steric strain). Importance of polar protic solvents. Loss of stereochemistry. • Neighbouring Group participation. Rearrangements (Wagner Meerwein; Pinacol; Baeyer-Villiger; Beckmann; Benzylic acid and semi-benzylic) with particular emphasis on steric requirements. • E1, E2, and E1CB elimination mechanisms. Kinetic isotope effect. • Neutral reactive intermediates: Carbenes and Radicals (brief introduction) Electrophilic Addition to π-Systems • Electrophilic addition to alkenes, regioselectivity and stereoselectivity issues of typical reactions including hydrogen halide addition (Markovnikov), halogen addition, bromolactonisation and epoxidation. Hydrogen halide addition to 1,3-dienes, including kinetic vs thermodynamic control. • Electrophilic aromatic substitution of benzene and substituted benzene derivatives; examples (including halogenation, sulfonation, nitration, Friedel-Crafts acylation and alkylation), mechanism, and substituent effects upon rate and regioselectivity in multiple substitution reactions. Chemistry of Enols and Enolates • Enolisation: revision of general aspects of carbonyl chemistry, including acid-base equilibria and pKa. • Enols and enolate ions as reactive intermediates – structure, stability and methods of formation, regioselectivity of deprotonation (kinetic vs thermodynamic control), general aspects of enolate ion reactivity. • Using enolates as reactive substrates. Enolate alkylation. Aldol addition and condensation, including intramolecular and crossed versions. Claisen and Dieckmann condensation, Mannich. • Silyl enol ethers – preparation and reactivity including substrate selectivity through control of reaction conditions. • Dicarbonyl compounds: synthesis, reactivity and use as substrates in enolate chemistry; decarboxylation and Knoevenagel condensation. Nucleophilic Addition to π-Systems • Conjugate addition of carbanions (Grignard), alcohols, thiols, amines, enolates, cyanide to alpha,beta-unsaturated carbonyl compounds. Discussion of factors affecting 1,2 vs 1,4-addition • Nucleophilic aromatic substitution. Addition-elimination and benzyne mechanisms. Practical Completion of three practical experiments and associated reports covering a range of topics and skills in organic chemistry including the application of a variety of fundamental techniques and methodologies (including spectroscopy) to the synthesis and analysis of molecules and materials; the ability to analyse experimental data to provide an explanation for the observed experimental outcomes; understanding the importance of experimental safety and time management. There is also a workshop on NMR assignment to reinforce 1st year work.
Learning and Teaching
Teaching and learning methods
Lectures, Seminars, tutorials, lab practical classes Practical hours includes pre-laboratory e-learning. Preparation for scheduled sessions hours includes other independent study.
Type | Hours |
---|---|
Revision | 10 |
Lecture | 24 |
Practical classes and workshops | 29 |
Preparation for scheduled sessions | 57 |
Completion of assessment task | 24 |
Tutorial | 6 |
Seminar | |
Total study time | 150 |
Resources & Reading list
M. Hesse, H. Meier, B. Zeeh (2008). Spectroscopic Methods in Organic Chemistry.
J Clayden, N Greeves, S Warren (2012). Organic Chemistry.
D Williams, I. Flemming (2008). Spectroscopic Methods in Organic Chemistry.
Assessment
Assessment Strategy
All absences from practical sessions must be validated and unexcused absences will result in failure of the module. Repeat year externally: allowed if practical attendance criteria has been met. The practical marks are retained, the theory assessment is exam only. Repeat year internally: note that practical may be reassessed by resubmission of reports or repeated.
Summative
Method | Percentage contribution |
---|---|
Assessed Tutorials | 10% |
Final Assessment (2 hours) | 65% |
Lab proficiency | |
Practical write-ups | 25% |
Referral
Method | Percentage contribution |
---|---|
Final Assessment (2 hours) | 100% |
Lab proficiency |
Repeat Information
Repeat type: Internal & External
Linked modules
Pre-requisites: CHEM1031 AND CHEM1032